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Abstract 
 
In a multiprocessor systems, it is important to local and to replace the faulty processors to maintain systemp-
silas high reliability. The fault diagnosis, which is the process of identifying fault processors in a multipro-
cessor system through testing. The conditional diagnosis requires that for each processor u in a system, all 
the processors that are directly connected to u do not fail at the same time. In this paper, we study the condi-
tional diagnosability of the n-dimensional locally twisted cubes. After showing some properties of the locally 
twisted cubes, we prove that it under the PMC model is 4n – 7 for n ≥ 5. 
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1. Introduction 
 

In recent years, the number of the processors in a multi-
processor system increases as fast as the technology de-
velopment. Thus some processors may fail in such a 
multiprocessor operating system. So locating the faulty 
processors is important for system maintenance and de-
pendable computing. System level diagnosis is an im-
portant approach for fault diagnosis in a multiprocessor 
system. Many different models for system level diagno-
sis in multiprocessor systems have been proposed, e.g., 
the PMC (the Perfect Minicomputer Corporation) model 
[1], the comparison model [2] and the BGM model [3]. 
So far, the well-studied mode is the PMC model intro-
duced by Preparata, Metze, and Chien [1]. 

A multiprocessor system is an interconnected collec-
tion of processors and can be represented by an undi-
rected graph G = (V, E), where each vertex of the vertex 
set V represents a processor and each edge of the edge 
set E represents a communication link between a pair of 
processors. Two processors interact with each other by 
sending messages over the communication link. Under 
the PMC model, two processors can test each other if and 
only if there is a link between them. The processor which 

tests the status of the other is called a tester. It is assumed 
that the test result is reliable if and only if the tester is 
fault free; otherwise, the test result is unreliable. The 
collection of all test results is called a syndromeσ ·r(u, v) 
denotes the test result of processor u testing processor v. 
If v pass the test executed by u, r(u, v) = 0; otherwise, r(u, 
v) = 1. Table 1 shows all possible test results of the test 
r(u, v). 

For a given syndrome σ , a subset of vertices 
F V⊆ is said to be consistent with σ  if σ  can arise 
from the circumstance that all nodes in F are faulty and 
all nodes in V-F are fault free. It is worth pointing out 
that a given set F of faulty vertices may be consistent 
with different syndromes. Let ( )Fσ be the set contain-
ing all syndromes which can be produced by F. Two 
distinct sets F1, 2F V⊆  are said to be distinguishable 
if ( ) ( )1 2F Fσ σ =∅  otherwise, F1, F2 are said to be in- 
distinguishable. 
 

Table 1. Test results. 

u v r (u, v) 

Fault-free Fault-free 0 

Fault-free Fault 1 

Fault Fault-free 0 or 1 

Fault Fault 0 or 1 
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A system is said to be t-diagnosable if given a syn-
dromeσ , all processors can correctly be identified faulty 
or faulty free, provided that the number of faulty proces-
sors present in the system does not exceed t. The diag-
nosability of a system is the maximal number of faulty 
processors that the system can guarantee to diagnose. 
The diagnosability of some interconnection networks 
have been discussed under the PMC model, see [4-6]. 

Lai et al. in [7] introduced conditional diagnosability 
by restricting that for each processor u in a system, all 
processors adjacent to u are not faulty at the same time, 
and showed that conditional diagnosability of the 
n-dimensional hypercube (Qn) is 4n – 7 for n ≥ 5, which 
is about four times as large as its classical diagnosability 
[8]. Zhu et al. in [9] presented that under PMC-model the 
conditional diagnosability of FQn (tc(FQn)) was 4n – 3 
when n ≥ 5 or n > 8; tc(FQ3) = 3, tc(FQ4) = 7. 

In recent years, conditional diagnosability of several 
interconnection networks has also been explored under 
the PMC model [7,9-12]. 

In the paper, we prove that conditional diagnosability of 
locally twisted cubes under the PMC model is ( )c nt LTQ  

4 7 for 5.n n= − ≥  
The rest of paper is organized as follows: Preliminary 

knowledge is provided in Section 2; The main results of 
this paper are presented and proven in Section 3; The 
conclusions are made in Section 4. 

 
2. Preliminaries 

 
For all the terminologies and notations not defined here, 
we follow [13]. For a graph G = (V, E) and S ⊂ V(G) or 
S ⊂ G, we use NG(S) to denote the set of neighboring 
vertices of S in G-S, when it is easy to know from the 
context what G denotes, it is usually simplified with N(S). 
We use AG(S) to denote the union of S and NG(S). And 
similarly AG(S) can be simplified with A(S). 

That is, NG(S) = {v∈ V (G)-S|∃ u ∈S such that (u, v) ∈ 
E(G)}, AG(S) = NG(S)   S. 

We use dG(u) to denote the degree of u in G and dG(u) 
can be simplified with d(u). 

Definition 1. [14] For n ≥ 2, an n-dimensional locally 
twisted cube, denoted by LTQn, is defined recursively as 
follows: 

1) LTQ2 is a graph consisting of four nodes labeled 
with 00, 01, 10 and 11, respectively, connected by four 
edges {00, 01}, {01, 11},{11, 10} and {10, 00}. 

2) For n ≥ 3, LTQn is built from two disjoint copies of 
LTQn–1 according to the following steps: Let 0LTQn–1 
denote the graph obtained from one copy of LTQn–1 by 
prefixing the label of each node with 0. Let 1LTQn–1 de-
note the graph obtained from the other copy of LTQn–1 by 
prefixing the label of each node with 1. Connect each 

node 
2 3

0
n

x x x  of 0LTQn 1 to the node 
( )2 3

1   
n n

x x x x+   of 1LTQn 1 with an edge, where “+” 
represents the modulo 2 addition. 

Figure 1 shows two examples of locally twisted cubes. 
The locally twisted cubes can also be equivalently de-
fined in the following non-recursive fashion. 

Definition 2. [14] For n ≥ 2, the n-dimensional locally 
twisted cube, LTQn, is a graph with {0, 1}n as the node 
set. Two nodes 

1 2 n
x x x x=   and 

1 2 n
y y y y=   of 

LTQn are adjacent if and only if either one of the follow-
ing conditions are satisfied. 

1) i ix y=  and xi+1 = yi+1 + yn for some 1 ≤ i ≤ n – 2, 
and xj = yj for all the remaining bits; 

2) i ix y=  for i ∈ {n – 1, n}, and xj = yj for all the 
remaining bits. 

The definition of the conditional diagnosability is as 
follows. 

Definition 3. [7] A faulty set F ⊆ V is called a condi-
tional faulty set if N(v) ⊄ F for any vertex v ∈ V. A sys-
tem G(V, E) is conditionally t-diagnosable if F1 and F2 
are distinguishable, for each pair of conditional faulty 
sets F1, F2 ⊆ V , and F1 ≠ F2 with |F1|; |F2| ≤ t. Condition-
al diagnosability of a system G, written as tc(G) is de-
fined to be the maximum value of t such that G is condi-
tionally t-diagnosable. 

Let F1, F2 be two distinct sets, the symmetric differ-
ence of F1 and F2 is denoted by F1∆F2, that is, F1∆F2 = 
(F1 – F2) ∪ (F2 – F1). The following lemma proposed by 
Dahbura and Masson [15] gives a necessary and suffi-
cient condition for a system to be t-diagnosable. 

Lemma 1. [16] A system G(V, E) is t-diagnosable if 
and only if, for each pair F, F2 ⊂ V with|F1|, |F2| ≤ t and 
F1 ≠ F2, there is at least one test from V – F1 ∪ F2 to 
F1∆F2. 

Lemma 2. [14] k(LTQn) = n for n ≥ 2. 
Lemma 3. [17] k (LTQn) = 2n – 2 for n ≥ 3. 
Lemma 4. [17] Let S be a set of vertices  

S ⊂ V(LTQn) with |S| = n, if LTQn-S is disconnected, 
there exists a vertex u ∈ V(V(LTQn)) such that N(u) = S 
for n ≥ 2. 

The following lemma is derived based on [18,19]. 
 

    
Figure 1. Example of LTQn: LTQ2 and LTQ3. 
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Lemma 5. Let F be a subgraph of LTQn with  
( )4 3 5V F n≤ ≤ − , we have ( ) 4 8

nLTQN F n≥ − . 

 
3. Conditionally Diagnosability 

 
Lemma 6. Let S be a set of vertices S ⊂ V(LTQn) and n ≥ 
3. Suppose that LTQn – S is disconnected. The following 
two conditions hold: 

(1) |S| ≥ n; 
(2) If n ≤ |S| ≤ 2n – 3, then LTQn-S has exactly two 

components, one is trivial and the other is nontrivial. The 
nontrivial component of LTQn-S contains 2n– |S| – 1 ver-
tices. 

Proof: By lemma 2 k(LTQn) = n, so condition (1) 
holds. We need to prove that condition (2) is true. Since 

nLTQ S−  is disconnected, there are at least two com-
ponents in nLTQ S− . We will prove that |S| ≥ 2 n – 2 
when nLTQ S−  contains at least two trivial compo-
nents or two nontrivial components. It implies that n ≤ |S| 
≤ 2n – 3 when nLTQ S− contains a trivial components 
and nontrivial components. 

Case 1. nLTQ S−  contains at least two trivial compo-
nents. Let u1, u2 ∈ V(LTQn) and {u1}, {u2} be two trivial 
components. Then N(u1) ⊂ S and N(u2) ⊂ S. Since any 
two distinct vertices of a LTQn have at most two com-
mon neighbors, we have |N(V1)   |N(V2)| ≤ 2. 

Hence, |S | ≥ |N(V1)| + |N(V2)| – |N(V1)   N(V2)| ≥ 2n 
+ 2n – 2 = 2(2n – 1). 

Case 2. LTQn-S contains at least two nontrivial com-
ponents. We prove condition (2) by induction on n. 
Suppose n ≤ |S| ≤ 2n – 3, it is easy to see that |S| = 3 for n 
= 3. The connectivity of LTQ3 is 3. By Lemma 4, there 
exist a vertex u ∈ V (LTQ3) such that S = N(u) Thus 
LTQ3-S has exactly two components: one is trivial and 
the other is nontrivial. Therefore, if LTQ3-S has at least 
two nontrivial components, |S| ≥ 2n – 2, where n = 3. 
Assume that the result holds for all n – 1, n – 1 ≥ 3. In 
the following we show that it holds for n. 

Let S0 = S   V(0LTQn–1) and S1 = S   V (1LTQn–1), 
F and F' be two nontrivial component of LTQn-S. So 
|V(F)| ≥ 2 and |V(F′)| ≥ 2. 

We consider the following three cases: 
Case 2.1. F, F′ ⊆ 0LTQn–1 or F, F′ ⊆ 1LTQn–1. Without 

loss of generality, let F, F′  ⊆ 0LTQn–1 , then 0LTQn-1 -S0 
is disconnected and|S1| ≥ |F| +|F′| ≥ 4. So |S0| ≥ k2 = 2n – 
4 by lemma 3. Thus |S| = |S0| + |S1| ≥ 2n – 2. 

Case 2.2. F ⊆ 0LTQn–1 and F′ ⊆ 1LTQn–1, or F′ ⊆ 
1LTQn–1 and F ⊆ 1LTQn–1. Without loss of generality, let 
F ⊆ 0LTQn–1 and F′ ⊆ 1LTQn–1. If both 0LTQn–1 – S0 and 
1LTQn–1 – S1 are connected, then |S0| ≥ 2n – 4 and S1| ≥ 
2n – 4. So |S| = |S0| + |S1| ≥ 2n – 4 + 2n– 4 ≥ 2n – 2 for n 

≥ 3. If exactly one of 0LTQn–1 – S0 and 1LTQn–1 – S1 is 
disconnected, let 0LTQn–1 – S0 be disconnected, then 

( )0 nLTQN F  ⊆ S0. So  

( )0   2 2 4  2 2 2.
nLTQS N F n n≥ + = − + = −  

Case2.3. 0LTQn–1   F ≠ ∅ and 1LTQn–1   F ≠ ∅ , 
or 0LTQn–1   F ′ ≠ ∅  and 1LTQn–1   F ′ ≠ ∅ . 
Without loss of generality, let 0LTQn–1   F ≠ ∅ and 
1LTQn-1   F ≠ ∅ . Since there is another component 
F′ of LTQn  – S, at least one of the two graphs 0LTQn–1 –  
S0 and 1LTQn–1 – S1 is disconnected. So we drive the re-
sult by consider two Subcase. 

Case 2.3.1. Both 0LTQn–1 – S0 and 1LTQn–1 – S1 are 
disconnected. Since k(LTQn–1) = n – 1, |S0| ≥ n – 1 and 

|S1| ≥ n – 1. Then |S| = |S0| + |S1|≥ 2n – 2. 
Case 2.3.2. Exactly one of the two subgraphs 0LTQn–1 

– S0 and 1LTQn–1 – S1 is disconnected. Without loss of 
generality, assume that 0LTQn–1 – S0 is connected and 
1LTQn–1 – S1 is disconnected. Then |S1| ≥ n – 1 and 
N0LTQn(F) ⊆ S0. Hence, |S0| ≥ |V(F′)| ≥ 2. If |S1| ≥ 2n – 4, 
then |S| = |S0| + |S1| ≥ 2 + (2n – 4) = 2n – 2. Otherwise, n 
– 2 ≤ |S1| ≤ 2n – 5. By induction hypothesis, 1LTQn–1 – S1 
has exactly two components: one is trivial and the other 
is nontrivial. We know that 1LTQn–1   F and F′ are 
two components of 1LTQn–1 – S1, and F′ is a nontrivial 
component. Thus 1LTQn–1   F must be a trivial com-
ponent of 11LTQn–1 – S1, and |V(F′)| = 2n–1 – |S1| – 1. Note 
that N0LTQn(F′) ⊆ S0. Hence, |S| = |S0| + |S1| ≥ |V(F′)| + |S1| 
= 2n–1 – |S1| – 1 + |S1| ≥ 2n – 2 for n ≥ 4. 

Consequently, condition (2) holds.■ 
Lemma 7: Let S be a set of vertices S ⊂ V(LTQn) and 

n ≥ 5. Suppose that LTQn-S is disconnected and every 
component of LTQn-S is nontrivial, and there exists one 
component F of LTQn-S such that dF (v) ≥ 2 for any ver-
tex v ∈ F. Then one of the following two conditions 
must hold: 

(1) |S| ≥ 4n – 8; 
(2) |V(F)| ≥ 4n – 9. 
Proof: Let F0 = 0LTQn–1   F, F1 = 1LTQn–1   F, 

S0. = S   V(0LTQn–1) and S1 = S   V(1LTQn–1). We 
consider two cases: (a) F ⊂ 0LTQn–1 or F ⊂ 1LTQn–1. (b) 
0LTQn–1  F ≠ ∅ and 1LTQn–1   F ≠ ∅ . 

Case 1. F ⊂ 0LTQn–1 or F ⊂ 1LTQn–1. Without loss of 
generality, let F ⊂ 0LTQn–1. Then F ⊂ S1. In the follow-
ing we consider two cases. 

Case 1.1. 0LTQn–1-F is connected. Then |S| = |S0| + |S1| 
≥ |S0| + |V(F)| = 2n–1 ≥ 2n – 2 for n ≥ 4 and conditional (a) 
holds. 

Case 1.2. 0LTQn–1 – F is disconnected. If 4 ≤ |V(F)| ≤ 
3n – 5, by Lemma 5, we have |S0| ≥ | ( )

nLTQN F | ≥ 4n – 
8.Therefore, |S| ≥ 4n – 8 and conditional (a) holds. If 3n 
– 4 ≤ |V(F)| ≤ 4n – 10, then |S0| ≥ n – 1 since 0LTQn–1 – F 
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is disconnected and |S1| ≥ |V(F)| ≥ 3n – 4. Thus |S| = |S0| + 
|S1| ≥ n – 1 + 3n – 4 = 4n – 5 and conditional (a) holds. 
Otherwise, |V(F)| ≥ 4n – 9 and conditional (b) holds. 

Case 2. 0LTQn–1  F ≠ ∅ and 1LTQn–1  F ≠ ∅ . 
Since every vertex x in F0 (resp. y in F1) has at most one 
neighbor in F1(resp. F0), we have ( )

0
1Fd x ≥  and 

( )
1Fd x . Since LTQn – S is disconnected, there are at least 

two components in LTQn – S. At least one of the two 
graphs 0LTQn–1 – S0 and 1LTQn–1 – S1 is disconnected 
since both LTQn and LTQn–1 contain some non-empty 
part of the component F. 

In the following we drive the result by consider two 
cases. 

Case 2.1. Exactly one of the two graphs 0LTQn–1 – S0 
and 1LTQn–1 – S1 is disconnected. Without loss of gene-
rality, assume that 0LTQn–1 – S0 is connected and 
1LTQn–1 – S1 is disconnected. Let F′ be another 
non-trivial component of LTQn – S other than F. Then 
F ′ ⊂  ( )1 11 nLTQ S− −  and ( )

10 0'
nLTQN F S
−

⊂ . Note that 
both F ′  and 1F  are nontrivial component. By Lemma 
6, |S1| ≥ 2n – 4. If j|S0| ≥ 2n – 4, then |S| = |S0| + |S1| ≥ 4n 
– 8 and condition (1) holds. Otherwise, |S0| ≤ 2n – 5. 
Then ( )0V F = 1

02n S− − since ( )1nV LTQ −  = S0V (F0). 
Thereby, |V(F)| = |V(F0)|+|V(F1)| ≥ ( )( )12 2 5n n− − −  + 

2 ≥ 4n – 9 for n ≥ 4 and condition (2) holds. 
0LTQn–1 – S0 and 1LTQn–1 – S1 are disconnected. We 

consider the following three subcases. 
Case 2.1.1. |S0| ≥ 2n – 4 and |S1| ≥ 2n – 4.Clearly, S| = 

|S0| + |S1| ≥ 8n – 8. Therefore, condition (1) holds. 
Case 2.2.2. Either n – 1 ≤ |S0| ≤ 2n – 5, |S1| ≥ 2n – 4 or 

|S0| ≥ 2n – 4, n – 1 ≤ | S1| ≤ 2n – 5. Without loss of gene-
rality, assume that S0| ≥ 2 n – 4, n – 1 ≤ | S1| ≤ 2n – 5. 
Then we have | V(F1)| = 2n–1 – |S1| – 1 by the lemma 6. 
Since ( )

0
1Fd u ≥  for any vertex u ∈  V (F0),|V(F0)| ≥ 2. 

Thus, |V(F)| = |V(F0)| + |V(F1)| ≥  2 + ( )12 2 4n n− − −  ≥ 
4n – 9 for n ≥ 5. Hence, condition (2) holds. 

Case 2.2.3. n – 1 ≤ | S0| ≤ 2n – 5 and n – 1 ≤ | S1| ≤ 2n – 
5. By the lemma 6, we have |V(F0)| = 2n–1 – |S0| – 1 and |V 
(F1)| = 2n–1 – |S1| – 1. So |V(F)| = |V(F0)| + |V (F1)| = 2n – 
|S| – 2. If |S| ≥ 4n – 8, then condition (1) holds. Otherwise, 
|S| ≤ 4n – 9, then |V (F)| = 2n – (4n – 9) – 2 ≥ 4n – 9 for n 
≥ 4. Hence, condition (2) holds. 

Consequently, the lemma holds. ■  
Theorem 1. Let F1, F2 ⊂ ( )nV LTQ  be two indistin-

guishable conditional faulty sets, then either |F1| ≥ 4n – 6 
or |F2| ≥ 4n – 6 for n ≥ 5. 

Proof: Let S = F1   F2, according to LTQn – S is 
connected or not, we consider the following two cases. 

Case 1. LTQn – S is connected. We assert that F0∆F1 = 
V (LTQn) – S. Otherwise, suppose u ∈  
V(LTQn – S) – F1∆F2 = V (LTQn) – F1   F2.Then u is 
connected to F1∆F2 since LTQn – S is connected. That is, 

there is an edge between F1∆F2 and V – F1   F2. This is 
a contradiction to the fact F1 and F2 are an indistin-
guishable. Since |F1| + |F2| = |F1|∆|F2| = |V(LTQn)| = 2n ≥ 
8n – 13 for n ≥ 5, either | F1| ≥ 4 n – 6 or |F2| ≥ 4n – 6. 
Then the result follows. 

Case 2. LTQn – S is disconnected. Since F1 and F2 is 
indistinguishable, there is no edge between F1∆F2 and V 
(LTQn) – F1F2 by Lemma 1.That is, for any vertex u 
∈  F1 ∆ F2, ( )

nLTQN u  ⊂ F1   F2. Since both F1and F2 
are conditional faulty set, ( )

nLTQN u ⊄ F1  
and ( ) ( )2 2 1. So ( )  

n nLTQ LTQN u F N u F F⊄ −  

and 2 1( ) ( ) 1
nLTQN u F F− ≥ . 

Thus for any vertex u ∈  F1 ∆ F2 , | ( )
1 2F FN u∆ | ≥ 2. So 

LTQn – S has a component P with V (P) ⊂ F1 ∆ F2 such 
that dP(u) ≥ 2 for any vertex u  ∈  V(P). By Lemma 7, 
we have |S| ≥ 4n – 8 or |V(P)| ≥ 4n – 9 for n ≥ 5. So we 
consider the following two subcases. 

Case 2.1. |S| ≥  4n – 8. Let C be a cycle in P. Since 
( ) 2Pd u ≥  for each vertex u ∈  V(F), and V (LTQn) ≥ 4, 

the cycle C of length is not less than 4. Because V(C) ⊂ 
V(P) ⊂ F1 ∆ F2, either |F1 – F2| ≥ 2 or |F2 – F1| ≥ 2. The-
reby, either |F1| = |S| + |F1 – F2| ≥ 4n – 6 or |F2| = |S| + |F1 
– F2| ≥ 4n – 6. 

Case 2.2. |V(P)| ≥ 4n – 9. Since |V(P)| ≥ 4n – 9 and 
V (P) ⊂ F1 ∆ F2, either |F1 – F2| ≥ 2n – 4 or |F2 – F1| ≥ 

2n – 4. And since there is no isolated vertex in LTQn 
(both F1 and F2 are conditional faulty set) and LTQn – S 
is disconnected, |S| ≥ 2 n – 2 by lemma 3. Thereby, ei-
ther|F1| = |S| + | F1 – F2| ≥ 4n – 6 or |F2| = |S| + |F2 – F1| ≥ 
4n – 6. 

Consequently, the theorem holds. ■ 
The theorem 1 shows that the conditional diagnosabil-

ity of LTQn is not less than 4n – 7 for n ≥ 5. In the fol-
lowing we will show that the conditional diagnosability 
of LTQn is not more than 4n – 7 for n ≥ 5. 

Theorem 2. ( )c nt LTQ  ≤ 4n – 7 for n ≥ 3. 
Proof: (See Figure 2) Let C = (u1, u2, u3, u4) be a 

cycle of length 4 in LTQn. u1, u2, u3, u4 are the four con-
secutively vertices in the cycle C. Let F1 = ( )

nLTQN C   
{u1, u2} and F2 = ( )

nLTQN C  {u3, u4}. It is easy to verify 
that F1and F2 are two indistinguishable conditional faulty  
 

 
Figure 2. An illustration of the proof of Theorem 2. 
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set. It is easy to see that there exists no triangle in LTQn and 
any two distinct vertices in LTQn have at most two 
common neighbors. Thus we have |F1  F2| = ( )

nLTQN C  
= 4n – 8 and | F1 – F2| = |F2 – F1|. So |F1| = |F2| = 4n – 6. 
Hence, LTQn is not conditionally (4n – 6) diagnosable. 
We are done. ■ 

By Theorems 1 and 2, the following corollary holds. 
Corollary 1. ( )c nt LTQ  = 4n – 7 for n ≥ 5. 
 

4. Conclusions 
 
Since the probability that any faulty set contains all the 
neighbors of some processor is very small, conditional 
diagnosability, requiring that each processor of a system 
is incident with at least one fault-free processor, can bet-
ter measure the diagnosability of interconnection. In this 
paper, the main contribution is the determination of the 
conditional diagnosability of the locally twisted cubes. 
We obtain that the conditional diagnosability of a locally 
twisted cube under the PMC model is ( )c nt LTQ = 4n – 
7 for n ≥ 5. 
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