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Abstract 
 
Heuristic and metaheuristic techniques are used for solving computationally hard optimization problems. 
Local search is a heuristic technique while Ant colony optimization (ACO), inspired by the ants’ foraging 
behavior, is one of the most recent metaheuristic technique. These techniques are used for solving optimiza-
tion problems. Multiple-Input Multiple-Output (MIMO) detection problem is an NP-hard combinatorial op-
timization problem. We present heuristic and metaheuristic approaches for symbol detection in multi-input 
multi-output (MIMO) system. Since symbol detection is an NP-hard problem so ACO is particularly attrac-
tive as ACO algorithms are one of the most successful strands of swarm intelligence and are suitable for ap-
plications where low complexity and fast convergence is of absolute importance. Maximum Likelihood (ML) 
detector gives optimal results but it uses exhaustive search technique. We show that 1-Opt and ACO based 
detector can give near-optimal bit error rate (BER) at much lower complexity levels. Comparison of ACO 
with another nature inspired technique, Particle Swarm Optimization (PSO) is also discussed. The simulation 
results suggest that the proposed detectors give an acceptable performance complexity trade-off in compari-
son with ML and VBLAST detectors. 
 
Keywords: Spatial Multiplexing System, 1-Opt, ACO, Multi-Input Multi-Output Systems, Symbol Detection 

1. Introduction 
 

One of the major impairment of the wireless communi-
cation channel is fading and the performance of radio 
channels is mainly governed by fading. Traditional mo-
bile radio channel has always suffered from the detri-
mental effects of multipath fading but fortunately the use 
of multiple antennae at both ends of wireless channel 
helps mitigate the impairing effects of fading; MIMO 
wireless antenna systems provide an increase in capacity 
without the need for additional spectrum or power. The 
relevant information-theoretic analysis reveals that sig-
nificant performance gains are achievable in wireless 
communication systems using a MIMO architecture em-
ploying multiple antennas [1]. 

This architecture is suitable for higher data rate mul-
timedia communications [2]. 

In order to exploit all the benefits offered by the MIMO 

systems both the transmitter and the receiver need to be 
optimally designed. However, a problem encountered in 
the design of receivers for MIMO systems is the detec-
tion of data from noisy measurements of the transmitted 
signals. In realistic scenarios, due to noise, the receiver 
can make occasional errors. Therefore, designing a re-
ceiver which has the property that the probability of error 
is minimal is appealing, both from a practical and a 
theoretical point of view. But such designs tend to result 
in computationally complex receivers. We want compu-
tationally feasible receivers that give good performance. 

Optimization problems are of high importance both for 
the industrial world as well as for the scientific world. 
MIMO detection problem is an “NP-hard” combinatorial 
optimization problem and solving this problem to opti-
mality is computationally infeasible. In order to solve 
NP-hard problem for any non-trivial problem size, there 
can be three approaches: Approximation, probabilistic 
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and heuristic approach. Approximate algorithms are 
those which quickly find a suboptimal solution which is 
within a certain range of the optimal one. Probabilistic 
algorithms are those which provably yield good average 
runtime behaviour for a given distribution of the problem 
instances. Heuristic algorithms work reasonably well on 
many cases, but for them there is no proof that it is al-
ways fast. 

The local search heuristics iteratively search a better 
solution in the neighborhood of the current solution until 
no better solution exists and thus a local optimum is 
reached. The variable depth search (VDS) is known to be 
a generalization of the local search methods. The VDS 
was applied by Lin and Kernighan to the travelling sales- 
man problem (TSP) and graph partitioning problem 
(GPP).  

ACO, a meta-heuristic approach, is a popular branch 
of swarm intelligence. The goal of swarm intelligence is 
the design of intelligent multi-agent systems by taking 
inspiration from the collective behaviour of social insects 
such as ants, termites, bees, wasps, and other animal so-
cieties such as flocks of birds or fish schools. Examples 
of “swarm intelligent” algorithms other than ACO are 
those for clustering and data mining inspired by ants’ 
cemetery building behaviour [3,4], those for dynamic 
task allocation inspired by the behaviour of wasp colo-
nies [5], and particle swarm optimization [6]. 

ACO was first introduced by Marco Dorigo and col-
leagues in the early 1990s [7,8]. The foraging behaviour 
of real ant colonies is exploited in artificial ant colonies 
for the search of approximate solutions to discrete opti-
mization problems, to continuous optimization problems, 
and to important problems in telecommunications, such 
as routing and load balancing.  

In this paper, we have merged the optimization tech-
niques and the symbol detection problem. 1-Opt and 
ACO based algorithms are applied to NP-hard problem 
in the area of wireless communications. 

Earlier, particle swarm optimization (PSO) has been 
successfully applied to the MIMO detection for the first 
time in [9].  

The problem is to detect symbols from a composite 
signal, received at multiple receivers, transmitted from 
multiple transmitters. In this paper we discuss uncoded 
MIMO systems. Though coded MIMO schemes offer 
better performance than separate channel coding and 
modulation scheme by fully exploring the trade off be-
tween multiplexing and diversity [10], its hardware com-
plexity can be significant, especially for wide band sys-
tem with higher number of transmitter and receiver an-
tennas. Also, it is easier to implement traditional channel 
coding schemes (Convolution code, Turbo code) for data 
rates of hundreds of Mbps. 

Uncoded MIMO system, also called spatial multi-
plexing, is shown in Figure 1. 

There are many MIMO detection technologies for spa-
tial multiplexing [11]. These can be categorized as linear 
and non-linear detection methods. Zero-forcing (ZF) and 
Minimum Mean Squared Error (MMSE) are examples of 
linear detection method while Maximum Likelihood (ML) 
and Vertical Bell labs Layered Space Time (VBLAST) 
detectors [12,13] are two famous non-linear MIMO de-
tection methods. Non-linear detectors give better per-
formance but are computationally complex as compared 
to linear detectors. 

We report ACO assisted MIMO detection algorithm 
with a reasonable performance complexity trade off and 
to the best of authors understanding this is first success-
ful attempt to optimize MIMO detection using ACO 
meta-heuristic. 

The remainder of this paper is organized as follows. In 
Section 2, the MIMO system model is introduced. Brief 
overview of existing detectors is given in Section 3. Fun-
damentals of 1-Opt and ACO are explained in Section 4. 
Proposed detection schemes are described in Section 5. 
Simulation parameters and results are discussed in Section 
6. The computational complexity is calculated in Section 7. 
Concluding remarks can be found in Section 8. 

 
2. Mimo System Model 

 
2.1. Notation and Channel Model 

 
A MIMO channel with Nt transmitters and Nr receivers 
is typically represented as a matrix H of dimension Nr × 
Nt, where each of the coefficients [H]i,j represents the 
transfer function from the jth transmitter to the ith re-
ceiver. We denote the signal or symbol transmitted from 
the jth transmitter xj. With this notation, the matrix 
model of the channel is 

= +y Hx n                 (1) 

where n is a vector of additive noise, and y is an Nr × 1 
complex received vector. H is a complex matrix repre-
senting the Rayleigh flat fading channel. Each coefficient 
hij shows the complex path gain between the jth transmits 
and ith receive antenna. Assuming the presence of a rich 
 

 
Figure 1. Spatial multiplexing system. 
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scattering environment, the columns of H are independ-
ent and entries hij are modelled as independent zero mean 
complex Gaussian random variables with unit variance. x 
is a Nt × 1 complex transmitted vector. n is an Nr × 1 
complex noise vector whose components ni are modelled 
as zero mean independent complex Gaussian random 
variables with variance 2σ  per real dimension. 
 
2.2. Problem Formulation 

 
The optimum receiver that is capable of detecting the 
transmitted data vector x while minimizing the probabil-
ity of making an erroneous decision, assuming equally 
likely uncoded transmit symbols, is the Maximum-Like- 
lihood (ML) detector [14]. 

Assuming the additive noise n to be white and Gaus-
sian, the ML detection problem can be expressed as the 
minimization of the squared Euclidean distance to a tar-
get vector y 

2
arg min*

t

H
Nx χ

= −
∈

x y x             (2) 

Optimal ML detection scheme needs to examine all 
2bNt symbol combinations (b is the number of bits per 
symbol). It performs exhaustive search, i.e. the enumera-
tion of all possible solutions and choosing the one that 
minimizes the objective function of (2). 

A naive implementation of this search strategy results 
in a prohibitive complexity, as the number of candidate 
solutions increases exponentially with the problem size. 

We present two approaches, 1-Opt and ACO algo-
rithm assisted wide band spatial multiplexing systems 
symbol detector that views the MIMO symbol detection 
issue as a combinatorial optimization problem and try to 
approximate the near optimal solution iteratively. 

 
3. Some Existing Mimo Detectors 

 
3.1. Linear MIMO Detectors 

 
Linear receivers are the class of receivers for which the 
symbol estimate x̂  is given by a transformation of the 
received vector y of the form 

( )ˆ Wyx Q=  

where W is a Weighting matrix that may depend on H 
and Q is a quantizer (also called slicer) that maps its ar-
gument to the nearest signal point in NtA  (using 
Euclidian distance). A is the modulation symbol and Nt 
is the total number of transmitters. 
1) Zero-Forcing (ZF): ZF receiver is a low-complexity 

linear detection algorithm. The ZF algorithm at-
tempts to null out the interference introduced from 

the matrix channel by directly inverting the channel 
with the weight matrix [15]. 

Zero-Forcing (ZF) outputs 
ˆˆ ( )ZFx Q x=  

ˆ  ZFx =H†Y 
Where H† denotes the pseudo-inverse of H and ˆZFx  is 
rounded to the nearest integer in the constellation from 
which x is selected. The ZF notation comes from the fact 
that this receiver attempts to force the cross correlation 
between the estimation error e, ˆe ZFx x= − , and the 
transmit vector x to zero. 

The ZF-receiver is a linear receiver in the sense that it 
behaves as a linear filter, separating the different data 
streams to perform independent decoding on each stream, 
hence eliminating multistream interference. The problem 
with this scheme is degraded performance due to the fact 
that the AWGN n loses the “whiteness” property; it be-
comes enhanced and correlated across the data streams. 
Moreover, the ZF-receiver provides only Nr − Nt + 1 
diversity order out of a maximum possible Nr order di-
versity in a Nt × Nr MIMO system [1]. On the bright side, 
the ZF-receiver has a polynomial complexity. 
2) Minimum Mean Squared Error (MMSE): A drawback 

of ZF is that nulling out the interference without con-
sidering the noise can boost up the noise power sig-
nificantly, which in turn results in performance deg-
radation. To solve this, MMSE minimizes the mean 
squared-error, i.e. ( ) ( ) ( ){ }ˆˆW   E x * xJ x x= − − , 
with respect to W [16,17]. 

 
3.2. Non-Linear MIMO Detectors 

 
1) VBLAST: VBLAST is the improvement of BLAST 

receiver. The detection algorithm associated with the 
BLAST architecture is the successive cancellation 
(SUC) algorithm. Rather than jointly decoding all of 
the t transmitted symbols, this nonlinear detector de-
codes the first transmitted symbol by satisfying the 
ZF or MMSE performance criterion while treating 
the rest of the data symbols as interference; then it 
cancels out its contribution to obtain a reduced order 
integer least-squares problem with t-1 unknowns. 
The process is repeated until all the symbols are de-
tected. In general, this algorithm performs better than 
the ZF or MMSE receivers, but it suffers from error 
propagation; its performance quickly degrades if that 
first symbol was incorrectly decoded. A suggested 
improvement is the use of ordered successive can-
cellation (OSUC), an algorithm associated with the 
VBLAST architecture [18]. The main idea behind 
OSUC is that rather than selecting the symbols to be 
decoded in their natural order as in SUC, the symbols 
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at the beginning of each decoding stage are ordered 
in terms of decreasing signal-to-interference noise ra-
tio (SNR), and the symbol with the highest SNR is 
selected for decoding. 

2) ML Detector: Maximum Likelihood detector is opti-
mal but computationally very expansive. Since it 
uses exhaustive search technique, it is not practical to 
use ML in large MIMO systems. 

 
4. Fundamentals of 1-OPT and ANT Colony  

Optimization (ACO) 
 

Local search algorithms start from some initial solution 
and iteratively try to improve the current solution by 
searching, within a pre-specified neighborhood, for bet-
ter solutions. A neighborhood structure is used to specify 
the solutions’ neighborhood. Local search algorithms 
have been observed to be efficient in practice. The as-
sumption that local optima are easy to obtain has never 
been challenged. 

1-opt local search is defined by the solutions that can 
be reached by changing a single element in the current 
solution. Their algorithms are often called k-opt local 
search. The basic concept is to search a portion of large 
(k-opt) neighborhood while keeping a reasonable amount 
of computation time. 

ACO is an attractive technique that is very effective in 
solving optimization problems that have discrete and 
finite search space. Since the optimal MIMO detection 
problem involves a search process across the finite num-
ber of possible solutions, ACO is an ideal candidate to 
solve this problem. 

 
4.1. Ants and Natural Optimization 

 
ACO algorithms belong to the class of metaheuristics 
[19-21]. The term metaheuristic, first introduced in [22], 
derives from the composition of two Greek words. Heu-
ristic derives from the verb heuriskein which means “to 
find”, while the suffix Meta means “beyond, in an upper 
level”. 

Ants are social insects. They live in colonies and their 
behaviour is governed by the goal of colony survival 
rather than being focused on the survival of individuals. 
The behaviour that provided the inspiration for ACO is 
how ants can find shortest paths between food sources 
and their nest. When searching for food, ants initially 
explore the area surrounding their nest in a random 
manner. While moving, ants leave a chemical pheromone 
trail on the ground. Ants can smell pheromone. When 
choosing their way, they tend to choose, in probability, 
paths marked by strong pheromone concentrations. As 
soon as an ant finds a food source, it evaluates the quan-

tity and the quality of the food and carries some of it 
back to the nest. During the return trip, the quantity of 
pheromone that an ant leaves on the ground may depend 
on the quantity and quality of the food. The pheromone 
trails guide other ants to the food source. It has been 
shown in [23] that the indirect communication between 
the ants via pheromone trails known as stigmergy en-
ables them to find shortest paths between their nest and 
food sources. 
 
4.2. ACO Metaheuristic 

 
In analogy to the biological example, ACO is based on 
the indirect communication of a colony of artificial ants 
mediated by artificial pheromone trails 

An ant is a simple computational agent, which prob-
abilistically builds a solution by iteratively adding solu-
tion components to partial solutions by taking into ac-
count 1) a priori available heuristic information on the 
problem instance being solved i.e. problem-specific 
greedy heuristic (desirability function), and 2) artificial 
pheromone trails which change dynamically at run-time 
to reflect the ants’ collective search experience [24]. 

ACO uses exploratory-exploitive approach. It is easy 
to see that, as the search progresses, deposited phero-
mone dominates ants’ selectivity, reducing the random-
ness of the algorithm. Therefore, ACO is an exploitive 
algorithm that seeks solutions using information gathered 
previously, and performs its search in the vicinity of 
good solutions. However, since the ant’s movements are 
stochastic, ACO is also an exploratory algorithm that 
samples a wide range of solutions in the solution space. 

A flow chart depicting the structure of ACO algorithm 
is shown in Figure 2 (given at the end). 

 
5. Proposed Mimo (1-Optzfml & ACO Based) 

Detectors 
 
In 1-Opt local search ZF, the initial guess is taken from 
ZF. A ZF initial solution estimate is used to define the 
radius of search. Constellation points around the ZF so-
lution are searched using 1-Opt local search. 1-opt local 
search is defined by the solutions that can be reached by 
changing a single element in the current solution. Func-
tion (2) is used to find out the minimum Euclidian dis-
tance. First y is computed and then a ML search around 
the neighborhood of y is performed. The bits of received 
symbol are changed to get the neighbors of the symbol. 
Each of the Nt symbol generates a neighbor list, then a 
joint ML search over reduced constellations is per-
formed.  

We have used Quadrature Phase Shift Keying (QPSK). 
In QPSK two data bits are mapped on a single modulation  
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Figure 2. Flow chart depicting the structure of ACO algo-
rithm. 
 
symbol. 2 × 2 MIMO is considered so there are four 
neighbors in this case. ZF initial guess is taken and then 
four neighbors are generated using 1-Opt technique. ML 
search is performed to find Minimum Euclidean distance 
of y and its neighbors. Solution vector is the one with 
minimum Euclidean distance. 

The major challenge in designing ACO based MIMO 
detector is the selection of effective fitness function 
which is problem dependent and perhaps is the only link 
between the real world problem and the optimization 
algorithms. The basic fitness function used by this opti-
mization algorithm to converge to the optimal solution is 
(2). 

The first stage in designing our ACO-based MIMO 
detector involves the selection of ACO parameters that 
fit the optimization problem. We define the solution 
vector to be optS . optS  has length equal to Nt. In this 
algorithm we assume BPSK modulation scheme so each 
element of optS can take two values. A total of 2Nt solu-
tions are possible for BPSK scheme. Every ant builds a 
solution vector in each iteration. This building process is 
accomplished via Nt jumps inside a 2 Nt× solution table, 
(soltable). Higher modulation schemes can also be used. 
If QPSK is used the table size would increase to 4 Nt×  
and possible solution would be 4Nt . 

Choice of initial solution intS  plays a vital role in the 

fast convergence of the optimization algorithm to a suit-
able solution. We therefore, make a start with the ZF or 
VBLAST input to the proposed detection algorithm. The 
first row of the soltable corresponds to the entries of ini-
tial solution, intS  while the second row is the compliment 
of the first row i.e. intS . If int 1lS = −  then int 1lS = + .  

The ants move inside the soltable to find the optimal 
solution. In each jump, the ant selects (based on a desir-
ability function and pheromone concentration) either the 
initial solution element or its complement. After each 
iteration, pheromone deposition and evaporation takes 
place. Any solution (out of the 2Nt  possible solutions) 
can be formed by selecting Nt elements from this table, 
one element from each column. 

The ants start at intS and move cyclically down the 
vector selecting the best element at each stage. Using the 
desirability function the ants decide whether to select 
element from intS  or intS . Desirability function for 
initial position of ant starting at a particular instance j is 
defined as 

( ) ( )int

1
2

D j
S j

=
+

               (3) 

intS can either correspond to solution vector of ZF or 
V-BLAST.  

Equation (3) reflects the fact that when ( )int 0S j = , 
( )intS j  and ( )intS j  are equally likely to be chosen. As 

the ant moves along the elements of the solution vector, 
the desirability function at the (j + i)th stage can be rede-
fined as follows: 

( )
( ) ( )

int int

1i
2 j i | |l

l C

D j
S S

∈

+ =
+ + +∑

     (4) 

where C is a set of positions where the ant had previ-
ously selected intS  element values. The desirability 
function ensures that if at the jth position ant selects 
element from intS  then at the (j+i)th position probabil-
ity of selecting another element from intS  decreases. 
The purpose of such desirability function is that ant 
should not deviate significantly from initial solution. 

Pheromone deposition is also done in a 2 Nt×  table. 
Each entry of first row of pheromone table corresponds 
to the entry of intS  while second row entries correspond 
to intS . Initially all the entries in the table are unity i.e.; 
equal amount of pheromone is deposited. In our algo-
rithm if an ant produces a good solution only then it is 
allowed to deposit pheromone. Good solution is deter-
mined from the fitness function. Deposition and evapora-
tion rate are inversely proportional to the number of it-
erations. 

The proposed detection algorithm is summarized be-
low 

Step 1. Take the output of ZF or VBLAST as initial 
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input to algorithm instead of keeping random values. 
Step 2. Create a 2 Nt×  soltable, whose first row 

contains elements of intS  and second row intS . 
Step 3. Create a 2 Nt× pheromone table, PT(m,n) = 1 

∀ , m,n = 1 (initialization). 
Step 4. Decide the starting position of ants i.e. (1)st , 
(2)st , , ( )Nst . 
Step 6. 
For iteration 1: itr{ 
for move = 0: Nt − 1{ 

( )( )
( )( )

(i) (i)

(i)

2, mod

                mod i 1, ,

Movep PT st move Nt

D st move Nt N

= +

× + ∀ = 
 

This is the probability with which ant i selects intS  
elements. It is evaluated for all ants. 

Selected elements and the index of the selected loca-
tions in PT are stored in two separate arrays, sol and Tr. 
“sol” is later used for checking whether the result is good 
or not while Tr constitutes the trail for ant. 
} 

Step 7. If (i)
intf ( )  f ( )sol S>  

Step 7.1. Pheromones are deposited: 

( ) ( )PT Tr PT Tr PT= + ∆  
Change in pheromone table: 

( ) ( )( )(i) Deposition rate DR * f  ;PT sol Nt∆ =  

Step 8. Evaporation of pheromones: 
( ) ( ) ( ),   ,  1 ERPT m n PT m n= × −  

ER= evaporation rate.} 
In the pheromone table, the trail with the highest 

pheromone concentration and its corresponding values 
from intS  and intS  provide the final solution Sopt. 

 
6. Simulation Parameters and Results 
 
Aim of the proposed 1-Opt ZFML and ACO based 
MIMO detector is to lower the complexity level as much 
as possible, therefore the parameters are selected ac-
cordingly.  

In ACO based MIMO detector we have used only one 
ant i.e., no. of ant, N = 1, number of iterations, itr are 
MIMO system dependant. i.e. 4 iterations if Nt = 4. DR = 
5/itr, ER = 9/itr. We have considered 3 × 3 and 4 × 4 (Nt 
× Nr ) MIMO systems. 

Figures (shown at the end) present the bit error rate 
(BER) versus Eb/No (SNR) performance of proposed de-
tectors. 

Figure 3 presents the BER versus Eb/No performance 
of proposed ACO based MIMO detector compared with 
ML and VBLAST detectors for 3 × 3. At 10–3 BER, the 
proposed ACO-VBLAST algorithm (with VBLAST as 
initial guess) result in 5-dB enhanced performance as 
compared to VBLAST while ACO-ZF algorithm (with 
ZF as initial guess), result in 8 dB gain compared to ZF. 
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Figure 3. Detectors for 3 × 3 MIMO system. 
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Figure 4 presents the BER versus Eb/No performance 

of proposed ACO based MIMO detector compared with 
ML and VBLAST detectors for 4 × 4. At 10–3 BER, the 
proposed ACO-VBLAST algorithm result in 5-dB en-
hanced performance as compared to VBLAST while 
ACO-ZF algorithm result in 7-dB gain compared to ZF. 

Figure 5 presents the BER versus Eb/No performance 

of proposed 1-Opt ZFML detector compared with the 
VBLAST detector. At 310−  the 1-Opt ZFML gives 6 dB 
enhanced performance and complexity is also reduced by 
8% as compared to VBLAST. 

Figure 6 shows the comparison between ACO and 
PSO techniques for 4 × 4 MIMO system. Initial guess is 
taken from VBLAST and BPSK modulation scheme is 
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Figure 4. Detectors for 4 × 4 MIMO system. 
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Figure 5. Comparison of 1-Opt ZFML detector with VBLAST. 



K. KHURSHID  ET  AL. 

Copyright © 2011 SciRes.                                                                                   CN 

207 

0 2 4 6 8 10 12 14 16 18 20
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No

B
E

R

Detectors for 4x4 MIMO systems

ACO-VBLAST
PSO-MIMO

 
Figure 6. ACO and PSO detectors. 

 
used in both the cases. The parameters for PSO [17] are 
Np = 4, Nitr = 2, μvel = 2. At 10–3 BER ACO gives 6 dB 
improved performance. 
 
7. Computational Complexity 
 
Now we examine the computational complexity of the 
reported ACO and 1-Opt ZFML MIMO detectors and 
compare it with ML and VBLAST detectors. The com-
putation complexity of ML and VBLAST has been cal-
culated in [25]. 

The computational complexity is computed in terms of 
the Nt, Nr and the constellation size M.  

Computational complexity of ML is Nr (Nt+1) MNt 
while complexity of VBAST is 

4 3 25 2 7 1
2 3 2 3VBLAST t r t r t t rN N N N N N Nγ    = + + + + +   

   
 

In case of ZF, the pseudo-inverse of matrix (HHH)–1 

HH takes 3 24 2t t rN N N+ multiplications [9]. 
Complexity of ZF is 

3 24 2ZF t t rN N Nγ = +  

Complexity of PSO is [9] 

( )μPSO p t r vel itrN N N Nγ = +  

Complexity of proposed detector as seen from algorithm 
is 

( )ACO A tN Nγ =  

Pheromone update requires μp additional multiplications 
per iteration 

( )ACO A t pN Nγ µ= +  

This procedure is repeated Nitr times to give the near- 
optimal BER performance 

( )ACO A t p itrN N Nγ µ= +  

The proposed detector takes initial solution as ZF or 
VBLAST detectors’ output therefore, it is added to the 
complexity of ACO algorithm i.e. ACOγ  to get the re-
sultant complexity of ACO based MIMO detector. It can 
be seen that ZF-ACO for 3 × 3 MIMO system gives a bit 
better performance than VBLAST at a reduced complex-
ity level of 28% while ACO-VBLAST gives better per-
formance than VBLAST at a cost of 9% increase in 
complexity. For 4 × 4 system ZF-ACO has 42% less 
complexity than VBLAST. While ACO-VBLAST gives 
better performance than VBLAST at a cost of around 4% 
increase in complexity level. 

For 4 × 4 system shown in Figure 6 complexity of 
ACO based detector is 29% less than PSO based detector. 
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In case of 1-Opt ZFML the computational complexity 
is ( ) tN

nM M . Where Mn is the neighbors list. So the 

total complexity of 1-Opt ( )ZFML tN= + nM M . 
Compared to ML that performs a coarse search over 

the complete search space the 1-Opt ZFML used a re-
duced constellation. 

 
8. Conclusions 

 
In this paper, 1-Opt and Any Colony Optimization as-
sisted symbol detection in a spatial multiplexing system 
is reported. It has been shown that the metaheuristics and 
heuristics can be applied to optimize the symbol detec-
tion problem. The resistance to being trapped in local 
minima, convergence to reasonable solution in fewer 
iterations and exploratory-exploitive search approach 
makes ACO a suitable candidate for real-time wireless 
communications systems. 1-Opt and ACO based MIMO 
detectors use a simple model and have lesser implemen-
tation complexity. For larger number of antennas and 
higher modulation schemes the proposed detectors are 
expected to give near optimal results with much lower 
complexity level as compared to the ML detector and 
VBLAST detectors. 
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