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Abstract 
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disabling 
condition of unknown cause having multi-system manifestations. Our group 
has investigated the potential role of transient receptor potential (TRP) ion 
channels in the etiology and pathomechanism of this illness. Store-operated 
calcium entry (SOCE) signaling is the primary intracellular calcium signaling 
mechanism in non-excitable cells and is associated with TRP ion channels. 
While the sub-family (Canonical) TRPC has been traditionally associated with 
this important cellular mechanism, a member of the TRPM sub-family group 
(Melastatin), TRPM3, has also been recently identified as participating in 
SOCE in white matter of the central nervous system. We have identified single 
nucleotide polymorphisms (SNPs) in TRP genes in natural killer (NK) cells 
and peripheral blood mononuclear cells (PBMCs) in CFS/ME patients. We 
also describe biochemical pathway changes and calcium signaling perturba-
tions in blood cells from patients. The ubiquitous distribution of TRP ion 
channels and specific locations of sub-family group members such as TRPM3 
suggest a contribution to systemic pathology in CFS/ME. 
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1. Introduction 

The etiology and pathology of chronic fatigue syndrome/myalgic encephalomye-
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litis (CFS/ME) have remained elusive despite many years of research. Currently, 
diagnosis is based on the International Case Criteria, which identifies post-exertional 
malaise, fatigue unrelieved by rest, headache, joint and muscle pain, memory 
and concentration impairment, sore throat, and lymph gland swelling as com-
ponents of the illness. Additionally, CFS/ME exhibits neurological, endocrine, 
autonomic, metabolic, and immunological manifestations [1]. Chemical and 
food intolerances are notable, and patients commonly report exacerbation of 
symptoms with infections. 

In this brief review, we discuss the role of transient receptor potential (TRP) 
ion channels in neurological and metabolic systems in CFS/ME patients possibly 
contributing to the clinical expression of the illness. The aim of this paper is to 
understand the potential role of TRP ion channels in the etiology and pathome-
chanism of CFS/ME. Future research may help identify suitable pathways ame-
nable to pharmaco-therapeutic interventions. 

2. TRP Ion Channels and Calcium Signaling 
2.1. Structure and Function of TRP Ion Channels 

TRP ion channels are six transmembrane domain ion channels comprised of six 
main groups in humans including the TRPA (ankyrin), TRPC (canonical), 
TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin) and TRPV (vanil-
loid). TRP channels are mostly non-specific ion channels permitting entry of ca-
tions such as calcium (Ca2+), sodium, and magnesium into cells. These channels 
are activated following fluctuations or deviations in the cellular environment 
induced by stressors that include temperature, pressure, chemicals, oxida-
tive/reductive species, osmolarity, pH, toxins, and pathogens, which may con-
tribute to an inflammatory response. TRPs are extensively expressed on most 
cells and dysregulations in TRPs have been identified in pathological conditions 
and as targets of novel treatments. Upon activation, TRP channels cause depola-
rization and hence activation of voltage-dependent ion channels, thus permitting 
changes in intracellular Ca2+ concentration [2]. 

2.2. Role in Calcium Signaling  

Ca2+ plays an important role in intracellular signaling pathways, cell differentia-
tion and division, apoptosis, and transcriptional events in all cells [3]. In 
non-excitable cells, such as immune cells, the main form of Ca2+ entry is known 
as store-operated Ca2+ entry (SOCE) and constitutes an essential mechanism for 
Ca2+ signaling. In brief, TRP channels are activated by various ligands binding 
on tyrosine kinase receptor (RTK) or G-protein-coupled receptors (GPCR), 
which then leads to activation of phospholipase C (PLC). PLC hydrolyzes the 
phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and in-
ositol 1,4,5-trisphosphate (IP3). DAG stimulates receptor-operated channels 
(ROC) via protein kinase C (PKC) activation [4]. ROC are mainly members of 
TRPC family (for example TRPC1-3-6) and contribute to the cytosolic Ca2+ in-
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crease [5]. In parallel to PKC activation, IP3 triggers the depletion of endoplas-
mic reticulum (ER) Ca2+ stores inducing the activation of stromal interaction 
molecule 1 (STIM1). STIM1 then translocates to the ER/Plasma Membrane 
(PM) junctions to associate and activate the PM Orai1 and/or TRP channels, 
mostly attributed to TRPC1. This ultimately leads to a sustained Ca2+ influx [6]. 
Hence, TRP channels and their related processes are critical in mediating Ca2+ 
signaling by monitoring intracellular Ca2+ stores and enabling replenishment 
when needed. 

3. TRPM Ion Channels in Emerging Pathology 
3.1. TRPM Physiology 

TRP ion channel proteins, including the TRPM family, have been identified in 
neurodegenerative disorders indicating their substantial influence in CNS pa-
thology [7]. In the CNS some TRP channels (e.g. TRPM2), and intracellular Ca2+ 
overload have been implicated in neuronal cell death and proinflammatory cy-
tokine secretion [8]. Fonfria et al. report high TRPM3 distributions in both the 
brain and kidney [9]. Recent research has demonstrated that TRPM3 is highly 
expressed in white matter (WM) cells of the central nervous system (CNS). 
While the role of TRPM3 in SOCE is not well described in the literature, TRPM3 
has been shown to exhibit SOCE signaling in WM cells [10]. 

High expression of TRPM3 in the choroid plexus within ventricles of the 
mouse brain is suggestive of a role in the production or ionic composition regu-
lation of cerebrospinal fluid in the mammalian brain [11]. Given the predomi-
nant CNS distribution of TRPM3, it follows that the CNS may be a particular 
target for TRPM3-related Ca2+ dysfunction. Ca2+ signaling in the CNS is of fun-
damental importance to brain function and the integrity of the BBB [12] [13] 
[14]. Thiel et al. report other tissues that display relatively dense expression of 
TRPM3 include insulin-producing pancreatic β cells and eye, particularly iris 
and retina. Complex physiological functions affecting these cells indicate an im-
portant role for TRPM3 in physiological regulation [15]. Wagner et al. demon-
strated that endogenous TRPM3 channels of pancreatic β cells are rapidly and 
reversibly activated by extracellular pregnenolone sulfate (PregS), a neuroactive 
steroid [16]. These authors showed that application of PregS promoted a rapid 
Ca2+ influx and subsequently enhanced insulin secretion from pancreatic islets.  

Importantly, identification of an indispensable to channel function (ΔICF) 
deletion in TRPM3 has a major impact on TRPM3 function through impaired 
Ca2+ signaling. The ΔICF region is conserved in the TRPM family and TRPM3 
variants devoid of this region are ubiquitously expressed and may constitute up 
to 15% of TRPM3 isoforms in different tissues. This deletion occurs in the 
TRPM3α7 variant, which reduces expression of normally functional variants as 
well as causing direct interference with their function in areas of high expression 
such as the CNS and pancreas. Moreover, based on observable Ca2+ signaling, 
only one TRPM3α7 protein may be expressed with up to 49 functional 
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TRPM3α2 proteins that together form 12 tetrameric channel complexes and 
participate in the obliteration of functional channels [17]. Variants of TRPM2 
and TRPM7 have been shown to alter functional properties of these ion channels 
in Guamian amyotrophic lateral sclerosis and Parkinson’s Disease [18] [19]. In 
functional studies, these authors suggest that attenuation of intracellular Ca2+ 
surges and its effect on downstream signaling pathways may contribute to the 
pathophysiological mechanisms in neurodegenerative diseases. 

3.2. TRPM in CFS/ME 

There is scant literature regarding the role of TRP channels in CFS/ME. White et 
al. found decreased TRPV1 expression to be associated with muscle pain and fa-
tigue symptoms after exercise in MS patients and healthy controls compared 
with CFS/ME cases, which they attribute to adaptive down-regulation in re-
sponse to enhanced receptor activation [20]. Light et al. reported TRPV1 expres-
sion increased significantly above baseline levels in CFS/ME patients following 
exercise, although the CFS/ME-control group differences remained a non-significant 
trend for this measure [21]. 

Our group has described single nucleotide polymorphisms (SNPs) in TRPM3 
genes in CFS/ME, suggesting perturbations of Ca2+ signaling in immune cells of 
these patients [22] [23] [24]. We have demonstrated that dysregulation of TRP 
receptors, in particular, TRPM3, results in disturbed Ca2+ signaling and down-
stream kinase and gene transcription events in CFS/ME. Specifically, TRPM3 ac-
tivity and natural killer (NK) cell function were impaired in CFS/ME patients. 
These signaling dysregulations modify Ca2+ concentration in the cytosol and in-
tracellular stores, thereby altering the activation threshold of NK cells and their 
activity. In the study of SNPs in B cells, Marshall-Gradisnik et al. reported 78 
SNPs were identified in nicotinic and muscarinic acetylcholine (ACh) receptor 
genes in CFS/ME, of which 35 were in muscarinic ACh receptor 3. We suggest 
these SNPs may be involved in B cell functional changes, indicating a role for 
Ca2+ dysregulation in ACh receptors and TRP ion channel signaling in the 
pathomechanism of CFS/ME. Arguably, the severity and nature of Ca2+ signaling 
perturbation may depend upon the isotypes and extent of TRP ion channels af-
fected. 

Interestingly, neuroimaging studies in CFS/ME patients have demonstrated 
changes in the brain structural connections and alterations in hemodynamic re-
sponse to cognitive tasks [25] [26] [27] [28]. The consistent observations of wid-
er regions with greater blood oxygenation level dependent activation in CFS/ME 
patients [29] [30] [31] could potentially be explained by disrupted neurovascular 
coupling, which is dependent on Ca2+ signaling in astrocytes [32]. Neurovascular 
coupling, the dynamic regulation of blood flow induced by neural activity, is a 
primary factor responsible for ensuring appropriate blood supply within the 
brain [33]. The TRPM3 family plays a key role in brain WM myelination hence 
dysfunction or reduced expression of the TRPM3 family identified in CFS/ME 
patients may impact brain functions. Both immunohistochemistry and Ca2+ im-
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aging results indicate that TRPM3 in the CNS participates as a Ca2+-permeable 
and sphingosine-activated channel in oligodendrocyte differentiation and CNS 
WM myelination [34]. Indeed, multiple and widely distributed WM abnormali-
ties are observed in CFS/ME patients, including myelination deficits in the mid-
brain [25] [26], progressive WM atrophy in inferior fronto-occipital fasciculus 
[27], and association of disrupted sleep with WM atrophy in the medial frontal 
brain [28]. 

4. TRPM Channels as Potential Therapeutic Targets in  
CFS/ME 

Ca2+ signaling pathways could be an alternative therapeutic target of TRP pa-
thology because of their importance in various cellular processes [35]. Moreover, 
TRPM channels expressed at the PM could offer potential therapeutic targets 
and/or prognostic markers. Zierler et al. recently examined TRPM channels as 
potential therapeutic targets against pro-inflammatory diseases [36]. These au-
thors noted that mutations in ion channels required for Ca2+ signaling play a role 
in immunodeficiencies and therefore are potential drug targets indicating the 
roles of TRP-Ca2+ pathways in inflammation. Schattling et al. demonstrated that 
TRPM4 engages in inflammation in axons in experimental autoimmune ence-
phalomyelitis (EAE) and that the antidiabetic drug glibenclamide, which inhibits 
TRPM-4-like currents, resulted in reduced axonal and neuronal degeneration 
and attenuated clinical disease scores in EAE [37]. Research has already identi-
fied potential treatment approaches in TRP channel pathology particularly in the 
context of CNS neuropathies. Morelli et al. have reported on TRP channel pa-
thologies, which may support drug development in these CNS conditions [38].  

Importantly, TRP ion channels have a role in pain mediation and hence are 
targets for analgesic pharmaco-therapeutics [39]. Agonists such as the narcotic 
analgesic morphine operate through several opioid receptors including the 
μ-opioid receptor, which exerts a direct inhibitory effect on TRPM3 ion chan-
nels. Interestingly, the opioid antagonist naltrexone acts as an antagonist to the 
μ-opioid receptor thus negating the inhibitory function of this opioid receptor 
on TRPM3 without necessarily acting directly on the TRPM3 ion channel per se 
[40] [41] [42]. Although not well documented, naltrexone has been suggested in 
a therapeutic context in CFS/ME and the findings regarding TRPM3 may indi-
cate a mechanism of action. Further research is indicated to establish the role of 
TRP channel pathology in contributing to disease and hence as potential thera-
peutic targets [43] [44]. 

5. Conclusion 

CFS/ME is a complex and highly disabling condition associated with CNS and 
metabolic symptoms including memory and concentration impairment, wide-
spread pain, and profound fatigue characterized by post-exertional malaise. Elu-
cidation of these interactions has important implications for understanding pa-
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thomechanisms, which are critical for characterization of this illness as well as 
the development of novel pharmaco-therapeutics in treatments. Reduced ex-
pression of TRP ion channels, together with their dysfunction (predominantly 
within the TRPM3 sub-family) has now been identified in CFS/ME patients. 
Further investigations, particularly regarding the TRP Ca2+ ion channel variants 
for potential pharmaco-therapeutic treatment targets, are required. Arguably, 
the severity and nature of Ca2+ signaling perturbations may depend upon the 
isotypes and extent of TRP ion channels affected. This may help to explain the 
spectrum of clinical severity of CFS/ME. 
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