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Abstract 
Credit Default Swaps (CDSs) provide an efficient way for commercial banks 
to hedge their portfolios’ exposure to credit risk. Following Patton (2006), 
Huang, Lee, Liang, and Lin (2009), and Fei, Fuertes, and Kalotychou (2013), 
we proposed a way to estimate Value-at-Risk (VaR) of portfolios containing 
CDSs that is better than the traditional methods mentioned in financial text-
books. Markit’s North American Investment Grade CDX Index (CDX.NA.IG) 
is a combination index of 125 North American entities with investment-grade 
credit ratings that trade in the CDS market. Each of the S & P 500 index and 
VIX are used with CDX.NA.IG to construct portfolios. This paper uses 2,477 
daily data items from December 2004 to October 2014 covering the period of 
the subprime mortgage crisis and the European debt crisis. We chose six con-
stant and two time-varying copula models combined with GARCH skewed 
Student-t innovation (GARCH-skt) to form eight copula-GARCH models to 
capture the joint distribution of the two assets in the portfolio. We then com-
puted corresponding 1-day VaRs. According to our findings, the time-varying 
symmetrized Joe-Clayton (SJC) copula model combined with the GARCH-skt 
(tvSJC-copula–GARCH-skt) performed best, regardless of the market situation. 
Not surprisingly, this result stems mainly from this model’s consideration of the 
serial correlation in the individual index return and the time-varying nonlinear 
dependency between indices. 
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1. Introduction 

For commercial banks, credit risk arising from the defaults of their counterpar-
ties or borrowers is of great concern. Recently, credit derivatives have gained 
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considerable popularity among the commercial banks as ways to diversify their 
exposure to credit risk. Among others, a credit default swap (CDS) is the most 
commonly used tool. Since its introduction in the mid-1990s, the trading volume 
of CDSs has been growing rapidly. According to Weistroffer, Speyer, and Walter 
(2009) [1], the peak occurred in 2007 with USD 58 trillion notional amounts 
outstanding, at over 70% of the debt securities outstanding worldwide at that 
time.  

The protection seller of a CDS earns the premium by providing insurance to 
the protection buyer in case of a credit event due to the reference entity. In 2004, 
the CDS index was introduced to the market. The CDS index is a kind of stan-
dardized product providing more liquidity and efficiency than groups of single 
CDSs. Two well-known CDS indices are iTraxx and CDX. While iTraxx com-
prises 125 entities trading in the CDS market in Europe, Asia, the Middle East, 
and Africa, CDX consists of 125 North American companies. Our research ob-
ject is Markit’s North American Investment Grade CDX Index (CDX.NA.IG), an 
index containing 125 entities with investment-grade credit ratings involved in 
the North American CDS market. 

A great deal of literature shows that CDSs have a connection with the stock 
index. Blanco, Bernnan, and Marsh (2005) [2] showed that CDSs with lower cre-
dit ratings could be more sensitive to stock returns than CDSs with higher rat-
ings. Norden and Weber (2009) [3] claimed that during 2000-2002, the stock in-
dex return had a negative correlation with CDS return and with bond yield. Be-
sides this, the negative correlation was more obviously observed in the CDS than 
in the bond yield. These authors’ results imply that the CDS provides more in-
formation about stock index returns than bonds do, which corroborates the con-
clusions of Blanco et al. (2005) [2]. 

In addition to evidence for stock index returns, many researchers have pro-
vided evidence to show that CDSs have a great connection with the volatility in-
dex (e.g., Blanco et al., 2005 [2]; Ericsson, Jacobs, and Oviedo, 2009 [4]). By ex-
tending Merton’s (1974) [5] model, Zhang, Zhou, and Zhu (2009) [6] found that 
equity volatility has convex, nonlinear effects on credit spreads. Making a com-
parison to an out-of-the-money put, Cao, Yu, and Zhong (2010) [7] claimed that 
the implied volatility deducted from the out-of-the-money put is an important 
determinant of the CDS spread.  

Byström (2005) [8] showed that iTraxx Europe indices have significant auto-
correlation positive coefficients, which implies that iTraxx indices are predictable 
and that the market is inefficient. In addition, iTraxx indices are negatively cor-
related to the stock index and positively to stock volatility. Through an OLS re-
gression, Byström proposed that changes in iTraxx indices could mainly be ex-
plained by the stock index. Alexander and Kaeck (2008) [9] suggested that iTraxx 
Europe indices tend to commove more closely with stock volatility when the 
CDS market is extremely volatile; CDS spreads are more sensitive to stock re-
turns than they are to stock volatility during stable periods. Fung, Sierra, Yau, 
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and Zhang (2008) [10] provided evidence from the U.S. stock market and the 
CDS market to show that the volatility of both the investment-grade (CDX.NA.IG) 
and high-yield (CDX.NA.HY) CDS indices seems to lead the stock market vola-
tility. However, the lead-lag relationship between these two markets depends on 
the credit rating of the reference entity. In particular, the high-yield CDS market 
is more closely related to the stock market than is the investment-grade CDS 
market. From the data of iTraxx Europe indices, European stock indices, and vo-
latility indices during the period from 2004 to 2008, Giammarino and Barrieu 
(2009) [11] found that the dependence of these indices was not stable but in-
volved structural changes. 

Since many studies have shown that there is a certain way that the CDS market 
commoves with the stock market or the volatility, we are curious about the risk 
management issues of a CDS portfolio combining with a stock index or volatility 
index. Value at Risk (VaR) is a commonly used measure of the market risk of an 
asset or a portfolio and describes the risk in an easy to understand way: in the 
next N days, we are X% certain that the loss of the asset or the portfolio will not 
exceed the amount of VaR. Among the methods for estimating VaR suggested in 
the financial textbooks, most require that the joint distribution is known. It is 
impossible to get an accurate estimation for the calculation without considera-
tion of the tail of distribution. While most of the above literature focuses on the 
linear correlation between CDS indices and stock index or volatility index, little 
of this literature has mentioned these indices’ nonlinear or more complicated 
dependence structures. Hence, we apply the copula theory to allow construction 
of a flexible multivariate distribution with different margin distributions and 
different dependent structures, which relaxes the assumption of the normality 
and linear correlation of the portfolio’s joint distribution.  

Another important feature of financial data is the high heteroskedasticity, 
which means that volatility varies in time. The phenomenon is explained and fit-
ted by the well-known GARCH model. The combination of the copula-GARCH 
model has often been mentioned in the discussion of computing VaR (e.g., Jon-
deau and Rockinger, 2006 [12]; Huang et al., 2009 [13]; Rong and Trück, 2010 
[14]). By applying the copula-GARCH model to investigate the dependence 
structures among several European stock markets from 1980 to 1999, Jondeau 
and Rockinger (2006) [12] showed that their dependence becomes heavy when 
the market indices move in the same direction, regardless of whether they go up 
or down. Patton’s (2006) [15] research on the dependence of the Deutsche mark 
and the yen claimed that these currencies’ dependence is time-varying, and he 
constructed a flexible structure of the conditional dependence to model it. 
Huang et al. (2009) [13] used a copula-GARCH model to estimate the VaR of a 
portfolio consisting of the NASDAQ and TAIEX. By analyzing 2800 items of 
daily data covering the period of the subprime mortgage crisis in 2007-2009, So 
and Yu (2015) [16] showed that of the 16 copula–GARCH models used to depict 
the joint distribution of the two assets in the portfolio, the time-varying SJC copula 
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model combined with the GARCH with Student-t innovation (tvSJC copu-
la-GARCHt) was superior to the traditional VaR methods and performed best, 
regardless of the time period. 

Since most of the above literature emphasizes the effects of different copula 
models, only the most commonly used GARCH (1, 1) with normal and Stu-
dent-t innovations are taken into consideration. However, we cannot ignore the 
two prominent features often mentioned when it comes to financial volatilities: 
asymmetry and leverage (e.g., McAleer, 2014 [17]). Hansen (1994) [18] provided 
a GARCH model with a skewed Student-t density, which allows the margins to 
be of a negative skew and a fat-tailed distribution. In this study, we chose 
GARCH (1, 1) with residual terms following a skewed Student-t distribution to 
describe the marginal distribution of the asset returns, taking the negative skew, 
heteroskedasticity, and volatility clustering into consideration simultaneously.  

The remainder of the paper is organized as follows. The methodology is pre-
sented in Section 2, the data are described in Section 3, the empirical results are 
analyzed in Section 4, and the conclusions are given in the final section. 

2. Methodology 
2.1. Copula Model 

The term “copula” was originally mentioned in Sklar (1959) [19]. At the begin-
ning, copula methods were applied in the field of statistics, but recently, these 
methods have gained considerable popularity in the field of finance. A copula is a 
kind of multidimensional probability distribution function that can be used to 
describe the dependency among several assets. In this study, we used a copula to 
discuss the CDS market’s relationship with the stock market or with the volatility 
index; this is an application of a bivariate copula. A brief introduction of biva-
riate copulas follows. 

2.1.1. Sklar’s Theorem 
Assume that the cumulative density functions of stochastic variables 1X  and 

2X  are ( ) ( )1 1 1 1F x P X x= <  and ( ) ( )2 2 2 2F x P X x= < , respectively. After a 
process of probability integral transform, the cumulative density functions be-
come the uniform distributions 1u  and 2u . The joint cumulative probability 
distribution of 1X  and 2X  can be represented by:  

( ) ( )
( ) ( )( ) ( )

1 2 1 1 2 2

1 1 2 2 1 2

, ,

, ,,

F x x P X x X x

C F x F x C u u

= < <

= =
 

where C is called the copula function. Given that 1F  and 2F  are two conti-
nuous functions, there exists a certain copula function satisfying the above equa-
tion. On the other hand, given some specific copula function C and cumulative 
distribution functions ( )1 1F x  and ( )2 2F x , ( ) ( ) ( )( )1 2 1 1 2 2, ,F x x C F x F x=  
must be a two-dimensional cumulative distribution function with ( )1 1F x  and 

( )2 2F x  as its marginals. 

https://doi.org/10.4236/jmf.2018.82025


J.-J. Huang, L.-C. So 
 

 

DOI: 10.4236/jmf.2018.82025 386 Journal of Mathematical Finance 
 

The partial derivative of the above equation with respect to 1x  and 2x  is: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
21 2 1 2

1 2 1
1 2 1 2

1 2 1 1 2 2

, ,
,

,

i i
i

i

F xF x x C u u
f x x

x x u u x
c u u f x f x

=

∂∂ ∂
= = ×

∂ ∂ ∂ ∂ ∂

= × ×

∏  

The deduction gives us an idea that the joint density function consists of a co-
pula and the two marginals; hence, we can set marginals and use the specific co-
pula function to depict their relationship. 

2.1.2. Copula Functions 
The eight different types of copula functions used in this study are described as 
follows: 

Gaussian (Normal) copula 

( ) ( ) ( )1 1
Gaussian 1 2 1 2, ; , ,C u u u uρρ − − = Φ Φ Φ   

where ρΦ  is the bivariate standardized Gaussian cumulative probability func-
tion, with the correlation ρ.  

Student-t copula 

( ) ( ) ( ) ( )1 2 1 2
1

,
1, ; , , , 1,1 ,T v v vC u u v t t u t uρρ ρ− − = ∈ −   

where ,vtρ  is the bivariate Student-t cumulative probability function with the 
correlation ρ and degree of freedom v. Similar to the Gaussian copula, the stu-
dent-t copula is symmetrically distributed. When the degree of freedom ap-
proaches infinite, the Student-t copula converges to the Gaussian copula. How-
ever, the Student-t copula can capture the fat-tailed dependence feature of fi-
nancial data. 

Gumbel copula 

( ) ( )( ) ( )( )( )
1

Gumbel 1 2 1 2, ; exp log logC u u u u
ω ω ωω

 
 
 

− + −


= − , 

where [ )1,eω∈ . The Gumbel (1960) [20] copula is an asymmetric function. 
When 1u  or 2u  approach 1, the value of the Gumbel copula rises at a higher 
speed, which means that the dependence of these two variables becomes heavy 
when their values increase. Hence, the Gumbel copula can be used to capture the 
dependence around the tail of the right-hand side.  

Clayton copula 

( ) ( )
1

Clayton 11 2 2, ; 1C u u u uδ δ δδ
−− −= + − , 

where [ )1,δ ∈ − ∞ . The Clayton (1978) [21] copula is also an asymmetric func-
tion. When 1u  or 2u  approach 0, the value of the Clayton copula rises at a 
higher speed; that is, the dependence of these two variables becomes heavy when 
their values decrease. Hence, the Clayton copula, in contrast to the Gumbel co-
pula, can be used to capture the dependence around the tail of the left-hand side.  

Frank copula 

https://doi.org/10.4236/jmf.2018.82025


J.-J. Huang, L.-C. So 
 

 

DOI: 10.4236/jmf.2018.82025 387 Journal of Mathematical Finance 
 

( )
( ) ( )( )1 2

Frank 1 2

1 e 1 e 1 e1, ; log
1 e

u u

C u u
τ ττ

τ

τ
τ

τ

⋅ ⋅ − − − −
 = −
 − 

, 

where ( ) ( ),0 0,eτ ∈ −∞  . The Frank (1979) [22] copula is a symmetric function 
and is not suitable for depicting the dependence around the tails.  

Symmetrized Joe-Clayton (SJC) copula 
The SJC function is an expansion of the Joe-Clayton copula. Joe (1997) [23] 

proposed the Joe-Clayton copula:  

( ) ( )( ) ( )( )
1

1

1 2 1 2, | , 1 1 1 1 1 1 1
k

k kU L
JCC u u u u

γ γ γ
λ λ

−− − 
  = − − − − + − − −   

 
, 

where 
( )2

1
log 2 U

k
λ

=
−

, 
( )2

1
log 2 L

γ
λ

−
=

−
, ( )0,1Uλ ∈ , ( )0,1Lλ ∈ ; Uλ  and  

Lλ , respectively, are the measures of the upper and lower tail dependence. A 
positive Uλ  or Lλ  implies that the copula has upper or lower tail dependence, 
while 0Uλ =  means no upper tail dependence and 0Lλ =  means no lower 
tail dependence. Upper and lower tail dependence count separately, and it is not 
necessary that these two features exist at the same time. It is notable 
 that the Joe-Clayton copula has the shortcoming that the pattern of this copula 
remains asymmetrical, even when the two tail dependence measures are equal. 
The SJC copula is a modification aiming to solve this problem. The SJC can 
guarantee symmetry when U Lλ λ= . 

The SJC copula is as follows: 

( )
( ) ( )( )

SJC 1 2

JC 1 2 1 2 1 2

, | ,

0.5 , | , 1 ,1 | , 1

U L

U L U L
JC

C u u

C u u C u u u u

λ λ

λ λ λ λ= ⋅ + − − + + −
 

where ( ) ( )0,1 , 0,1U Lλ λ∈ ∈ . 
When the two variables are positively correlated, given α, the upper tail de-

pendence is denoted by: 

( ) ( )( )2 11

1 1
2 1lim Pr | ;U x F x F

α
λ α α

→

− −= ≥ ≥  

and the lower tail dependence is denoted by: 

( ) ( )( )2
1 1

2 11 1lim Pr 1 | 1 .L x F x F
α

λ α α−

→

−= ≤ − ≤ −  

When the two variables are negatively correlated, given α, the upper tail de-
pendence is denoted by: 

( ) ( )( )1 1
22 1 11

lim Pr | 1 ;U x F x F
α

λ α α− −

→
= ≥ ≤ −  

and the lower tail dependence is denoted by: 

( ) ( )( )1 1
22 11 1lim Pr 1 | .L x F x F

α
λ α α− −

→
= ≤ − ≥  

It should be noted that in this study, since CDX.NA.IG and S & P500 are nega-
tively correlated, S & P500 is denoted by 1x  and CDX.NA.IG by 2x . 
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When Uλ  or Lλ  approach 1, the upper or lower tail dependence is higher. 
In contrast, when Uλ  or Lλ  equals 0, there is no tail dependence. There is no 
necessary relationship between the two parameters. 

Time-varying Symmetrized Joy-Clayton (Time-varying SJC) copula 
The copula functions mentioned above all belong to static models, which 

means that the dependence between two assets are assumed to remain un-
changed over time or market situations. However, the realistic case observed in 
the CDS and stock markets is that their dependence varies across time (e.g., Al-
exander and Kaeck, 2008 [9]; Fung et al., 2008 [10]; Giammarino and Barrieu, 
2009 [11]). Therefore, we introduce time-varying copulas to capture this feature.  

According to Patton (2006) [15], the time-varying SJC copula and time-varying 
Gaussian (Normal) copula keep their same original functional form with 
time-varying dependence parameters following an ARMA (1, 10) evolution 
process. 

The time-varying SJC copula is as follows: 

( )
( ) ( )( )

-SJC 1 2

JC 1 2 1 2 1 2

, | ,

0.5 , | , 1 ,1 | , 1

U L
t t t

U L U L
t t JC t t

C u u

C u u C u u u u

τ τ

τ τ τ τ= ⋅ + − − + + −
 

10
1 1, 2,1

1 ,
10

U U
t U U t U t j t jj u uτ ω β τ α− − −=

 = Λ + + ⋅ − 
 

∑  

10
1 1, 2,1

1 ,
10

L L
t L L t L t j t jj u uτ ω β τ α− − −=

 = Λ + + ⋅ − 
 

∑  

where ( ) ( ) ( )
1

1 e , 0,1 , 0,1x U L
t tτ τ

−−Λ = + ∈ ∈ ; Λ  is a logistic transformation to 
ensure that U

tτ  and L
tτ  are in the range of (0, 1).  

Time-varying normal copula 

( ) ( ) ( )( )1 1
Normal 1 2 1 2, ; , ,t tC u u u uρ − −

− = Φ Φ Φ  

( ) ( )
10

1 1
1 1, 2,

1

1 ,
10t t t j t j

j
u uρ ρρ ω β ρ α − −

− − −
=

 
= Λ + ⋅ + ⋅ Φ ⋅Φ 

 
∑  

where ( ) ( )( ) 1
1 e 1 e tanh

2
x x xx

−− −  Λ = − + =  
 

 , ( )1,1tρ ∈ − ; ( )xΛ  is a logistic 

transformation to ensure that tρ  is in the range of ( )1,1− . 

2.2. Marginal Distribution 

Considerable empirical evidence shows that asset returns do not necessarily fol-
low normal distribution. In most cases, they are negatively skewed or fat-tailed. 
Longin and Solink (2001) [24] and Okimoto (2008) [25] showed that the depen-
dence among international equity markets becomes heavy when markets are 
bearish rather than bullish. The evidence of Ang and Chen (2002) [26] from the 
data of stock markets in the United States also echoed the findings. As for the 
CDS index, Fei, Fuertes and Kalotychou (2013) [27] investigated the dependence 
between iTraxx or its subindices and the European stock index or volatility index 
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from 2005 to 2011. They found that the return processes tend to be negatively 
skewed. In addition, when markets are in an extremely bad situation, their de-
pendence becomes heavier.  

The other well-known feature frequently cited in the financial literature is the 
high heteroskedasticity, which means that the return volatility varies in time. 
The GARCH model is the most common tool used to capture this feature ob-
served in financial data. 

We chose GARCH (1, 1) with residual terms following a skewed Student-t dis-
tribution to describe the marginal distribution of the asset returns, simulta-
neously taking the negative skew, heteroskedasticity, and volatility clustering into 
consideration.  

The skewed Student-t distribution, proposed by Hansen (1994) [18], is de-
scribed as follows: 

( )

1
2 2

1
2 2

11 , if
2 1

; ;

11 , if
2 1

bx a abc x
b

d x

bx a abc x
b

η

η

η λ
η λ

η λ

+ −  

+ −  


 +  + < −    − −   = 

  +  + ≥ −    − +  

 

where 
( )

2 2 2

1
2 24 , 1 3 ,
1 π 2

2

a c b a c

η
η

λ λ
ηη η

+ Γ −  ≡ ≡ + − ≡
−  − Γ 

 

. 

The variables η and λ represent the degree of freedom and the measure of 
asymmetry, respectively. If 0λ = , the distribution degenerates to the Student-t 
distribution. If η approaches infinity at the same time, the distribution degene-
rates to the normal distribution. 

Denote the probability distribution for x, ( ); ;d x η λ , by ( )~ ,x skt η λ . The 
GARCH (1, 1) with a skewed Student-t distribution is as follows: 

,t tx eµ= +   

,t t te ε σ=  
2 2 2

0 1 1 1,t t teσ α α βσ− −= + +  

( )~ , ,t sktε η λ  

where ( ) ( )( ) ( )1|t t t tE x E E x Eµ µ µ−= = Ω = =  is the unconditional mean, 
( )2

1|t t tVar xσ −= Ω  is the conditional variance, and 1t−Ω  is all the information 
obtained at 1t − . 

2.3. Parameter Estimation 

When applying the maximum likelihood method, we need to estimate the para-
meters in the copula function and the GARCH model at the same time. However, 
the computation process is time-wasting when parameters are abundant. Hence, 
we adopted the two-stage inference function for margins (IFMs) method proposed 
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by Joe (2005) [23] to estimate the GARCH and copula parameters separately. 
The estimates using the IFM method share the features of consistency and 
asymptotic normality.  

In the first stage, the log-likelihood function of the two marginal distributions 
should be considered: 

( ) ( )
2

1 1
ln ; , 1, 2,

T

i i i it i
t i

f x iθ θ
= =

= =∑∑  

( ),
ˆ arg max , 1, 2.i MLE i i iθ θ= =  

In the second stage, we have to substitute the estimates obtained in the first 
stage into the following equation and estimate the copula parameters:  

( ) ( ) ( )( )1 1 1 2 2 2
1

ln ; , , ; ,
T

t t
t

c F x F xϕ θ θ ϕ
=

=∑  

( ),ˆ arg maxi MLEϕ ϕ=   

2.4. Value at Risk (VaR) 

Value at Risk expresses the idea of the greatest potential loss, given a certain 
confidence level, over a certain time period. By definition, given the confidence 
level α, the 1-day VaR is: 

( )1 |t tP R VaRα α+ ≤ Ω = ,  

where 1tR +  is the asset return, and tΩ  is all the information obtained at time t. 
This equation explains that we are ( )100 1 %α× −  certain that the loss of the 
asset or the portfolio in the next day will not exceed the amount of VaRα ; α is 
usually set at 5% or 1%. The lower the value of α, the higher the VaR. The 1-day 
VaR can be extended to a T-day VaR by: 

( )daysVaR T VaR Tα= ⋅ , 

where VaRα  is the 1-day VaR. 
To make comparisons, we chose four estimation methods typically suggested 

in the financial textbooks (e.g., Hull (2012) [28]) to compute the value of 
VaR—the historical simulation, the variance-covariance method, exponential 
weighted, and univariate GARCH. At the end of this subsection, we describe the 
copula–GARCH model highlighted in this study in more detail. 

2.4.1. Historical Simulation 
Reorder the daily return data over the last T days, , , 1, 2, ,p tx t T=  , from low to 
high. The [T × α]th worst value on the reordered list is the required VaRα . The 
assumption behind the historical simulation is that the future repeats the past. 
However, when some rare event happens, a historical simulation tends to unde-
restimate the risk. 

2.4.2. Variance-Covariance Method 
The variance and covariance method assumes that the returns are all normally 
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distributed. 
The t + 1 1-day VaR can be represented as follows: 

( ) ( )1
1 , 1 , 1 ,t p t p tVaR α µ σ α−
+ + + ⋅Φ= +  

where [ ] 11, 1 12, 1 12
, 1 1 2 1

21, 1 22, 1 2

t t
p t t

t t

w
w w w w

w
σ σ

σ
σ σ

+ +
+ +

+ +

    ′= ⋅ ⋅ = Σ   
  

,  

( )( )2
, 1

1

1 ; 1,2; 1,2,
1

t

ij t ih i jh j
h

x x x x i j
t

σ +
=

= − − = =
− ∑  

, 1p tµ +  and , 1p tσ +  are the mean and standard deviation of the portfolio return 
on day t + 1; iw  is the portfolio weight; and ( )1 α−Φ  is the inverse function of 
the cumulative distribution function of the standard normal. 

2.4.3. Exponentially Weighted Moving Average (EWMA) 
This method also assumes that the returns are all normally distributed. Different 
from the variance and covariance method, EWMA puts a relatively heavy weight 
on the most recent data. The t + 1 1-day VaR can be represented as follows: 

( ) ( )1
1 , 1 , 1t p t p tVaR α µ σ α−
+ + + ⋅Φ= + , 

where [ ] 11, 1 12, 1 12
, 1 1 2 1

21, 1 22, 1 2

t t
p t t

t t

w
w w w w

w
σ σ

σ
σ σ

+ +
+ +

+ +

    ′= ⋅ ⋅ = Σ   
  

, 

( )2 2 2
, 1 , ,1 ; 1, 2; 1,2; 0 1,ij t ij t ij tu i jσ λ σ λ λ+ = ⋅ + − ⋅ = = ≤ ≤  

, 1p tµ +  and , 1p tσ +  are the mean and standard deviation of the portfolio return 
on day t + 1; iw  is the portfolio weight; and ( )1 α−Φ  is the inverse function of 
the cumulative distribution function of the standard normal. 

2.4.4. Univariate GARCH-VaR Method 
The GARCH (1, 1) with a skewed Student-t distribution is used to fit the 
in-sample portfolio return:  

, ,p t tx eµ= +  

, ,t t p te ε σ=  

2 2 2
, 0 1 1 , 1,p t t p teσ α α βσ− −= + +  

 ( )~ , ;t sktε η λ  

where ( ) ( )( ) ( ), , 1|p t p t t tE x E E x Eµ µ µ−= = Ω = =  is the unconditional mean, 

( )2
, 1|t p t tVar xσ −= Ω  is the conditional variance, and 1t−Ω  is all the informa-

tion obtained at t − 1. 
We then estimate the out-of-the-sample conditional volatility of the portfolio 

return. The t + 1 1-day VaR can easily be obtained by: 

( ) ( )( )1
, 1 , 1 , 1 ;p t t p t p t tVaR xα σ α−
+ + +Ω = + ⋅Ψ Ω  

where , 1p tx +  and , 1p tσ +  are the mean and standard deviation of the portfolio 
return on day t + 1, as estimated on day t, and ( )1 α−Ψ  is the inverse function 
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of the cumulative distribution function of a skewed Student-t. 

2.4.5. Copula-GARCH Method 
For each portfolio, we collected the two indices’ returns on the last T days to es-
timate their joint distribution on the T + 1 day and the 1-day VaR, 1TVaR + . The 
procedure is described as follows: 

1) Use the GARCH with skewed Student-t (GARCH-skt) model to fit the T 
in-sample data and obtain the standardized residuals and returns of these two 
asset returns.  

2) Apply the probability integral transform to each standardized return and 
obtain a uniformly distributed random vector ( ){ }1 2 1

,
n T

n n n
u u

=

=
. 

3) Estimate the copula parameters of ( ){ }1 2 1
,

n T
n n n

u u
=

=
 by using the maximum 

likelihood method. Substitute the estimated parameters into copulas to get un-
iformly distributed random vectors ( ){ }1 2 1

,
n N

n n n
S S

=

=
, each with N elements. Note 

that ( ){ }1 2 1
,

n N
n n n

S S
=

=
 contains all information about the dependence structure 

between the two assets. 
4) Apply the probability integral transform to ( ){ }1 2 1

,
n N

n n n
S S

=

=
, and substitute 

the unconditional means and conditional variances of the GARCH models to 
obtain a set of simulated asset returns ( ){ }1 2 1

,
n N

n n n
R R

=

=
. 

5) Assume that the portfolio return is calculated by the equally weighted av-
erage of the two asset returns. Use the results of step 4 to calculate the 1TVaR +  
of the portfolio return at 95% and 99%.  

6) Apply the rolling window method to do backtesting. When a new observa-
tion is added to the data, remove the oldest one. Repeat the above five steps M 
times to obtain M out-sample 1-day VaRs. 

3. Data 

In this study, we focused on the CDS market. We investigated its dependent 
structure with respect to the stock index or volatility index, and then we esti-
mated the VaRs of the portfolio containing the CDS index first with the stock 
index and then with the volatility index. 

We collected the data of S & P500, VIX, and the Markit’s North American In-
vestment Grade CDX Index (CDX.NA.IG), which is a five-year CDS index with 
the highest market liquidity. We obtained the data from the Bloomberg Database, 
which provides accurate high-quality cross-asset, real-time and historical 
time-series data in all markets including equity, fixed income and FX. From each 
index, we collected 2477 daily adjusted closing prices from December 1, 2004, to 
October 31, 2014. Of the 2477 samples, the first 550 daily prices were used as 
in-sample data. For the purpose of comparison, the rest of the samples were di-
vided into three out-sample periods for backtesting. The first 651 days from 
February 27, 2007, to October 2, 2009, we named the subprime crisis period, 
which began from the date that Freddie Mac announced that it would no longer 
purchase the most risky subprime mortgages and mortgage-related securities;1 

 

 

1Refer to: https://www.stlouisfed.org/financial-crisis/full-timeline. 
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the second 601 days from October 5, 2009, to February 10, 2012, we considered 
the European debt crisis period, beginning from the date that the Greek gov-
ernment revealed that its budget deficit had risen to an extremely high level of its 
GDP, resulting in market panic;2 the last 675 days from February 13, 2012, to 
October 31, 2014, we named the steady period, beginning from the date that the 
Greek government won parliamentary approval for austerity measures to secure 
an international bailout.3 

The daily return of the index is computed by: 

1

ln t
t

t

Pr
P−

= , 

where tP  refers to the adjusted closing price at time t. 

4. Empirical Results 

In Table 1, we see that the skewnesses of all three indices are not equal to zero, 
and their kurtoses are larger than 3, which shows that the data share the features 
of a fat tail and negative skew. Using the Jarque-Bera test, we found that the in-
dex returns do not follow a normal distribution. Figure 1 shows the feature of 
volatility clustering, dramatic movements tend to be followed by dramatic 
movements. All three index returns changed the most dramatically during the 
subprime crisis period and the most modestly during the steady period. Among 
the three, the VIX return was the most volatile. 

After using GARCH (1, 1) with a skewed Student-t distribution (GARCH-skt) 
to fit the marginal distributions of the two index returns, we applied the proba-
bility integral transform to each standardized return and obtained a set of  

 
Table 1. Descriptive statistics of index returns. 

Descriptive statistics CDX.NA.IG S & P500 VIX 

Observations 2477 2477 2477 

Mean 0.000134 0.000213 0.0000317 

Standard Deviation 0.030972 0.012949 0.06919 

Skewness 0.337114 -0.48688 0.714619 

Kurtosis 9.245011 13.95537 6.998307 

Jarque-Bera test 
4072.002 12484.81 1860.507 

(0.00000) (0.00000) (0.00000) 

We collected the data of the Markit’s North American Investment Grade CDX Index (CDX.NA.IG), S & 
P500, and VIX. From each index, we collected 2477 daily adjusted closing prices from December 1, 2004, to 
October 31, 2014. The results of the Jarque-Bera test to detect if the returns follow a normal distribution are 
also presented. 

 

 

2Refer to:  
http://www.bloomberg.com/news/articles/2010-10-06/greece-s-debt-deficit-figures-for-2006-2009-t
o-be-revised-upward-eu-says 
3Refer to:  
http://www.bloomberg.com/news/articles/2012-02-12/papademos-wins-sufficient-support-in-parlia
ment-for-greek-austerity-plans 

https://doi.org/10.4236/jmf.2018.82025
http://www.bloomberg.com/news/articles/2010-10-06/greece-s-debt-deficit-figures-for-2006-2009-to-be-revised-upward-eu-says
http://www.bloomberg.com/news/articles/2010-10-06/greece-s-debt-deficit-figures-for-2006-2009-to-be-revised-upward-eu-says
http://www.bloomberg.com/news/articles/2010-10-06/greece-s-debt-deficit-figures-for-2006-2009-to-be-revised-upward-eu-says
http://www.bloomberg.com/news/articles/2010-10-06/greece-s-debt-deficit-figures-for-2006-2009-to-be-revised-upward-eu-says
http://www.bloomberg.com/news/articles/2012-02-12/papademos-wins-sufficient-support-in-parliament-for-greek-austerity-plans
http://www.bloomberg.com/news/articles/2012-02-12/papademos-wins-sufficient-support-in-parliament-for-greek-austerity-plans


J.-J. Huang, L.-C. So 
 

 

DOI: 10.4236/jmf.2018.82025 394 Journal of Mathematical Finance 
 

 
This figure shows the patterns of the three index returns during different sub-periods: the in-sample 
period, the subprime crisis period, the European debt crisis period, and the steady period.  

Figure 1. Daily returns of indices. 
 

uniformly distributed random vectors. We then estimated the copula parameters 
and constructed the copula-GARCH models. We chose the copula models that 
were the best fitted in terms of AIC statistic. 

4.1. Marginal Distributions 

Table 2 shows the results of the parameters estimated by the GARCH-skt model. 
The estimated parameters are all significantly different from zero. We used the 
Kolmogorov-Smirnov goodness-of-fit test (K-S test) to check that after the 
probability integral transform, the standardized residuals followed a uniform 
distribution (0, 1). In addition, we applied the Ljung-Box Q-test and Q2-test to 
the lag-1, -3, and -5 terms of the standardized residuals, and we cannot reject the  
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Table 2. Results for GARCH-skt. 

Parameters CDX.NA.IG S & P500 VIX 

μ −0.001217 
(0.0000) 

0.000649 
(0.0000) 

0.00007 
(0.0000) 

α0
 0.000019 

(0.0000) 
0.000001 
(0.0000) 

0.000435 
(0.0034) 

α1
 0.126910 

(0.0000) 
0.100361 
(0.0012) 

0.170195 
(0.0001) 

β 0.860450 
(0.0000) 

0.887245 
(0.0000) 

0.744291 
(0.0000) 

η 2.0006 
(0.0000) 

3.9225 
(0.0001) 

3.6960 
(0.0000) 

λ 0.0956 
(0.0000) 

−0.0651 
(0.0000) 

0.1580 
(0.0000) 

Q-test (1) (0.1954) (0.1128) (0.0665) 

Q-test (3) (0.1623) (0.1654) (0.1420) 

Q-test (5) (0.2158) (0.2067) (0.2689) 

Q2-test (1) 

Q2-test (3) 

Q2-test (5) 

K-S test 

(0.0986) 

(0.1247) 

(0.2985) 

(0.3779) 

(0.0863) 

(0.1346) 

(0.1651) 

(0.2065) 

(0.1642) 

(0.1369) 

(0.3436) 

(0.6842) 

Of the 2477 samples, the first 550 daily prices were used as in-sample data. We used the GARCH (1, 1) with 
skewed Student-t (GARCH-skt) model to fit the in-sample indices’ returns. This table reports the results of 
the parameters estimated by the GARCH (1, 1) with a skewed Student-t distribution: 

( )2 2 2
0 1 1 1 ~ ,, , ,,t t t t t t t t tx e e e sktµ ε σ σ α α βσ ε η λ− −= + = = + +  

We say that ( )~ ,x skt η λ  means that the probability distribution for x, ( ); ;d x η λ  follows: 

( )

1
2 2

1
2 2

11 , if
2 1

; ;
11 , if

2 1

bx a abc x
b

d x
bx a abc x

b

η

η

η λ
η λ

η λ

+ −  

+ −  

  +  + < −    − −   = 
  +  + ≥ −    − +  

 

where 
( )

2 2 2

1
2 24 , 1 3 ,
1 π 2

2

a c b a c

η
ηλ λ

ηη η

+ Γ −  ≡ ≡ + − ≡
−  − Γ 

 

. 

The results of the Ljung-Box Q-test, Q2-test, and the Kolmogorov-Smirnov goodness-of-fit test (K-S test) 
are also presented. The p-values are in parentheses. 

 
null hypothesis that the standardized residuals followed a uniform distribution 
(0, 1) and there is no autocorrelation. The above tests guaranteed that we could 
estimate parameters in copulas accurately. 

4.2. Copulas 

The parameter estimates of the eight copulas are shown in Table 3. From the es-
timated Gaussian copula parameters, we found that the absolute value of asset  
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Table 3. Results for copula–GARCH models. 

copula parameter CDX.NA.IG S & P500 CDX.NA.IG VIX 

Gaussian ρ  −0.6952 0.6248 

Student-t 
ρ  −0.7212 0.6375 

υ  4.2414 6.7759 

Clayton δ  1.3322 0.9711 

Gumbel ω  1.9815 1.7395 

Frank τ  −6.2039 4.7747 

SJC 
Uλ  0.4808 0.5013 

lλ  0.5525 0.3456 

Time-varying SJC 

Uω  −1.7002 1.0137 

Uα  −1.4526 −3.1406 

Uβ  3.8828 −0.8633 

Lω  −1.9516 −1.9341 

Lα  −0.3817 −0.5891 

Lβ  4.0453 4.0637 

Time-varying nor-
mal 

ρω  4.1369 3.4916 

ρα  −0.7603 −0.2037 

ρβ  −2.4695 −3.0003 

Each of the S & P 500 index and VIX are used with CDX.NA.IG to construct portfolios. This table shows the 
parameter estimates of the eight copulas for the two portfolios. Of the 2477 samples, the first 550 daily 
prices were used as in-sample data. After fitting the in-sample indices’ returns with the GARCH-skt model, 
we applied the probability integral transform to each standardized return and obtained a set of uniformly 
distributed random vectors. We then estimated the copula parameters for each of the portfolios.  

 
returns is about 0.6 - 0.7. The correlation coefficient of CDX.NA.IG with S & 
P500 is negative, while that with VIX is positive. The results correspond to the 
findings reported in Byström (2005) [8] and Norden and Weber (2009) [3]. From 
the SJC copula parameters, we found that the dependence structure between as-
set returns could be asymmetrical; in particular, the lower tail dependence is 
higher than the upper tail in the case of the portfolio containing CDX.NA.IG and 
S & P500. By definition, this implies that the probability of CDX.NA.IG dropping 
given that S & P500 rises is higher than that of CDX.NA.IG increasing given that 
S & P500 decreases. In contrast, the upper tail dependence is higher than the 
lower tail in the case of the portfolio containing CDX.NA.IG and VIX, which 
implies that the probability of CDX.NA.IG increasing with VIX is higher than 
that of CDX.NA.IG dropping with VIX. This result corresponds to Alexander 
and Kaeck’s (2008) [9] findings, which showed that when markets are bullish, the 
sensitivity of the CDS index to S & P500 is much stronger than to VIX, and when 
markets are bearish, the sensitivity of the CDS index to VIX is much stronger 
than to S & P500. 

AIC statistic was used to find the best copula-GARCH model, shown in Table 4. 
According to AIC, we found that the dynamic normal copula and the dynamic  
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Table 4. AIC for copula-GARCH. 

copula CDX.NA.IG S & P500 CDX.NA.IG VIX 

Gaussian −0.6594 −0.4941 

Student-t −0.7381 −0.5245 

Clayton −0.5791 −0.3402 

Gumbel −0.6544 −0.5118 

Frank −0.6687 −0.4616 

SJC −0.6974 −0.5190 

Time-varying SJC −0.8030 −0.5302 

Time-varying normal −0.7078 −0.4932 

This Table shows the results of AIC statistic for our copula-GARCH models. We substituted the estimated 
parameters into copulas to get uniformly distributed random vectors and applied the probability integral 
transform to the vectors. We then substituted the unconditional means and conditional variances of the 
GARCH models to obtain a set of simulated asset returns. We chose the copula models that were the best 
fitted in terms of AIC statistic. For each portfolio, the lowest AIC among the eight copulas is marked in 
bold. 

 
SJC copula were relatively more adequate copulas for describing data than were 
the static normal copula and static SJC copula. Since dynamic copulas can cap-
ture time-varying relations between two index returns, they provide up-to-date 
adjustments for political or financially rare events, which is an advantage of the 
dynamic copulas over static ones. The best suitable model was the time-varying 
SJC. Hence, we claim that the assumption of the GARCH-skt model combined 
with the time-varying SJC copula, tvSJC-copula–GARCH-skt, had the best 
goodness-of-fit to the portfolio consisting of CDX.NA.IG. This finding is similar 
to that of So and Yu (2015) [16], who provided evidence to show that the 
GARCH model combined with time-varying SJC offered the best goodness-of-fit 
to the portfolio containing U.S. REITs. 

4.3. Analysis of the tvSJC-Copula–GARCH-skt 

Figure 2 and Figure 3 illustrate the upper and lower tail dependences of 
CDX.NA.IG and the other index returns. For the portfolio containing CDX.NA.IG 
and S & P500, the lower tail dependence is higher than the upper tail dependence, 
which implies that the probability of CDX.NA.IG decreasing as S & P500 in-
creases is higher than that of CDX.NA.IG increasing as S & P500 decreases. In 
contrast, the upper tail dependence is higher than the lower tail in the case of the 
portfolio containing CDX.NA.IG and VIX, which implies that the probability of 
CDX.NA.IG increasing with VIX is higher than that of CDX.NA.IG decreasing 
with VIX. There is no difference from the case of the static SJC copula, which 
showed that when markets are bullish, the sensitivity of the CDS index to S & 
P500 is much stronger than to VIX, and when markets are bearish, the sensitivity 
of the CDS index to VIX is much stronger than to S & P500. As for the case of 
CDX.NA.IG and S & P500, we also observed that both of the upper and lower 
tail dependences are at a relatively high level around September 2008 when the 
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market suffered the most severe impact due to the subprime crisis.  

4.4. Backtesting of VaR using tvSJC-Copula–GARCH-skt and Other 
Traditional Methods 

The traditional methods referred in this study are historical simulation, the va-
riance–covariance method, EWMA, and the univariate GARCH-skt method. As 
mentioned previously, in order to calculate a 1-day VaR, we collected the index 
returns on the last T days to estimate their joint distribution on the T + 1 day  

 

 
This figure shows the patterns of the upper and lower tail dependences of the time-varying SJC co-
pula and static SJC copula. For the portfolio containing CDX.NA.IG and S & P500, the lower tail de-
pendence is higher than the upper tail dependence, which implies that the probability of CDX.NA.IG 
decreasing as S & P500 increases is higher than that of CDX.NA.IG increasing as S & P500 decreases. 

Figure 2. Upper and lower tail dependences of tvSJC-copula–GARCH-skt.for the portfo-
lio containing CDX.NA.IG and S & P500.  
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This figure shows the patterns of the upper and lower tail dependences of the time-varying SJC co-
pula and static SJC copula. For the portfolio containing CDX.NA.IG and VIX, the upper tail depen-
dence is higher than the lower tail, which implies that the probability of CDX.NA.IG increasing with 
VIX is higher than that of CDX.NA.IG decreasing with VIX. 

Figure 3. Upper and lower tail dependences of tvSJC-copula–GARCH-skt.for the portfo-
lio containing CDX.NA.IG and VIX. 

 
and the 1-day VaR. Suppose we have 550 in-sample pieces of data. We set T as T = 
550. By using the rolling window method, when a new observation is added to 
the data, we remove the oldest one. That is, we use the observations of t + 2 to t 
+ 551 to estimate the VaR552, the observations of t + 3 to t + 552 to estimate the 
VaR553, and so on. The estimated results of the data in the subprime crisis period, 
the European debt crisis period, and the steady period are shown in Tables 5-7, 
respectively. Figures 4-6 illustrate the comparisons of 99% 1-day VaRs with ac-
tual portfolio returns in these three individual periods.  

Table 5 shows the results of backtesting during the subprime crisis. The sub-
prime crisis, the most eventful period among our three sample periods, gave rise  
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Table 5. Numbers of violations of different VaR models. (Subprime crisis period: 
2007/02/27-2009/10/02) 

0.05α =      

Trading days: 651 Expected no. of exceptions 33 

Non-rejection region 23 exceptions 44≤ ≤  

 CDX.NA.IG S & P500 CDX.NA.IG VIX 

Historical Simulation 108 85 

Variance-Covariance 126 79 

EWMA 47 43* 

GARCH-skt 56 38* 

tvSJC-copula–GARCH-skt 39* 29* 

0.01α =    

Trading days: 651 Expected no. of exceptions 7 

Non-rejection region 3 exceptions 11≤ ≤  

Historical Simulation 33 19 

Variance-Covariance 44 17 

EWMA 13 15 

GARCH-skt 9* 13 

tvSJC-copula–GARCH-skt 5* 4* 

This table reports the results of backtesting of the 95% (99%) 1-day VaR during the subprime crisis. The 
historical simulation, the variance–covariance method, EWMA, and the univariate GARCH-skt method are 
compared with the tvSJC-copula–GARCH-skt, which is the chosen copula-GARCH model with the best good-
ness-of-fit. Figures with asterisks are in the non-rejection region under 95% confidence level of LR test.  

 
Table 6. Numbers of violations of different VaR models. (European debt crisis period: 
2009/10/05-2012/02/10) 

0.05α =      

Trading days: 601 Expected no. of exceptions 30 

Non-rejection region 21 exceptions 41≤ ≤  

 CDX.NA.IG S & P500 CDX.NA.IG VIX 

Historical Simulation 56 41* 

Variance-Covariance 62 47 

EWMA 41* 43 

GARCH-skt 46 38* 

tvSJC-copula–GARCH-skt 32* 24* 

0.01α =    

Trading days: 601 Expected no. of exceptions 6 

Non-rejection region 2 exceptions 11≤ ≤  

Historical Simulation 12 23 

Variance-Covariance 15 19 
EWMA 11* 12 

GARCH-skt 9* 14 
tvSJC-copula–GARCH-skt 5* 6* 

This table reports the results of backtesting of the 95% (99%) 1-day VaR during the European debt crisis. 
The historical simulation, the variance–covariance method, EWMA, and the univariate GARCH-skt method 
are compared with the tvSJC-copula–GARCH-skt, which is the chosen copula-GARCH model with the best 
goodness-of-fit. Figures with asterisks are in the non-rejection region under 95% confidence level of LR test.  
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Table 7. Numbers of violations of different VaR models. (Steady period: 2012/02/13~ 
2014/10/31) 

0.05α =      

Trading days: 675 Expected no. of exceptions 34 

Non-rejection region 24 exceptions 46≤ ≤  

 CDX.NA.IG S & P500 CDX.NA.IG VIX 

Historical Simulation 45* 41* 

Variance-Covariance 51 44* 

EWMA 38* 37* 

GARCH-skt 33* 39* 

tvSJC-copula–GARCH-skt 29* 25* 

0.01α =    

Trading days: 675 Expected no. of exceptions 7 

Non-rejection region 3 exceptions 12≤ ≤  

Historical Simulation 21 12* 

Variance-Covariance 13 12* 

EWMA 12* 10* 

GARCH-skt 12* 9* 

tvSJC-copula–GARCH-skt 8* 4* 

This table reports the results of backtesting of the 95% (99%) 1-day VaR during the steady period. The his-
torical simulation, the variance–covariance method, EWMA, and the univariate GARCH-skt method are 
compared with the tvSJC-copula–GARCH-skt, which is the chosen copula-GARCH model with the best 
goodness-of-fit. Figures with asterisks are in the non-rejection region under 95% confidence level of LR 
test.  

 
to significant economic losses and severe worldwide influences. As for the port-
folio containing CDX.NA.IG and S & P500, only tvSJC-copula–GARCH-skt 
could pass backtesting and estimate accurately under 95% and 99% confidence 
levels. Similar results could be observed for the portfolio containing CDX.NA.IG 
and VIX. Among the methods, the historical simulation and the variance- 
covariance method performed the worst, due to their oversimplified assump-
tions. These two methods tended to provide higher numbers of violations during 
the subprime crisis, which resulted in underestimating risks for the most event-
ful period. 

The results of backtesting during the European debt crisis are listed in Table 6. 
We found that tvSJC-copula–GARCH-skt was still the only method that could 
pass backtesting and estimate accurately under both 95% and 99% confidence 
levels, no matter which portfolio was under consideration. 

Table 7 shows the results of backtesting during the steady period, the most 
peaceful period among the three. As for the portfolio containing CDX.NA.IG 
and S & P500, in addition to tvSJC-copula–GARCH-skt, EWMA and univariate 
GARCH-skt could also pass backtesting under 95% and 99% confidence levels. 

https://doi.org/10.4236/jmf.2018.82025


J.-J. Huang, L.-C. So 
 

 

DOI: 10.4236/jmf.2018.82025 402 Journal of Mathematical Finance 
 

As for the portfolio containing CDX.NA.IG and VIX, every method would pass 
backtesting under both 95% and 99% confidence levels.  

The above observations indicate that tvSJC-copula–GARCH-skt is the best 
method, regardless of period. In contrast, traditional VaR methods fail to give 
accurate estimations in most cases. Even though EWMA and univariate 
GARCH-skt are proper estimating methods when the market situation is rela-
tively steady, their estimation ability is weak when markets are volatile, for ex-
ample, during the subprime crisis and the European debt period. Furthermore, 
the traditional methods tended to underestimate risk, especially during the sub-
prime crisis period, which was the period when a suitable risk detection method 
was most needed. 

 

 
This figure illustrates the results of backtesting of the 99% 1-day VaR for the two portfolios during the subprime crisis. 
The historical simulation, the variance–covariance method, EWMA, and the univariate GARCH-skt method are com-
pared with the tvSJC-copula–GARCH-skt, which is the chosen copula-GARCH model with the best goodness-of-fit. 
The spreading dots are real portfolio return computed using sample date. 

Figure 4. Comparison of different VaR models under α = 0.01 (Subprime crisis period: 2007/02/27-2009/10/02). 
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This figure illustrates the results of backtesting of the 99% 1-day VaR for the two portfolios during the European debt cri-
sis. The historical simulation, the variance-covariance method, EWMA, and the univariate GARCH-skt method are 
compared with the tvSJC-copula–GARCH-skt, which is the chosen copula-GARCH model with the best goodness-of-fit. 
The spreading dots are real portfolio return computed using sample date. 

Figure 5. Comparison of different VaR models under α = 0.01 (European debt crisis period: 2009/10/05- 
2012/02/10). 

 
Figures 4-6 illustrate the above discussions. The plots of the historical simula-

tion and the variance–covariance method could be treated as strict lines; hence, 
their reported numbers of violations are far from acceptable in Tables 5-7. By 
definition, these two methods give equal weight to each past observation, neg-
lecting serial correlations. Although the EWMA and univariate GARCH-skt 
conquer this problem, they still share the weakness of neglecting the nonlinear 
correlations between the index returns. They could only show their detection 
power during the relatively stable period. Not surprisingly, the plots of 
tvSJC-copula–GARCH-skt are very volatile, remaining adjustable to different  
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This figure illustrates the results of backtesting of the 99% 1-day VaR for the two portfolios during the steady period. 
The historical simulation, the variance–covariance method, EWMA, and the univariate GARCH-skt method are com-
pared with the tvSJC-copula–GARCH-skt, which is the chosen copula-GARCH model with the best goodness-of-fit. 
The spreading dots are real portfolio return computed using sample date. 

Figure 6. Comparison of different VaR models under α = 0.01 (Steady period: 2012/02/13-2014/10/31). 
 

market situations. The reason why the copula–GARCH methods performed best 
may be explained not only by their consideration of such features of asset re-
turns as fat tail, asymmetry, and serial correlations, but also by a flexible design 
dealing with the nonlinear dependence of asset returns. In addition, by compar-
ing these two portfolio, we found that the VaRs for the portfolio containing 
CDX.NA.IG and VIX are higher than those for the portfolio containing 
CDX.NA.IG and S & P 500. That is, the efficiency of risk-diversification is worse 
in the former case. One possible explanation for this observation could be the 
correlation coefficient of CDX.NA.IG with VIX is positive, while that with S & P 
is negative. According to the principal of risk diversification, we always obtain 
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better shelter when our portfolio containing assets with a negative correlation. In 
other words, a negative correlation helps to diminish portfolio risk. 

5. Conclusions 

Since they were introduced in the middle of the 1990s, the trading volume of 
CDSs has soared rapidly, providing an efficient way for commercial banks to di-
versity away their credit risks. Evidence from previous research has shown that 
there is a high connection of CDS contracts or indices to the stock or volatility 
indices. Therefore, for the purpose of risk management, we attempted to find a 
better way to estimate the VaR of a CDS portfolio with respect to the stock index 
or volatility index. 

The naïve assumption of a linear correlation between the CDS index and the 
stock or volatility index is no longer suitable to describe their dependence struc-
ture. Hence, we need a flexible multivariate distribution with different margins 
and dependence structures that allows the joint distribution of the portfolio to 
be free of normality and linear correlation. In addition, such features of the mar-
ginal distribution as negative skew, heteroskedasticity, and volatility clustering 
embedded in financial data should be taken into consideration. In this study, we 
provided a VaR analysis based on a copula-based GARCH model with a skewed 
Student-t innovation to improve the detection of rare event risk. 

We chose the Markit’s North American Investment Grade CDX Index 
(CDX.NA.IG), which has very high trading volume, as our research object. We 
constructed two portfolios of the CDX.NA.IG index, one with the S & P 500 in-
dex and the other with VIX. Using the 2477 daily data items from December 
2004 to October 2014, covering the period of the subprime mortgage crisis and 
the European debt crisis, we found that, on average, the VaRs for the portfolio 
containing CDX.NA.IG and S & P 500 are lower than those for the portfolio 
containing CDX.NA.IG and VIX. That is, the efficiency of risk-diversification is 
better in the former case. In addition, we showed that the time-varying SJC co-
pula model combined with the GARCH with skewed Student-t innovation 
(tvSJC-copula–GARCH-skt) was superior to the traditional VaR methods and 
performed best to detect the risk of the portfolios, regardless of the market situa-
tion. The advantage of this method mainly results from its consideration of the 
conditional heteroskedasticity of time series data and its being a flexible way to 
describe the varying dependence of data structures over time, which conquers 
such traditional VaR methods as the historical simulation, variance-covariance 
method, EWMA, and univariate GARCH. Even though the parameters to be es-
timated are large in number and the computation can be time-wasting, it is 
worth using the tvSJC-copula–GARCH-skt method to estimate VaR for its rela-
tively correct estimation of rare event risks, even when the market is turbulent. 
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