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Abstract 
In the history of option pricing, Black-Scholes model is one of the most sig-
nificant models. In this article, the main concern is the numerical solution of 
the Black-Scholes model (a.k.a. Black/Scholes/Merton) for the European call 
option in a different way. The model is described and an explicit difference 
scheme was used for the numerical approximation. The stability condition of 
the scheme is established through convex combination. A different way was 
used to obtain the numerical value of the model. Estimation of the relative er-
ror was calculated in L1-norm in order to test the accuracy of the scheme. Fi-
nally, a comparison of the numerical outcomes with the value obtained by 
another scheme is given. 
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1. Introduction 

In the historical backdrop of option pricing model, the Black-Scholes or 
Black-Scholes-Merton model [1] [2] is a standout amongst the most generous 
model. This model showed that the significance that mathematics plays an im-
portant role in the field of finance. 

The Black-Scholes model was first published by Fischer Black and Myron 
Scholes in their 1973 seminal paper [1], “The Pricing of Options and Corporate 
Liabilities”, published in the Journal of Political Economy. In the same year, they 
derived a partial differential equation, now called the Black-Scholes equation, 
which estimates the price of the option over time. Robert C. Merton was the first 
to publish a paper escalating the mathematical understanding of the options 
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pricing model, and created the term “Black-Scholes options pricing model”.  
Let us consider S as the price of the stock, which we consider as a random va-

riable. V(S, t) be the value of an option as a function of time and stock price, K be 
the strike price, r be the risk-free interest rate, σ  be the Volatility/the standard 
deviation of the stock return, and t be the time in years. Then the famous 
Black-Scholes equation that was developed by Fisher Black and Myron Scholes is 

2
2 2

2

1 0
2

V V VrS S rV
t S S

σ
∂ ∂ ∂

+ + − =
∂ ∂ ∂                 

 (1) 

The above equation is a second-order parabolic partial differential equation 
known as Black-Scholes equation is actually a variation of a famous equation in 
physics that models the transfer of heat. 

This equation can be solved by both analytically and numerically. Black and 
Scholes (1973) of M.I.T. first found the solution by taking advantage of previous 
research on option pricing that gave an idea of what the solution would look like. 
In [3] Mellin transformation was utilized to explain this model. They did not re-
quire variable change or explaining dispersion condition. R. Company, A.L. 
Gonzalez, L. Jodar [4] solved the Black-Scoles model which was modified with 
discrete dividend. They utilized a delta-characterizing grouping of generalized 
Dirac-Delta function and connected the Mellin transformation to acquire an 
integral formula. At last, the solution was approximated they approximated by 
utilizing numerical quadrature estimation. 

In this article, a finite difference scheme is used to approximate the solution. 
This article is organized in the following way. Section 2 consists of the discussion 
of the dynamics of the model problem, and then the formulation of an explicit 
difference method to approximate the model and establishment of the stability of 
the scheme by convex combination in Section 3. In Section 4, we progress a pro-
gramming code in MATLAB for the implementation of the numerical results for 
explicit finite difference scheme for Black-Scholes model. We compare the nu-
merical solution with the analytical solution. We estimate the relative error of the 
numerical scheme in L1-norm that leads to show the rate of convergence graphi-
cally. We also compare the explicit method with the result obtained by another 
work using semi-implicit method [5]. 

2. The Black-Scholes Model 

The Black-Scholes model is a powerful tool for valuation of equity options. In 
the early 1970’s, Myron Scholes, Robert Merton, and Fisher Black made an im-
portant breakthrough in the pricing of complex financial instruments by devel-
oping what has become known as the Black-Scholes model. This model dis-
played the importance that mathematics plays in the field of finance. 

The Black-Scholes model is used to calculate the theoretical price of European 
put and call options, ignoring any dividends paid during the option’s lifetime. 
While the original Black-Scholes model did not take into consideration the effects 
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of dividends paid during the life of the option, the model can be adapted to ac-
count for dividends by determining the ex-dividend date value of the underlying 
stock. 

This section consists of the basic assumptions in the Black-Scholes model [6]. 
The hugest is that volatility, a measure of how much a stock can be relied upon to 
move in the close term, is a constant over time. The Black-Scholes model addi-
tionally assumes stock move in a way referred to as an arbitrary stroll; at any given 
time, they are as liable to climb as they are to move down. These suppositions are 
blended with the rule that option pricing ought to give no instant gain up to either 
merchant or purchaser. The correct six suppositions of the Black-Scholes model 
are as per the following: 

1) No dividends are paid, 2) option must be exercised upon expiration, 3) 
market movement course cannot be anticipated, 4) no commission is charged in 
the exchange, 5) interest rate stays steady and 6) stock returns are ordinarily dis-
tributed, hence volatility is consistent. 

The equation of Black-Scholes is  
2

2 2
2

1 0
2

V V VrS S rV
t S S

σ
∂ ∂ ∂

+ + − =
∂ ∂ ∂

                 (2) 

It is a 2nd order partial differential equation (PDE) in S-space and 1st order in 
time. We generally use: at present t = 0, at expiry t = T. 

For European call option [5], let us denote the function value V by C. Now we 
define the initial and boundary conditions. In particular, we must consider final 
and boundary condition in the case of European Call option. The value at final 
time t = T can be calculated from the definition of call option. If at final time 
stock price is greater than strike price ( )S K>  the call option will be worth 
( )S K−  because the buyer can buy the stock for K and sell it instantly for S and 
gain profit. But if S K<  then the buyer will not exercise the option and it will 
be worthless. So at t = T the option value is known is called the final condition 
and it is expressed as 

 ( ) ( ), max ,0C S T S K= −                     (3) 

For boundary conditions, we consider the value of C at S = 0  and as S →∞ . If 
S = 0  then from the Equation (1) the payoff must also be 0. So the consequent 
boundary condition when S = 0: 

( )0, 0C t =                         (4) 

when S →∞  it is more likely that the option will be exercised and the value will 
be S K− . As S →∞  the exercise price has not any impact on the option value, 
so the option value is equivalent to 

( ) ( ), e asr T tC S t S K S− −= − →∞                     (5) 

This is the right boundary condition. Finally, the Black-Scholes initial [final] 
boundary value problem for European call option is  
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i 

( ) ( )
( )
( ) ( )

2
2 2

2

1 0, 0 ;0
2

with , max ,0 for 0

0, 0 for 0

, e asr T t

V V VrS S rV S t T
t S S

V S T S k S

V t t T

V S t S K S

σ

− −

∂ ∂ ∂
+ + − = ≤ < ∞ ≤ ≤

∂ ∂ ∂
= − ≤ < ∞

= ≤ ≤

= − →∞

        (6) 

3. Objective and Methodology 

The main objective of this article is to study the Black-Scholes partial differential 
equation and find the solution numerically for a European call option so that the 
dynamics of this model can be understood. A finite difference scheme will be in-
troduced to approximate the numerical solutions. The boundary conditions will 
be used for the European call option. The stability of this numerical scheme is al-
so studied. The study will be conducted theoretically. For this purpose, some 
computer programs such as MATLAB, Mathematica was used. 

4. Numerical Solution 

In most cases, it is very difficult to obtain the analytical solution of partial diffe-
rential equation, even we obtain an analytical solution but in a very complex form. 
Therefore one needs to solve the PDE numerically. Finite difference method [7] [8] 
is one of the popular methods that have been used to solve partial differential equ-
ations. In this section, a finite difference scheme is developed in order to obtain 
to solve the Black-Scholes model numerically. 

4.1. Explicit Difference Scheme 

Time and Space discretization: 
The interval [ ]0,T  is divided into N equally length subintervals having length 

∆t. The underlying asset/stock will take prices in the interval [ ]0,∞ . However, 
an artificial limit maxS  is introduced which is normally three or four times big-
ger than the strike price K. This interval [ ]max0, S  is also divided into M equally 
sized subintervals having length ∆S. Therefore the space [ ] [ ]max0, 0,T S×  is ap-
proximated by a grid 

( ) [ ] [ ], 0, 0,n t i S N t M S∆ ∆ ∈ ∆ × ∆                  (7) 

where 0, ,n N=   and 0, ,i M=  . Whenever it is written nC  it’s actually 
mean the numerical value of ( ),C n t i S∆ ∆  

Now to formulate an explicit difference scheme, the Black-Scholes partial dif-
ferential equation 

2
2 2

2

1 0
2

C C CrS S rC
t S S

σ
∂ ∂ ∂

+ + − =
∂ ∂ ∂                 

 (8) 

is discretized using the following formulae: 

The discretization of the time derivative C
t

∂
∂

 is obtained by backward differ-

ence formula as below: 
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[Note: As many Partial Differential Equations have an initial condition, the 
new time step solution is approximate by discretizing the time derivative by for-
ward difference formula. But in this case, the value of the option at the expiration 
time or at the final time is known which can be explained by the definition of call 
option. That is why backward difference formula is used for time derivative to 
calculate the previous time step solution, in this case, the option value at 
present-time.] 

( )
1

,
n n
i iC CC n t i S

t t

−−∂
∆ ∆ ≈

∂ ∆
                    (9) 

Now the discretization of the first order derivative of S is obtained by central 
difference approximation and the second order derivative of S is obtained by a 
symmetric central difference approximation. 

( ) 1 1,
2

n n
i iC CC n t i S

S S
+ −−∂

∆ ∆ ≈
∂ ∆

                   (10) 

( )
( )

2
1 1

2 2

2
,

n n n
i i iC C CC n t i S

S S
+ −− +∂

∆ ∆ ≈
∂ ∆                

 (11) 

Now using Equations (9)-(11) in Equation (8) we get, 

( )

1
2 21 1 1 1

2

21
2 2

n n n n n n n
ni i i i i i i

i i i
C C C C C C CrS S rC

t S S
σ

−
+ − + −− − − +

+ + =
∆ ∆ ∆

 

Therefore 

( ) ( )

( )

1 2 2 2
12 2

2
1 2

2

2

11
2 2

1
2 2

n n n
i i i i i

n

i

i i i

t t tC C r t S C r S S
SS S

t tC S r S
SS

σ σ

σ

−
+

−

   ∆ ∆ ∆   = − ∆ − + +
   ∆∆ ∆   
 ∆ ∆ + −
 ∆∆    

 (12) 

This is the explicit difference scheme for Black-Scholes equation. 

4.2. Stability Condition 

Here the establishment of the stability condition for numerical scheme of 
Black-Scholes equation is discussed. For stability condition, it is considered that 
the scheme is without the source term i.e. considering 0rV = . Therefore, 

( ) ( )

( )

1 2 2 2
12

2

2

2

2
1 2

11
2 2

1
2 2

n n n
i i i i i

n
i i

i

i

t t tC C S C r S S
SS S

t tC S r S
SS

σ σ

σ

−
+

−

   ∆ ∆ ∆
   = − + +
   ∆∆ ∆   
 ∆ ∆
 + −
 ∆∆ 

     (13) 

Now Let max maxS Si=   

( )
( )22

1 max2 ,t S
S

α σ
∆

=
∆
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2 max2
tr S
S

α
∆

=
∆

 

Therefore  

 ( )1 1 1
1 1 2 1 21

2 2
n n n n
i i i iC C C Cα α

α α α−
+ −
   = − + + + −   
   

          (15) 

For convex combination, the sum of coefficient is equal to 1. And also, 

( ) 1 1
1 2 21 0, 0 and 0

2 2
α α

α α α   − ≥ + ≥ − ≥   
     

 
( )11 0α− ≥  

1 1α⇒ ≤  
1

2 0
2
α

α + ≥ 
 

 

1
2 2

α
α⇒ ≤  

1
2 0

2
α

α − ≥ 
 

 

1
2 0

2
α

α⇒ + ≥  

1 1 0
2 4
α α

⇒ + ≥  

1 0α⇒ ≥  
 

where, max maxS Si= . 

5. Numerical Results 

Consider for purposes of graphical presentation the value of a call option with 
strike price K = 100. The risk-free interest rate r = 0.12, the time to expiration is 
T = 1 measured in years, and the volatility is = 0.10. The value of the call option 
is plotted over a range of stock prices 70 130S≤ ≤  surrounding the strike price 
is illustrated in Figure 1. 

Figure 1 is produced by MATLAB. The figure shows the price of the stock at 
different time. 

 

 
Figure 1. Numerical solution for European call at different time steps with K = 100, r = 
0.12, σ = 0.1, T = 1. 
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Figure 2 is the analytic solution of the Black-Scoles model for the same para-
meters as before is. 

If the above two figures are combined into one, one can easily examine how the 
analytical and numerical solutions differ with each other. For identification, two 
different colors were used. Here the values of T, r, K, σ are same as previous and the 
temporal grid size ∆t = 0.01, and spatial grid size ∆S = 1.50. 

From Figure 3, it is observed that the two solutions are almost superimposed. 
The red color represents the numerical solution and green represents the analytic 
solution. Two solutions cannot be distinguished by the naked eye. Hence the nu-
merical scheme has a very small error. 

Now to find the relative error for the scheme, the computation of the relative 
error in L1-norm which is defined by 

 

 
Figure 2. Analytic solution for European call at different time steps with K = 100, r = 0.12, 
σ = 0.1, T = 1. 

 

 
Figure 3. Analytic solution and Numerical solution at initial time (K = 100, r = 0.12, σ = 
0.1, T = 1). 
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1

1

e n

e

C C
err

C
−

=  

where eC  is the analytic solution and nC  is the numerical solution of 
Black-Scholes model for European call option. We perform our numerical 
scheme for t = 0 to 1, r = 0.12, K = 100, σ = 0.10 with temporal grid size ∆t = 
0.0500 and spatial grid size ∆S = 3 which satisfy the stability conditions. 

The relative error is shown in Figure 4.  
From Figure 4 it is seen that as time t goes from 0 to 1, the relative error be-

comes smaller and smaller. For explicit difference scheme, the relative error is less 
than 0.0035 which is quite acceptable. Figure 5 represents that the error is de-
creasing with respect to the smaller discretization parameters ∆t and ∆S, which 
shows the convergence of the explicit difference scheme. 

 

 
Figure 4. Relative error for explicit difference scheme in the order of 10−3. 

 

 
Figure 5. Relative error of explicit difference scheme for different temporal and spatial 
grid size in the order of 10−3. 
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for ∆ t=0.02 and ∆ x=2
for ∆ t=  0.0125 and ∆ x=1.50
for ∆ t=   0.0083 and ∆ x=1.20

https://doi.org/10.4236/jmf.2018.82024


M. N. Anwar, L. S. Andallah 
 

 

DOI: 10.4236/jmf.2018.82024 380 Journal of Mathematical Finance 
 

Table 1. Comparison between the semi-implicit method and explicit method. 

Stock Price Semi-implicit method Explicit method Exact value 

4 1.631276e−06 1.168605e−06 1.067322e−06 

8 0.146176 0.149235 0.149335 

10 0.906372 0.916098 0.916291 

16 6.236436 6.252282 6.252287 

20 10.223892 10.246901 10.247014 

 
Table 2. Approximate value by explicit centered method and the exact value. 

Stock Price Explicit method Exact value 

4 1.071052e−06 1.067322e−06 

8 0.149331 0.149335 

10 0.916284 0.916291 

16 6.252286 6.252287 

20 10.246901 10.247014 

6. Comparison with Other Numerical Scheme 

In this section, a comparison is made between our explicit difference scheme with 
another numerical scheme that was used in finding the approximate solution of 
Black-Scholes model which is Semi-implicit method [5]. 

For a European call option with 0 20S≤ ≤ , T = 0.25, K = 10, r = 0.1, σ = 0.4, 
with temporal grid size N = 2000 and spatial grid size M = 200, the Semi-implicit 
method and Explicit method were used to set the table below. 

From Table 1 it is seen that explicit scheme gives better results than 
semi-implicit method. But the results obtained by the scheme that was developed 
here are not much close to the exact value. But if the temporal grid points are in-
creased up to N = 41,000, spatial grid points up to M = 1000 and set the other pa-
rameters value as above then the following values (Table 2) were found for dif-
ferent stock prices. 

7. Conclusion 

This article concerned with the numerical solution of Black-Scholes model. The 
model is studied and derived an explicit finite difference scheme and established 
a stability condition of the scheme. The relative error of the explicit scheme was 
estimated by comparing the numerical solution with the analytical solution in 
L1-norms and presents the convergence features of the scheme graphically. The 
numerical simulation results are seen in good agreement with the well-known 
qualitative behavior of the Black-Scholes PDE. Also, a comparison is presented 
between the explicit method and the result obtained by another work using the 
semi-implicit method where our result is found more accurate than that of the 
semi-implicit method. 
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