
Open Access Library Journal 
2018, Volume 5, e4614 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1104614  May 17, 2018 1 Open Access Library Journal 
 

 
 
 

Nuclear Electromagnetic Generator: 
Introduction in Charge Algebra and  
Elements of Charge Kinetics 

V. Yu. Tertychny-Dauri 

Department of Physics and Engineering, Saint-Petersburg National Research University of Information Technologies, Mechanics 
and Optics, Saint-Petersburg, Russia 

           
 
 

Abstract 
This work is devoted to solution of some problems connected with kinetic 
equations of reproduction for charged particles and charged splinters of the 
fission inside of nuclear toroidal electromagnetic generator (nuclegen). There 
are discussed questions of solutions behaviour for charged equations. Special 
attention is paid to charge kinetics of the nuclegen under the influence of 
small random disturbances and stimulated by this influence to analysis of 
stochastic motion properties for the ionite gas. 
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1. Introduction 

We consider a series of questions connected with composition and solution of 
kinetic equations for chain nuclear fission products into active zone of nuclear 
toroidal electric generator [1] [2] [3]. Of course, by spelling of kinetic equations 
for the reproduction of charged particles and charged splinters of fission this 
consideration would be accompanied by great share of the convention. The main 
aim, which here is placed, consists in the description of general regularity of re-
production process and not at all the counting of exact charges quantity up to 
last electron and proton. 
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It is important to note, in our view, that on dynamics of growth of charged 
particles Q number the governing action the growth of number prompt and de-
layed neutrons N into active zone toroid will be exercising so far as the each new 
fission act by neutrons will be leading to the new fission of nucleuses and to the 
formation of another charged particles and charged splinters. 

In Sections 2-4, the conclusion of charged kinetic equations for electric gene-
rator is kept. Besides the finding equations there are established exponential in-
stability of charged equations solutions for the coefficient of ionites reproduc-
tion which over one. 

Investigation of charged kinetic equations is going on in Sections 5-9 also 
when the initial kinetic system is criticized by the influence of small random 
disturbances. Analysis of stochastic motion properties succeeded come to known 
scheme with action functional and to finding of corresponding kinetic quasipo-
tential. Initial problem hasn’t analytical solutions in the class of free stable kinet-
ic matrixes. Therefore there is proposed replacement method of the initial prob-
lem on the similar problem of kinetics with stable normal matrix. 

2. Charge Kinetics of a Nuclear Electric Generator 

Scaled demands at wide application of electric energy dictate the necessity to 
produce nuclear energy by means of fast-neutron electric generator. These nuc-
lear devices are the most favourable due to their high values of the reproduction 
coefficient. 

However, the use of fast-neutron electric generators challenges as there are 
several demands to maintain the nuclear kinetic process at a fitting level. Above 
all, it is necessary to keep high average energy of neutrons at the level of several 
hundred kilovolts [4] [5]. Here the energy spectrum of neutrons is defined by 
the properties of combustible fuel, raw materials and construction materials in 
relation to the inelastic scattering of the neutrons (238U has a big cross-section of 
inelastic scattering). In addition, to achieve criticality the operation of 
fast-neutron nuclear devices needs a high concentration of a combustible fuel in 
relatively small volumes. The latter is caused by low values of the fission 
cross-section in the area of high energies. 

Therefore, our further reasoning is based on the admission that the nuclear 
device (nuclear electric generator or nuclegen) has a breeder basis. 

For simplicity and convenience all charged splinters and particles of both 
signs (ions, electrons, protons etc.) are called ionites, and their aggregate in 
quantity Q is ionite gas (ionite gas cord). 

As in the case of neutrons, the balance of ionites is characterise by the ionite 
reproduction coefficient f. The reproduction coefficient f is defined as the ratio 
of the number of ionites in any generation to the number of ionites in the pre-
vious generation. 

The average lifetime of one generation of ionites r is supposed to be propor-
tional to the average lifetime of one generation of neutrons l : 
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( ), , , ,r l Fλ ε ν δ µ= +                      (1) 

in which 0λ >  is a proportionality coefficient, ( ), , ,ε ν δ µ  is a set of 
parameters characterizing the electromagnetic influence, air possible residual 
drag of the medium, dynamic and construction features respectively, all 
influencing the value r. 

For all intents and purposes the dependence (1) may possess not a constant 
but a rather complex function form with all values included being dependent on 
time and spatial variables in some way. In work [1] to analize the simplest 
charge kinetics value 1λ =  is fixed so that value r coincides with value l and is 
entirely defined by it. Apparently, this does nothold true what is evidenced by 
the following the correlation (1). 

Unlike the neutron losses (capture without fission, leakage etc.), the losses of 
ionites, that control their lifetime, are determined by their neutralization degree 
(i. e. missed charges capture). The neutralization degree depends on the general 
field ( ),H E , particles velocity etc. 

If 1f = , nuclear fission with the formation of ionites and neutrons occurs 
steadily at constant reaction rate ( 1k = , k is the coefficient of neutrons 
reproduction); its active zone is critical with a self-sustained chain reaction. This 
case implies constQ = , elements of inner electromagnetic field ( ),H E  
including * *,I j  are also close to constant values. 

Ignoring delayed ionites the density change of ionite gas q in active zone 
within one generation equals to ( )1fq q f q− = − . If r is an average life time of 
one ionite generation, it means that per time unit the density of charged lively 
particles q changes in ( )1f r−  times, i.e.  

( )1d ,
d

f qq
t r

−
                         (2) 

where ( ) ( )0 *expq t q t T= , with q0 is initial ionite density, ( )1T r f∗ = −  is 
charge period of nuclear electric generator. 

3. Linear Theory of Charge Kinetics 

As mentioned above delayed neutrons play a crucial role and have a practical 
application in the controlled process of nuclear chain reaction. The fact that 
delayed neutrons alon with other β− descendants contribute into ionite gas 
formation is obvious. 

Let γ is delayed ionite part (charged β −  descendants), ( )1 γ−  is instant 
ionite part. The reproduction coefficient f can be noted as a coefficient 
consisting of the two parts: 0f f f∗= + , where ( )0 1f fγ= − , *f fγ= . After 
β−-disintegration decay of splinters the delayed ionites become instant. this 
means that their effective lifetime *r  equals the sum: 0r r rβ∗ = + , where rβ  is 
delay time (β−-disintegration time), 0r  is instant ionite life time. 

Hence, average effective lifetime of r ionite generation equals  

( ) 0 01 .r r r r rγ γ γ∗ ∗= + − ≈ +  
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Since 0r rγ ∗  , the charge period of nuclear electric generator ( )1T r f∗ = −  
is determined by the average time of ionite delay. 

The simplest linear theory of charge kinetics needs more thorough 
consideration. The density of ionite gas q is admitted to be the blend of densities 
of charged particles and fission splinters of the two types mentioned above, i.e. 

m zq q q= + . Here qm is instant ionite density, qz is delayed ionite density. Then 
instead of the correlation (2) ignoring the presence of delayed ionites the system 
of two kinetic equations is possible to be written. These equations describe how 
the dynamics of ionite gas density (concentration) changes in an nuclear electric 
generator:  

( )
*

1 1d
,

d
mm z

f qq q
t r r

γ− −  = +                    (3) 

d
d

mz zfqq q
t r r

γ

∗

= −                         (4) 

with initial conditions  

0
0

0 00
0

d
, ,

d
d, .
d

m
m mo mot

t

z
z z zt

t

qq q q
t

qq q q
t

=
=

=
=

′= =

′= =
                   (5) 

The right parts of Equations (3) and (4) should be commented. In equation 
(3) coefficient qm characterizes the density change of instant ionite number in 
lifetime of one generation. The second summand characterizes the growth of 
value qm at the cost of qz by the transition of the latter into the category of 
instant ionites. Equation (4) describes the density change of delayed ionites. In 
this equation the first summand shows the increase of the concentration of 
delayed ionites at the cost of formation instant ionites; the second one, on the 
contrary, shows the decrease of the concentration of the amount of delayed 
ionites within their lifetime (i.e. within the time of β−-decay). As well seen in the 
system (3), (4) the density (the concentration of the amount) of delayed ionites 
qz creates the feedback in relation to the density of instant ionites qm. 

Following some simple transformations, the system of Equations (3), (4) is 
reduced to a homogenous differential equation of the second order with constant 
coefficients. The equation describes how to regulate kinetics peculiarities of a 
nuclear electric generator:  

1 2 0,x x xδ δ+ − =   

in which mx q=  (or zx q= ),  

( )
1 2

1 1, .
r r fr f

rr rr
γ

δ δ∗ ∗

∗ ∗

+ − − −
= =  

The characteristic equation has two real roots of a clearly determined sign 
( )1f ≥ :  
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( )1 22
1 1 2

1

4
0,

2

δ δ δ
λ

− + +
= ≥  

( )1 22
1 1 2

2

4
0.

2

δ δ δ
λ

− − +
= <  

Hence, considering the starting conditions (5) the kinetics equations have the 
following solutions as functions of time:  

( )

( )

1 2

1 2

0 2 0 1 0 0

1 2 1 2

0 2 0 1 0 0

1 2 1 2

e e ,

e e .

t tm m m m
m

t tz z z z
z

q q q qq t

q q q qq t

λ λ

λ λ

λ λ
λ λ λ λ

λ λ
λ λ λ λ

′ ′   − −
= +   − −   

′ ′   − −
= +   − −   

            (6) 

In solutions (6) for qm and qz the second summand in the right part quicly 
approaches to zero. Disregarding it, growth dynamics of density (of the number) 
of ionites qm and qz is supposedly defined by the first summand in the solutions 
(6). As mentioned above, delayed ionites slow the transient process significantly, 
and the charge period ( )1T r f∗ = −  is almost entirely defined by the average 
time of delay *r . This feature is also notable in the correlations (6). Indeed, the 
following approximations  

* 1 2 2

2 1~ , ~ , ~ ,f fr r
r r

δ δ
− −  

prove the evaluations  

( ) ( ) 1 *, ~ e ~ e .t t T
m zq t q t λ  

4. Some Preliminary Results 

Thus, a rough kinetics analysis of nuclear chain fission in vacuum toroidal 
shaped electric generator has shown that the achievement of exponential density 
growth (number) of charged particles moving at high rate and charged splinters 
may be considered proven. The boost of ionite gas density results in hasty 
growth of induced of electrical current in the external winding of a nuclear 
electric generator. It happens according to the electrodynamics peculiarities 
mentioned above (see the author’s article [3], correlations (17)). 

In agreement with the principals nuclear electrodynamics the solutions to 
modified Maxwell’s equations (the work [3], formulae (7), (8)) for a general 
electric field can be found in the form  

( ) ( ), , e , , , e ,m ma t b t
m mH H x y z E E x y z= =              (7) 

where ,m ma b -constant positive coefficients, 1,m = ∞ . If the Fourier transform 
of the distribution of field is known at the initial moment of time  

( ) ( ) ( ) ( )0 0, , , , , , , , ,m m m m
m m

H x y z c H x y z E x y z d E x y z= =∑ ∑  

along with the full system of mutually orthogonal vector functions ,m mH E , then 
a general solution to the problem of unlimited growth of electromagnetic field 
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can be presented using Equation (7) in the type of the following divergent series:  

( ) ( ), , , e , , ,ma t
m m

m
H x y z t c H x y z=∑  

( ) ( ), , , e , , .mb t
m m

m
E x y z t d E x y z=∑  

Currently, the possibilities of nuclear power engineering are restricted by 
chemical and thermal transformations at a significant low level. At the same 
time physics of nuclear electric engineering today is boosting the amount of 
neutrons fission in a reactor core as it inevitably results in overheating and 
thermal explosion. 

This paper describes an alternative scheme for vacuum conducting of a chain 
nuclear reaction in quickly increasing and directional electromagnetic field. 
Under considered conditions there is nothing to heat except for cylindrical walls 
of a toroid. However, this problem is solved due to the presence of directional 
electromagnetic field that screens cascade currents of neutrons and ionite gas 
inside a nuclear generator. 

5. Charge Kinetics under the Action of Small Random  
Disturbances 

Here the problem of stochastic stability under the action of small random 
disturbances of initial kinetic process is going to be considered [6] [7] [8] [9]. 
Stochastic fluctuations in a dynamic system behavior (3), (4) may vary by nature. 
They may result from the deformation of outer and inner electromagnetic fields, 
changes of thermal and vacuum regimes, chemical content of active nuclear 
components of kinetic process, constructive imperfections or operation inertance 
of control devices. The diversity of reasons causing slight, negligible disturbances 
to appear can lead to one general catastrophic overall result implying the 
destruction of the whole kinetic system itself. 

The investigation of stochastic stability (instability) of the systems (3), (4) 
regarding small random disturbances needs revising some basic concepts. 

6. Asymptotic Stability and Stochastic Instability 

Unperturbed deterministic kinetic system (3), (4) is considered here:  

( ) 0, 0 ,x Ax x x= =                        (8) 

where  

11 12

21 22

, ,m

z

a a q
A x

a a q
   

= =   
   

 

( )
11 21 12 22

*

1 1 1, , ,
f fa a a a

r r r
γ γ− −

= = = − =  

which at the origin of coordinates (at zero point identifiable with a 
two-dimensional zero) has the stability position: 0 0A= . 

The stability position (zero point) is stable (Lyapunov stable) if for any 
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neighborhood : 0W W∈  there is a neighborhood 0 0 0;W x W∈  for which 
equation solutions are (8) ( ) , 0x t W t∈ ≥ . If, moreover, ( ) 0x t →  at t →∞ , 
then the stability position is called asymptotically stable. 

Then it is assumed that the system (8) is perturbed by small white noise  

( ) 0, 0 ,X AX w X xε= + =

                     (9) 

where ( )w t  is a two-dimensional Wiener process, 0ε >  is a small numerical 
parameter. The problem of trajectories exit of process ( )X t  from limited 
region D with stability position is of great interest. The appearance of a small 
parameter in system (9) can by explained with an assumption that the noise 
intensity is low compared to deterministic factors affecting the system dynamics. 

If matrix A is stable (Hurwitz matrix), i.e. its own numbers 1λ  and 2λ  have 
negative real parts. For this condition it is necessary and satisfactory [10] that 
coefficients 1 2,δ δ  of characteristical equation 2

1 2 0λ δ λ δ+ − =  fulfiled the 
following inequalities  

( )* *
1 2

* *

1 10, 0.
r r fr f

rr rr
γ

δ δ
+ − − −

= > = <  

It is obvious that the inequalities are held if 1f < . As matrix A is considered 
as stable, the stability position of the unperturbed system (origin of coordinates) 
is asymptotically stable:  

( ) 0 0e e 0 when .At Atx t x x t= ⋅ ≤ ⋅ → →∞  

It is worth mentioning that vector function ( ) , 0w t t ≥  is not norm limited. 
Consequently solutions ( )X t  to Equation (9) may leave from any neighborhood 
of the stability position. Even with the presence of asymptotic stability of this 
stability position [11], i.e. trajectories ( )X t  with probability 1 may deviate too 
far from the stability position. Thus, the system becomes unstable. To make the 
term “instability” meaningful some concepts are to be introduced using 
definitions and research schemes from [11]. 

Denote the region 2D ⊂ R  is region if state vector ( )X t D∈ , then object 
(9) functions; if the phase vector leaves D, then the object destroys. The region D 
is called critical region. 

Introduce random value ( ){ }min :t X t Dτ = ∈/  is the time before system (9) 
destruction, where ( )X t  is its solution with initial condition 0x  or in other 
way τ is the first moment of process exit from D. Probability value { }P Tτ ≤  
can be taken as an instability measure, if time interval [ ]0,T  of the object 
functional ability is fixed. Otherwise, mathematical expectation value of Eτ  
can be taken as an instability measure, if the time interval is unknown. The 
estimations of { } ,P T Eτ τ≤  are given with the aid of action functional. 

7. Action Functional and Quasipotential 

Denote by ( )2
0TC R  a set of continuous functions within time interval [ ]0,T  

with values in 2R . In this space the metric ( ) ( ) ( )0 0, supT t T t tρ ϕ ψ ϕ ψ≤ ≤= −  
should be considered and functional for absolutely continuous functions 
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( ) ( )2
0Tt Cϕ ∈ R  should be defined  

( ) ( ) ( )( ) ( )
2 2

0 0

1 d , ,
2

T
TS s b s s bϕ ϕ ϕ ϕ= − ∈∫  R            (10) 

If function ( )tϕ  is not absolutely continuous within [ ]0,T  or the integral 
(10) is divergent, then we suppose ( )0TS ϕ = +∞ . 

For example, in the case of classical mechanical system for which movement 
along trajectory ( )tϕ  is a functional ( )S ϕ  motion of this system occurs 
along the extremals of functional ( )S ϕ . For a unperturbed dynamic system 
have  

( ) ( ) ( ) 2
0, 0 , ,b bϕ ϕ ϕ ϕ ϕ= = ∈ R                 (11) 

it means that if ( )0 0TS ϕ = , then function ( )tϕ  in [ ]0,T  is the trajectory of 
system (11) as ( )tϕ  is absolutely continuous within [ ]0,T  and satisfies 
almost everywhere Equation (11). 

Let the D is a limited in 2R  (critical) region and D∂  is its smooth 
boundary. If trajectory ( )tϕ  of system (11) starting at point 0 Dϕ ∈  leaves 
D D∂  in a finite time, trajectories of process ( )tΦ :  

( ) ( ) 0, 0 , 0,b wε ϕ εΦ = Φ + Φ = >

                (12) 

coming from 0ϕ  also with probability close to 1 with small ε leave region D 
within this time. The first exit is more likely to occur near the exit point from D 
trajectory ( )tϕ  of system (11). 

More precise definition of this result is connected to the approximation that 
happens while calculating probabilities of events ( ) ( ){ }t tϕ δΦ − < :  

( ) ( ){ } ( ) 2
0e TSP t t ϕ εϕ δΦ − < ≈  

with small , 0ε δ >  for functional ( )0TS ϕ  (10) for time interval [ ]0,T . 
Functional ( ) 2

0TS ϕ ε  with constant norming 2ε  is stated as action 
functional for a set of random processes ( )tΦ  by analogy with quantum 
mechanics problems [12] and described with stochastic Equation (12). 

If point 20∈R  is an asymptotically stable stability position of system (11), 
the quasipotential of system (11) relative to point 0 is function ( )00,V ϕ  
determined by equality  

( ) ( )0 00, inf ,TV Sϕ ϕ=                       (13) 

The functional of action is given by Equality (10) with  

( )2
0 00, 0, ,T t t TCϕ ϕ ϕ ϕ

= =
∈ = =R  

and the ends of the interval [ ]0,T  are not fixed. Have: function 
( ) ( )00, 0, 0,0 0V Vϕ ≥ =  and ( )00,V ϕ  is continuous. 
The essential property of the quasipotential is given the statement concluding 

the following. If vector field ( )b ϕ  in system (11) allows for decomposition  

( ) ( ) ( )b U vϕ ϕ ϕ= −∇ +                     (14) 
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with gradient operator ∇ . Here potential function ( )U ϕ  is continuously 
differential in D D∂ , ( )0 0U = , ( ) 0U ϕ > , ( ) 0U ϕ∇ ≠  when  

( ) ( )( )0, , 0U vϕ ϕ ϕ≠ ∇ = . This means: 
1) quasipotential ( )00,V ϕ  equals to  

( ) ( )0 00, 2V Uϕ ϕ=  

for all 0 D Dϕ ∈ ∂  so that ( ) ( )0 0 min y DU U U yϕ ∈∂≤ = ; 
2) the only extremal ( )ˆ tϕ  of functional ( )0TS ϕ  at a set of functions ( )tϕ  

is defined by equation  

( ) ( ) ,U vϕ ϕ ϕ= ∇ +                       (15) 

where [ ]00 0, , 0,t t T t Tϕ ϕ ϕ
= =
= = ∈ . 

It can be shown that for any curve ( )tϕ  connecting points 0 and 0ϕ  the 
following un equation holds  

( ) ( ) ( )0 0 0 ˆ2 ,T TS U Sϕ ϕ ϕ≥ =  

i.e. ( ) ( ) ( )0 0 00, inf 2TV S Uϕ ϕ ϕ= =  and function ( )ˆ tϕ  as the only solution of 
Equation (15) is the only extremal. 

In addition, it is possible to show that asymptotics of average time of process 
exit ( )tΦ  (12) from critical region D is determined by limiting equality  

( )2
00

lim ln min 0, ,
y D

E V V y
ε

ε τ
→ ∈∂

= =  

where ( )0,V y  is found quasipotential of dynamic system (11) relative to 
stability position (point 0) which is assumed as asymptotically stable. 

8. Kinetic Quasipotential 

The initial kinetic system (8) with a known stable constant matrix of coefficients 
A is worth mentioning again. Let the vector field ( )b x Ax=  permits the 
decomposition of type (14):  

( ), ,Ax Bx x Cx= −∇ +                       (16) 

in which ( ) ( ) ( ), ,U x Bx x v x Cx= = ; ,B C  are non-zero square matrices of 
dimension 2 to defined. The matrix B is assumed to be a positive definite matrix. 
Considering the results of the previous section, there appears a task to find 
matrices B and C, potential ( )U x , quasipotential ( )00,V x  and extremal 
equation of the type (15). 

From the correlation (16) there is an equation  

2 ,A B C= − +                           (17) 

and from the condition of orthogonality ( ) ( )( ) 2, 0,U x v x x∇ = ∀ ∈R , there is 
obtained  

* 0,C B =                             (18) 

in which *C  is a matrix transposed in relation to C. 
The equations system (17), (18) leads to a square matrix equation in 

* *: 2 0B A B B B+ = , which has not analytical solution for an arbitrary value of 
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matrix A (i.e. a solution that does not lead to 0C = ). It is worth mentioning it 
is possible to arrive to the same equation from the Jacobi equation for a 
quasipotential under the condition of orthogonality of vectors ( )U x∇  and 
( )v x , in which ( ) ( )v x Ax U x= +∇ , ( ) ( )0, 2V x U x= :  

( ) ( )( )21 0, , 0, 0.
2

V x Ax V x∇ + ∇ =  

If A is a normal matrix (that is, * *AA A A= ) with a negative definite 
symmetrical matrix *A A+ , a solution can be found and take the form  

( ) ( )* *1 1, ,
4 2

B A A C A A= − + = −  

( ) ( )( ) ( ) ( )*
0 0

1 , , 0, 2 .
4

U x A A x x V x U x= − + =  

The extremal equation also belongs to the same case when the A being a 
normal matrix:  

( ) ( ) * .U v Aϕ ϕ ϕ ϕ= ∇ + = −  

To ensure the condition of orthogonality it is necessary to place a enough 
strict restriction upon matrix A as its normality condition:  

( ) ( )

( ) ( ) ( ) ( )

* *

* * * *

1 1,
2 2
1 1, , , , 0.
4 4

A A x A A x

Ax Ax A x A x A Ax x AA x x

 − + − 
 

   = − − = − − =   

 

The matrix A is not normal in the initial task. Consequently, we arrive to the 
situation which has a numerical solution in the case to be considered. A more 
optimistic prognosis is connected to an approximation task, a theoretical 
analogue of an approximate numerical method in a sense. It deals with a 
substitution of initial system (8) for a kinetic model which is asymptotically close 
to it. 

9. Approximative Kinetic System 

At first, matrix A cannot be a normal one even under the condition with the 
reproduction coefficient of ionites 1f < . As said above, in this case matrix A is 
stable. Normality of A means its symmetry, i.e. the resulting in the equality of 
elements 12 21a a= :  

*

1 ,f
r r
γ

=  

from which  

( )* 0

* *

1
1 ,

r rrf
r r

γ γ
γ γ

+ −
= = = + ∆  

in which it is designated as ( ) ( )0 *1 r rγ γ∆ = − . 
An important thing is that value ∆  can be given the “status” of a small 

parameter. Indeed, the previous appraisements imply that  
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( ) 0 0

* *

1
0 1.

r r
r r
γ
γ γ
−

< ∆ = ≈   

Therefore, matrix A is to be approximated by a stable negative definite normal 
matrix A :  

0
, ,

0 0
A A A Aδ δ

δ 
= + =  

 
                  (19) 

where 0δ >  is a small parameter. 
The choice of algorithm of approach (19) is to be the following. Let there be 

coefficient 1f < , more precisely 1f = − ∆  in a normal matrix A :  

( ) ( )
* *

* *

1 1 11 1

, ,
1 1

ff
a

r rrA A A
f f

r r r r

γγ

γ γ

− −  − − 
  
  = = =   

− −       

 

where  

*

1, .f a a
r r
γ

δ= + =  

The obtained equations are the following  

( ) ( )
( )

0 *

* 0 *

1 1 1 1 ,
1 1

r r
a

r r r r
γ γ γ

γ γ
− ∆ − − − ∆

= = = ⋅
+ − + ∆

 

* * * *

1 1 1 1 1 2 .
1 1

a
r r r r

δ
− ∆ ∆

= − = − ⋅ = ⋅
+ ∆ + ∆

 

It is obvious that *~ 1 , 0a r δ >  is a small parameter because 0∆ >  is a 
small parameter here. 

Thus, initial kinetic system (8) with a “small” disturbing vector 
, 0A x A xδ δ →  for t →∞  (in a limited time interval 0A xδ →  is provided 

for 0δ → ) of the type  

( ) 0, 0 ,x Ax A x x xδ= + =  

is given approximation by a “normal” stable kinetic system  

( ) 0, 0 .x Ax x x= =                       (20) 

Further, the scheme described above starts to operate for studying stochastic 
motion of system (20) disturbed with small white noise  

( ) 0, 0X AX w X xε= + =

                   (21) 

with the aid of quasipotential theory. For system (20) quasipotential relatively to 
stability position 0x =  has the type  

( ) ( )( ) ( )*0, , , ,V x A A x x Ax x= − + = −  

where A  is stable negatively defined normal (symmetrical) matrix. The 
equation for extremals has the form  

( ) ( )* * *1 1 .
2 2

A A A A A Aϕ ϕ ϕ ϕ ϕ= − + + − = − = −  
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This allows to draw the following conclusion. Markov trajectories ( )X t  of 
system (21) with the probability tending to 1 for 0ε →  first leave critical 
region D near of point 0y D∈∂ , i.e. near of the extremal starting at this point: 
( ) ( ) 0ˆ expt At yϕ = − ⋅ . 

10. Conclusion 

The moment to sum up has come. The main and principal conclusion is 
contained in following: in this work, the inference of kinetic equations describing 
the reproduction process for charged particles and charged splinters inside of 
nuclear electromagnetic generator is conducted. Moreover, the description of 
solutions behaviour of charged equations in the form of ionite gas motion is 
realized. Exact analytical questions of the stable stochastic motion of ionite gas 
under the influence of small white noise on the charge kinetics equations are 
investigated in detail. We may be confirmed in intention that considered 
problems allow more effectively to solve the tasks for planning and making of 
realistic practicable nuclegens in the future. 
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