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Abstract

We model analytically a relativistic problem consisting of two quasi-particles
each with mass m in close orbit around a static Schwarzschild black hole with
mass M = 1 situated at the center of mass of the system. The angular momen-
tum /of the system is taken to be 2. We model the mass density of the orbiting
particles as a J-function and we assume that there are no deformations. To
model the system, we apply the second-order differential equation obtained
elsewhere for a dynamic thin matter shell on a Schwarzschild background. As
it is the case in this paper, the framework on which the equation was obtained
is Bodi-Sachs. The only change in the equation is that now the quasi-normal
mode parameter represents the particle’s orbital frequency from which we are
able to analytically compute the gravitational radiation emitted by the system
at null infinity. We note that in a real astrophysical scenario the dynamics of
the particles paths will be very dynamic and complicated and that the analyti-
cal methods used here will have to be developed further to accommodate that.
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1. Introduction

Until recently, all sorts of relativistic binary systems have been studied only
theoretically and on the 14 September 2015 a team of LIGO and Virgo

collaborators announced their first detection of a gravitational wave signal from

a binary black hole system of about 36 and 29 solar masses. This announcement

reaffirmed the predictions of the existance of gravitational waves as predicted by
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GR and most importantly the affirmation that indeed binary relativistic systems
do exist in nature. LIGO, Virgo and all other promising gravitational wave
detectors will thus provide with the means to be able to detect all kinds of
relativistic binary systems with all sorts of physical properties [1]-[23].

More so, the works in this direction have been in the realm of numerical
relativity with a special focus of relativistic two body problems ie Black
hole-black hole binary, black hole-neutron star binary, and neutron star-neutron
star binary. The case of a three-body problem as it is the case here has never
been studied before either numerically or analytically even though there is a
much compelling possibility that in very dense cluster of galaxies these kinds of
systems could in fact be found in the near future. As it was the case at the
beginning of the research work in relativistic binary systems in the past decades,
it is also very likely that there will be arising technical and computational issues
for the gravitating three body problem in full numerical relativity. The analytic
method used in this paper has been used by the author in [24] to validate other
analytical results obtained by [25] [26] for a binary system.

In the setting of this paper, we use the analytical results by Bishop [27] to
study analytically the relativistic triple system consisting of two point-particles in
quasi-orbit around a static Schwarzschild black hole. In practice the particles
could be either two black holes, two neutron stars or in another setting a
combination of both. Our objective thus is to determine the amount of the
emitted gravitational radiation by the system at Z* in Bondi-Sachs formalism.
This paper is structured as follows: Section 2 gives the background material.
Section 3 defines the physical problem to be studied. Section 4 calculates the
emitted gravitational radiation at 7~ .

2. Background

2.1. Formalism

The Bondi-Sachs formalism uses coordinates xiz(u,r,xA) based upon a
family of outgoing null hypersurfaces. We label these hypersurfaces by
u=const., null rays by x (A:2,3,x2 :9,x3 =¢) , and the surface area
coordinate by r. In this coordinates system the Bondi-Sachs metric [28] [29]
takes the form

ds” = {e“’ (1 +Kj - rQhABUAUB}du2 —2¢*dudr
r

(1)
=2r?h,U dudx” + 77 h ydx”dx®,

where 7*’hy. =05, and det(h,;)=det(q,;), with g,, being a unit sphere

metric, U is the spin-weighted field given by U =U"g,. For a Schwarzschild

space-time, W =-2M . We define the complex quantity /by

J=q"q"h,, /2. )

For the Schwarzschild space-time, we have /and U being zero and thus they

can be regarded as a measure of the deviation from spherical symmetry, and in
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addition, they contain all the dynamic content of the gravitational field in the
linearized regime [30]. Usually we can describe this space-time by =0 and
W =-2M ,orby f=p.(constant) and W = (ezﬁf —l)r —2M .

For spherical harmonics we use _Z, rather than ¥, as basis functions as
follows [27]

L :%[x o +(—1)m XYI—m:| for m>0
z, =ﬁ[(—1)m Y, - Y,m] for m >0 3)
sZio = Yoo

The s=0 will be omitted in the case s=0, ie Z, =,Z, . The Z,  are

m s~ im

orthonormal and real. We assume the following ansatz
J= Re(JO (r)e™ ) 0°z,, U= Re(U0 (r)e™ ) 9z,,,

(4)
B= Re(ﬁo (r)e™ )szs ®= Re(oo0 (r)e™ )Z,m,

where 7 is the position of the matter shell, and o the complex frequency mode
which is physical damped and which further means that Im(O')>0. In the
Bondi frame, the field equations splits into;

* the hypersurface equations and the evolution equations given by

R, 4 B, =8aT, (5)
r

q'R,,: (45ﬂ —-2rop, + rgJ,, + r3Uﬂ + 4r2U’r) =8nq"'T,, (6)

1
2r
_ 1,— _ 1 _ —
hABRAB:(4—258),B+E(62J+52J)+p(r4fw+r45U)J‘—2a),,4 -
= 8n(hABTAB —r2T)

q'9"R :—252,B+(r26U) -2(r-M)J, —(l—zﬂjer,rr +2r(rJ)
I 14

,ur (8)
=8nq"q"T ;.

* and the constraint equations for off the matter shell in the case of vacuum

given by

R, :L}(r(r—zM)a)r, +00 +2(r—2M )33 B - Mr(dU +3U )
2r ’ 9)
-P (00 +3U), +2r@,) =0,

WU

RW:Lz(zm,,+465ﬁ—(r26t7+r25U) ):o, (10)

4r ’ -

A 1 2 2

q4°R, :—|2r0w, =200 +2r" (r-2M)(4U, +rU ,, |+ 4r°U
i, 2002 (-, 000 iU

+77 (55U— 626)+2r25J’u -2r'u,, —4r25ﬂ,u)= 0,
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Ref. [27] got the following second order differential equation when solving the
above systems of ordinary differential equations for the Schwarzschild
background;

2
X (1 —2xM)d—J;+ 2%(2x2 +iox—Tx’M )
dx dx

(12)
=2(x(1+1-2)/2+8Mx’ +ic) J, =0

where J,(x)=d’J,,/dx* and x=1/r, xis the compactification factor in this
language. Bishop et al [31] solved Equation (12) numerically and obtained
interesting quasi-normal modes results of a Schwarzschild white hole. However
in this paper, we are going to solved it for a different problem since we can apply
the same physical settings in the Bondi-frame to model our problem with o

having a different physical meaning as we shall see later.

2.2. An analytic Algorithm for Calculating the Gravitational News

We shall use the following algorithm to calculate the gravitational radiation

from the system.

* First we use Equation (12) and the constraints Equations (9)-(11) to get the
junction conditions for the Bondi-Sachs matric variables U, w and J at the
boundary ie. shell,

e Second we test if J,J,r,U,U,, , and w are smooth across the boundary and if
this is true, we then

¢ Calculate the News function at Z*.

3. The Problem

We consider a system consisting of two point-particles with equal mass m in
quasi-orbit around a stationary Schwarzschild black hole with mass A situated
at the center of mass r of the particles when /is 2. We take the orbital radius to
be at r, which means that the distance between the particles is 27,. We take the
initial position of particle 1 to be at r; with @ and ¢ given by n/2 and vu
respectively, v is the orbital frequency and u the orbital period of the particles.
We also take the initial position of a particle 2 to be at r; with §and ¢ given by
n/2 and vu + m respectively. This imply that the rotation in the following figure
is in the yz plane. The initial positions of the objects on the figure should not be
confused with the actual initial positions just outline which in actual sense
should be along the y axis with the particle 1 on the right and the particle 2 on
the left.

The dynamics of this problem is governed by Equation (12) and for our
numerical calculation purposes we shall use its Ricatti form [31]

%=1+L)((x—v)(2+i—vj—x(7x+8v)] (13)

x(1-2x x

where vis the orbital period of the system.
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4. The Emitted Gravitational Radiation
4.1. The Linear Expansion of the Light Rays From the System to

I+
We model the problem as follows, we start by applying Equation (5) with T
given by
2M Y
r
where the matter density p in the background space-time is given by
Gl
, :F—Zé‘(r—ro)(@—gj[é‘@ﬁ—vu)+5(¢—vu ] as)
0

Inside the particles orbital radius r <7z, we set
B =0, (16)
and outside the particles orbital radius »>7, we set
B=2,,8mZ- (17)

Now integrating with respect to rwe get

Elmﬂlmzlm -

Zn( M
r

1——} 5(9—%)[5(¢—vu>+5(¢—vu—n)} (18)

0

By multiplying Equation (18) with Z, . we get

ZrnZinPnim = (1—2—Mj ( j[ S(p-vu)+Z,,6(p-vu—-m)] (19)

r

and integrating over the sphere it simplifies to

B = 2”(1_%] {z,m,(” j+z ( Vu+nﬂ (20)
A r 2 2

From Equation (20), for m'#0 we the gravitational radiation otherwise we
don’t, and that g, are generally non-zero for even / and m'. We now

consider the case ['=2 and we note that

B, =0, (21)

ﬁ2,71 =0, (22)
and that

By 0. (23)

We note that f,, mode does not vary in time and hence it does not contain
the emitted gravitational radiation. Thus we are only interested in f,, and

B,_, modes. We use the following normalized spherical harmonics

Y, :% /;—i sin” 9e*?, (24)
1 /1
Y, = " [2—5 sin’ @™, (25)
n
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and the fact that

1
Z,, = ﬁ( Y, +Y, ), (26)
i
Zz, 2 = ﬁ(yz,fz - Y22>, (27)
to get
Zy, = ﬁ = sin” @ cos 2¢ (28)
4 \2n
and

Z, , =£ ’1_5 sin” @sin 2¢. (29)
’ 4 \2n

Thus from Equation (20)

1-=—| —,|=cos(2vu)2

T 4 \2n

5 :2_71( ZMJZ 2 15

Ty

(30)

Jisx [l —%jz cos(2vu),

" T

and similarly

o o

By s :@(l—zﬂj sin(2vu) (31)

and then finally we write

P a0

o i

Now taking M =1, Equation (32) then becomes

B = Ji5n (1 _E\J (Re{ewu } Zy+ Re{_iezm } Ze ) (33)

o I

4.2. The Gravitational Radiation

We assume that the orbit is at the innermost stable circular orbit (ISCO), so that
r=7,=6. We then found the change in the Schwarzschild coordinate time 7
for one complete revolution of 92.3436 from which we found the orbital
frequency v of 0.0680.

To now find the numerical solutions to continue Equation (13) we make the
spatial coordinate transformation of x=1/r which then imply that the ISCO is
now at x, =1/6.The numerical computations are done in the domains

D, ={0<x<x,,} and D_={x,, <x<0.5}, (34)

with numerical solutions v, (x) and v_ (x) respectively. We start the

calculation with the transformed Equation (12) given by
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U(x)=2px —lx4 (1 —2xM)d—3J()c)—x3 (x -2x°M +iv)d—2J(x)

+x(2x+ 2x°M +iv)%J(x)—ivJ(x)

where U, (x) , U (x) are the Bondi metric functions, and g,,, [, are the
values of the expansion of the light rays f given by Equation (32) in the exterior
and interior domains respectively. Bishop [27] has indicated that the derivatives
of /should not be worked out numerically, but should be worked out analytically
intermsof J,, J, and vfrom Equation (13) with v =0.0680.

We define the general solutions for J,(x) at x,, outside and inside the

orbital radius respectively as
J, (x)=¢, +ex+c,Jy, (%), (36)
J_(x)=¢y+cex+c,J, (%), (37)

where ¢, ¢, 6, G, ¢ and ¢ are constants to be determined numerically. The
functions J,, (x) and J, (x) are analytic near x, and therefore can be

Taylor expand as

d -x,,) &
J, (x)=J,, (xmﬂ)+(x—xmn)ajo+ (x)"_%atlm (x) -
(x_xmn )n5 d_3
()
d (x—x,, )2 d2
J*(x):']Of(xmn)-'-(x_'xmn)a 0—(x)+TaJQ,(x) ( )
39
+ (x—xmn) d_JO, (x)’

6 dx

which then results in Equations (36) and (39) being analytic near x, . We used
Matlab ode45 solver to find numerical solutions of the above derivatives in
Equations (38) and (39). We used stringent numerical conditions to get the
results to about seven significant figures with RelTol of 107", AbsTol of 107,
and the MaxStep of 0.2x107° and the results we found to be

d

aJ0+ (x)=29144-2.280672x10°i, (40)
d2
<o (x)=2.865551x10° —1.52335130x1074, (41)
d3
EJ(” (x):4.8870><107 —1.8591431x10°1, (42)
and
d .
aJO_ (x):13.04337—1.315291, (43)
d2
EJO_ (x):1.54689><102—3.19980x101i, (44)
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3
d—JO_(x):—1.12428x103—1.25311x103i. (45)
dx

We have tested for the consistency of the above results by using other Matlab
solvers; ode23 and odel5s (which uses the Gears method ie backward
differentiation formulas) and also observed the accuracy of about 15 significant
figures. We went further with the test using ode23t which uses the trapezoidal
rule, ode23s which is a modified Rosenbrock formula of order 2, and ode23tb
which is an implicit Runge Kutta as opposed to ode45 and ode23 and found the
consistency of about 8 significant figures and as opposed to 15 significant figures
which is also accurate enough. This illustrate how accurate and valid the results
are. These results are very crucial in obtaining the emitted gravitational radiation
and hence determining the extent of their convergence is of most paramount
importance.

From the hypersurface equation Equation (7) rewritten as

“2x’w, =2(2-L,) B, + L, (L, +2)J —x* (x'L,U) (46)

SX

we are able to the Bondi metric function @, (r) and a)f(r). But to find the
solution the integration should be done analytically where possible. We only
need a solution which is valid in a neighborhood of x =x,. Henceforth, it is
convenient to make the coordinate transformation x — r=1/x. Equation (46)
can further be rewritten as

2(2—L2)ﬂ0+L2(L2+2)J+i2(r4L2U) =20, (47)

r - 4

where for /=2 we have L, =-6. The constraints equations Equations (9),
(10), and (11) now simplifies to
1,2
R, i —\|r —2Mr)w, —60—-12(r-2M) B, +12MrU
L {(r-200)o, ~s0-120-201)4 "
—4r(r=2M )ivB, +12r°U + 2rive) = 0,

q'R, :Lz(ra)r —w+4r°U, +r*'U, +2r°U -2Mr’U, —8Mr’U,
2re ’ ’ ’ T (49)

—riv —r'ivU, - 2r’ivf, ) = 0.

which we then apply in the domains D, and D_. Since these constraints are
not completely analytic, this means that we should only evaluate them at the
ISCO. We use them among others to eliminate the constants ¢, ¢, ¢, and ¢,. We

now assume that we end up with the solutions

[

+

(x)=cs+ @y, (x), o (x)=c+a, (x), with @y, (x,)=a,_(x,)=0. (50)

Thus, from the constraints R, (r,), R,.(n). R, (n), R,.(%).
q'R,(r)> q'R,.(r,), and the hypersurface Equation (47), we found the
metric variables U, (ro) , U (ro) , @, (ro) , and @_ (VO) . From which the
expressions of the constants ¢, ¢, ¢, and ¢, were found.

We now impose the Bondi gauge conditions:
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By, =0, ¢, =0, (51)
which means that for large r, B,, =0 at Z" imply that the coordinate time is
the same as proper time and that the regularity at Z= require ¢, =0. We also

impose the following junction conditions at 7;:

J, (ro)sz (ro), (52)

20, (1) =U_(n), (53)

By = —27[}”0,0(1 - 2&] (54)
To

o, (r)-o_(r,)=-4mp. (55)

From the junction conditions, we were able to find the exact numerical values
of the constants ¢, ¢, and ¢ at 7, =6. The exact numerical values of the
constants ¢, ¢, G, and ¢, were then found by substituting the values of ¢, o,
and ¢ back into their expressions. From here we were then able to plot the
graphs of the Bondi metric functions J_(r,), J,(r), U.(r), U,(r),
o8 (ro) ,and @, (ro) as observed in the following graphs.

Physically the metric functions / and U have the smooth asymptotic
expansion characteristic through out the entire computational domain and this
property is confirmed in Figure 1 and Figure 2. The metric function @ do not
have this physical property as can be confirmed in Figure 3 but this function is
crucial in the calculation procedure of the gravitation radiation in the entire
domain. Physically the function /in the only one that have the time derivative
and thus carries the gravitational radiation information to calculated at Z*
and that all the other Bondi metric functions are intergrated radially from I' to

T". The above results indicate that the junction conditions at 7 =6 where

0.7
0.6
0.5
0.4
03
0.2
0.1

4
o
3
<
A4
4 ¢
<
o
2
A4

0.0

T T T T 1

4 6 8 10 000000012

000909000090000000000

-0.1- o%%wooo°°°°°°°°
[——Im(2 (H(0) * Re(J2_(1)(10)]

Figure 1. The graph of Im(JZ+ (ro)) for Im(J) in the entire domain, and Re(J2,)
for Re(J) also in the entire for the Schwarzschild space-time. v=0.07 and ¢=2.
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600
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200

Wm 12 14 16 18 20
—— Im@U_(+)x0)) < Re(U_(-)x0))
— Re(U_(+)(r0)) * Im(U_(-)(r0))

Figure 2. The graph of Re(Uf (ro)) , Im (Uf (r )) and Re(U+ (r )) , Im (U+ (ro)) for
the Schwarzschild space-time. v=0.07 and ¢=2.
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Im(omega_(+)(r0)) Re(omega_(+)(r0))
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Figure 3. The graph of Re(w_(r,)), Im(w_(r,)) and Re(w,(r,)), Im(w,(r)) for
the Schwarzschild space-time. v=0.07 and ¢(=2.

implemented correctly and that our numerical methods and the analytical

algorithms we implemented to calculating the gravitational radiation worked
properly as intended.

Then finally, since we are in the Bondi gauge, we found the gravitational news
to be

1
N, = Re{civexp(ivu))({=(1-1) L, (1+2)) Z,. (56)
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which then further simplify to
N, =Re(-0.3778509291m —0.5950899448im), (57)

with the Bondi mass loss of 0.0114 m? The author in [24] has done a similar
work for a single point particle in close orbit around a Schwarzschild black hole
in the Bondi-frame and obtained the Bondi mass loss of 0.00089897 m’. He
succeeded in validating the results by comparing it with that of the 5.5 PN
formalism by Poisson [25] and Sasaki ef al [26] for the same problem. Thus the
methods used in this article open up the possibilities in numerical relativity to be
able to study analytically the gravitational radiation emitted by a systems
consisting of one black hole and two equal orbiting black holes/neutron stars.
With further improvement, the method can be develop to look at two unequal
orbiting black holes or neutron stars or a combination of both with efficiency

and accuracy as demonstrated in [24] for single orbiting black hole/neutron star.
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Appendix

1) The constraints computed at 7z,

R, (1,)=1.000000000x10"" (—200r0"c7 +6.005358575x10"ic,r;
+6.8000000x107ir; ¢,y +1.292409115x10'%i In (7, ) ;7
~3.000000000x 10 ¢, ¥ —6.692070654x10" c.7;
—1.440000000x 10" 7’ c, —1000ic. 7}

—1.224000000 % 10°ic,r; +2.72000000x 10 ir; c,,
+4.896000000 % 10%ir;'c, —3.227234492 x 10" ic, 1,
+2.084590843% 10" ¢, 1,/ —4.896000000 x 10° ic,
+7.215316909x 10" In (7, ) c,7; +1.044710385x 10" ir;'c,
~10007c, +1.884955592x10" 7 p
—3.600000000x10"7;c, +8.16000000 x 10%i7; c,
—3.418052808x10°ir, p— 6.836105613x10°ir, p
+4.488000000x 10”ir c, +3.015928948 x 10" 7} p
+7.179615196x10" ¢, 1 +1.098242223 %10 ¢, 7
+20000ir; ¢, +2.72000000 x 10*ir’c,,
+1.806026323x10" In (7, ) c,ry’ —2.163898247 x10"ic, 7}
+8.160000000 x 10°i7; ¢, +7.212387448 10" In (”o ) e
+8.346481884 %10 c,7’ —1.507964474x10" 1’ p
+2.111184000x10" ¢, —=1.200000000x 10" ¢, 75’
+1.382918067 x10"ic,7; —1.311705542%10"iry’ In(7, ) ¢,
—4.896000000x 10 ic,r; —4.087019553x10%ir) In(1, ) c,
+1.741939934x10" ¢, 1, +7.323651653x10" 1) In(7, ),
—6.491754249x10%ic,r, —1.440000000x 10" ¢,
—4.113828618x10"ic,r] —2.563539606x10°ir; p
+1.650271349x 10" ¢,77 —3.42398706 107 In(r, ) ¢,

~8.031498194x10™ic, ~1.200000000x 10", ;') / (r07 (r, + 2)2),

(58)

R, ()= 1/2((r02 —2r,)(-915.9586340i c, /7; +0.8160000000ic,

—0.6052309472¢, +6745.674492¢, /1]

+80948.09432¢, /1 +7518.667272ic, /1

+90224.00728ic, /1 +1.503112547ic, — 69.78185262ic, [}

—~2733.489212c, /1y +12¢,/r; +36.07819002¢, /7;' )

~7518.667272i ¢, [} —53.40273063ic,r,

+0.1360ir, (1253.111212ic, [r; —457.9793170ic, /1,

+7518.667272ic, [1; —0.3026154736¢,7;
+22.10459629¢, 1, +1124.279082¢, /1
+6745.674528¢, /ro3 +12r,c, +8.900455105ic, 1,
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+69.78185262iIn(r, ) c, +0.7515562734ic,r;
+0.4080000000i7; ¢, —1366.744606 ¢, /7,

+6¢,/1r, —36.078190021n (7, ) ¢, + c; ) +1.815692842¢, 7
—132.6275777c,r, —6745.674492 ¢, /ro2

—40474.04717 c, /ro3 —72ryc, +2747.875902i ¢, /1,

—451 12.003631'c2/r03 —418.6911157iIn(r, )c,
—4.509337640ic,7; +8200.467636¢, /[,

—36¢,/r, +216.46914011In(r, ) c, — 6¢;

+127, (0.5043591226 x107'¢, —2.568292000x107"" ¢, /7;

—9.800840000x 10" ¢, /r, —50.69289058 ¢, /
~0.680x107'ic, +201.0479721ic, /r}
—0.1252593789ic, — 6745.674528¢, [}
+228.5542745¢, /1) +1687.678839%ic, /1,
~38.40352765ic, [} —7518.667272ic, [
+26,/ry +2¢,[1; +2614.546974¢, [ )

+0.8160ir; (0.5043591226x10™' ¢, —2.568292000x 10" ¢, /1,

—9.800840000x10™"i ¢, /r, —50.69289058 ¢, /1
~0.680x10"ic, +201.0479721ic, /5 —0.125259378%ic,
—6745.674528 ¢, [} +228.5542745¢, [} +1687.678839ic, [}
~38.40352765i ¢, [} —7518.667272ic, [ +2¢, [}

+2¢,/r; +2614.546974c, /1;} —2.448000000i7; c, ) / e,

(59)

R, (r,)=1111111111x10" (—1.272774256x10'9ic7r02

+1.314989772x10”ic,r, —1.589998513x10"%ic,r;
+76icTry +3.011811822x10%ic,
+4.846534181x10" ic.r; +40952ir; c,
~7.916940003x 10" ¢, +2.280721975x 10" ¢, 1,
—3.616361705x10" ¢, 7, +8.260193057 x10" ¢, 7
—Z’>.02160><10507r05 —1.51080><10507r0(’
+3.392920066 x 10" 7’ p
+2.704645291x10 ;1) /(i (r, + 2)),

(60)

R,., (1) =1/2(r; (~915.9586340ic, /1; +0.8160000000ic,

—0.6052309472¢, +6745.674492¢, /1!
+80948.09432¢, /1’ +7518.667272ic, [}
+90224.00728i ¢, /1 +1.503112547ic,
~69.78185262ic, [} —2733.489212¢, [} +12¢,/7;
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q'R

U

+36.07819002¢, /r} ) +617 (2.568292000x 10" e, /5
+9.800840000x 10" ic, /r2 +101.3857812¢, /r}
~603.1439163ic, /r} +33728.37264¢, /1’
~685.6628235¢, [r; —6750.715356ic, [r;
+76.80705530i ¢, /1) +37593.33636ic, /1!
—4¢,/r; ~6c,/r, ~10458.18790c, /17 )
+12r, (0.5043591226x 107 ¢, —2.568292000x 107" ¢, /r;
~9.800840000x 10" ¢, /1, —50.69289058c, /12
~0.680x10"ic, +201.047972lic, [}
~0.1252593789ic, — 6745.674528 ¢, /1,
+228.5542745¢, /17 +1687.67883% ¢, [}
~38.40352765ic, [} —7518.667272ic, 1
+20 /1 420,/ +2614.546974c, /1)) /17

(61)

4 () =1.000000000x 107 (16000ic, 7 —1.000000x10° 7c;

+6.95123928x10" ¢, 7y’ +4.60818516x 10 ic, 7,
+6.811699261x10" ic,ry +1.202064574x10" In(r, ) ¢y’
+1.140199529x10" ic,r; —7.391764651x10ic,7;
~1.220608500x 10" ¢, 7, +4.461943440x10%'ic,
+3007, p +5.385037980x10"In (7, ) c,ry
—2.000000000%10" ¢,y +2.154015192%x10"i In (1, ) ¢ 77
—2.671516126x 10" ic,7; +2.040000000 x 10 ir;’c,
+3.005161436x10"" In (7, ) c,7;" +8.160000000x 10°ir;) c,
—2.000000000x 10" ¢,,7 —5.000000000 x 10 ¢, 7’
+1.202064574x10" In(r, ) ¢,ry —3.817318694x10" ¢,y
—6.543021412x10"ir’c, +8.809405089x 10" .’
+1.455381063x 10 ¢, 7y +2.154015192x10"In (7, ) ;1
—1.44797289x10" c.r, +8.160000000 x 10’ ir; c,
+4.272566009x10°ir; p —3.509551026 x 10" ¢, 7;f
+1.001418528 x10%ir;'c, —1.172880000x 10*c,
+8.545132018 109ir08p)/(r06 (+2)"),

(62)

"R,y (1) =1/2(-1253.111212ic, /1y —c; —1124.279082¢, [1;

+0.3026154736¢,7; —22.10459629c¢,1, —12r,c,
+36.078190021n (7, ) c, — 875 (2.568292000 x10™" ¢, /5

+9.800840000x 10 ¢, /! +101.3857812¢, /1;
~603.1439163ic, /1! +33728.37264¢, [1}
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~685.6628235¢, [r;} —6750.715356ic, [r}
+76.80705530ic, /1 +37593.33636ic, /1’

—4¢,/1; —6¢,[r, ~10458.18790c, /1; )
+1,(457.9793170ic, /1 +0.8160000000i7;c,
+8.900455105ic, —0.6052309472¢,7, +22.10459629¢,
—2248.558164¢, /1 —20237.02358¢, /1! +12¢,

—2506.222424ic, 1} —22556.00182ic, /r
+1.503112547ic,7, +69.78185262ic, [,

+1366.744606¢, /17 —6¢, /1 —36.07819002¢, /1, )
+47; (2.568292000x10™" ¢, /1y

+9.800840000x 107" i ¢, /r? +101.3857812¢, /1}
~603.1439163ic, /1) +33728.37264c¢, 1’
~685.6628235¢, /1t —6750.715356i ¢, [}
+76.80705530ic, /1 +37593.33636ic, [re
—4¢,/r) —6c,/r} —10458.18790c, /1y )
+7,(~5.136584000x 10" ¢, /1

~1.960168000x10 i c, /1 —304.1573436¢, /1!
+2412.575665ic, [r; —2.023702358x10° ¢, /1)
+2742.651294 ¢, /17 +33753.57678ic, /1’
~230.4211659ic, [} —2.255600182x10%ic, /1]

+12¢,/r) +24¢, [1; +52290.93950¢, /1, )
+277(0.5043591226x10™" ¢, —2.568292000x10™"" ¢, /r,
~9.800840000x10""i ¢, /r, —50.69289058 ¢, /12
—0.680x107"ic, +201.0479721ic, [r;

~0.1252593789ic, — 6745.674528 ¢, /r;
+228.5542745¢, /1 +1687.678839%ic, /1!

~38.40352765ic, [} —7518.667272ic, [}

+2¢, /1 +2¢,[1; +2614.546974c, /1)

~8.900455105ic, 7, —0.2720ir7 (¢, +¢, /1

+¢, (1+(13.04336905144130 —1.31528646137769:) (1/1, — 1/6)
+(77.34402850 —15.998998247 ) (1/r, ~1/6)’

+(~187.3798480 - 208.8518687:)(1/r, —1/6)’ ))

+457.9793170ic, [,
-0.680x10""ir,’ (2.568292000 x10" ¢, /52

+9.800840000x 10" ic, /2 +101.3857812¢, /1]
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~603.1439163ic, [} +33728.37264¢, /1
~685.6628235¢, /1! —6750.715356ic, [r}
+76.80705530ic, /1) +37593.33636ic, /e
~4¢,[1; —6¢, /1, ~10458.18790¢c, /1; )
~7518.667272ic,/r; —69.78185262iIn(r, ) c,
—0.7515562734ic,r; —2r; (—5. 13658400010 ¢, /1
~1.960168000x 10" i c, /r} —304.1573436¢, [r;}
+2412.575665ic, 17 —2.023702358x10° ¢, /1]
+2742.65129%¢, /1 +33753.57678ic, [
~230.4211659% ¢, /r;} —2.255600182x10°i ¢, /1]
+12¢,/1 +24¢,[1; +52290.93950c, /1 )
—0.4080000000ir;c, —6745.674528 ¢, /1.

+1366.744606¢, /1, —6¢, /T, )/roz ’
(63)

2) The Bondi metric variables computed at r,

U, (r,)=0.5043591226x10""c, —2.568292000x 10" ¢, /1,

~9.800840000x 10" ¢, /1, —50.69289058c, /1’
~0.680x10"ic, +201.0479721ic, [1;
~0.1252593789ic, — 6745.674528¢, /1
+228.5542745¢, /1) +1687.678839%ic, /1!
~38.40352765ic, [} —7518.667272ic, [}
+2¢, /12 +2¢, /1 +2614.546974¢, /1,
(64)

U_(r,)=(4.887000002x107 ~1.859143100x10%i ), /r;

+4c, (2.865551000x10° ~1.523351300x107i
+(4.887000002x 107 —1.859143100 x 1091')(1/r0 ~1/6)/r}
+(~2.443500001x 107 +9.295715500x10% ), /'

+( Co +¢; (29144 -2.280672000x 10’

+(2.865551000x10° ~1.523351300x 1077 ) (1/r, ~1/6)
+

2.443500001x107 -9.295715502x10% ) (1/1, —1/6)2))) /r;
—¢,(2.865551000x10° —1.523351300x 107
+(4.887000002x10" ~1.859143100x10° ) (1/7, ~1/6)) /1
~(0.680x10™7)c, (2.865551000x10° ~1.523351300x 107
+(4.887000002x107 ~1.859143100x10°1)(1/, =1/6)/r;

+( (e +¢; (29144-2.280672000x10%
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and

+(2.865551000x10° —1.523351300x107 ) 1/, -1/6)
+(2.443500001x10” =9.295715502x 10°7) (1/r, ~ 1/6)’ ))) / N
+(0.680x107'7)(c +¢, (29144 - 2.280672000x10°
+(2.865551000x10° ~1.523351300x 1077 ) (1/r, ~1/6)

+(2.443500001x107 —9.295715502x10% ) (1/7, —1/6)2))/r0

(
(
(
(
—(0.680x107)(cy +¢, /1y +¢; (-2518.141205 +699.71985i
+(29144 -2.280672000x10°1) (1/r, - 1/6)
+(1.432775500x10° - 7.616756500x 10°7) (1/r, =1/6)’
+(8.145000002x10° ~3.098571834x10% ) (1/7, —1/6)3)),

(65)

o, (r,)=(1253.111212i cz/r0 (457.9793170i)c, /r;

+(7518.667272i)c, /1y —0.3026154736¢,7;
+22.10459629¢, 1, +1124.279082¢, /1
+6745.674528 ¢, /13 +12r,¢, +(8.900455105i ) ¢,
+(69.78185262i))In(r, ) c, +(0.7515562734i) ¢,y
+(0.40800000007 ) 7;'c, —1366.744606 c, /1,

+6¢,/r,—36.07819002 ln(ro)c2 +cs,
(66)

o_(r,) =—(2156.071282i)c,r; —50.265482471; p/(1+2/r,)

+6¢, 1, —5.147566058x10° ¢, —63413.86124c, 7,
~2.932200001x10° ¢, /1; —4.886999995x 10" ¢, /17
—2.356233015x10% ¢, /r, —6.010322872x10” In(7, ) ¢,

+12n,¢, +(1.513990017x107i ) ¢,
—(1.031580813x10%i ), /r, +(1.859143099x10°i )¢, /1
+(1.115485860x10"i ) c, /r; +(0.4080000000:) 75 c,

~(1.077007596x10% ) In (1, ) ¢; + ¢,
(67)

The computed constants

¢y =—5.925925926x107" (2.257876807 x 107 ic,

+1.177568763x10%i1n(r, ) c,ry —2.537550206x10% ic,
-1.179321011x10%ic,7; —6.885000000x 10" ir;'c,
—2.276665152x10” ¢, —=1.379990759x 10 ic,r;
+8.836025110x10 ¢, 7y —6.088194566x 10 In (7, ) c,7;)
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~3.251077700x 107 ic,r; —6.873541974x 107 ic,r;
—2.669155863x10% ¢,y +8.950474631x10% ¢, 7
~4.171449115x10% ¢, 1y +3.018766507 x10%ic, 7
—2.509446061x10% ¢, 7, +2.174295963x10% ¢, 7, ) /r04 ,

(68)

¢, =(~1.683000000x 10" +1.416666667x 1077, /(3518394608 x10”

and

+9.145010221x10°'i —1.463828647 x107 In (7, ) (69)
+(2.060201741x1071)In (1))

¢y =—L111111111x10™" (1.157988867x10" 7',

-3.769911183x10" 7/ p+5.22000x10° 1y c,
—8.250022346 107 ¢, 7] +1.884955592x10" 7 p
—2.356194490x10" 7} p —5.423600000x 10" In (7, ) ;7
+9.635910263x10% ¢,y —1.737134306x10% ¢, 7’
+5.0000000x 10 iry In(r, )¢, +6.926736238x10*' ¢, r;)
—8.000000x10°i7, ¢, —3.240686912x10% ¢, 7,
—1.963050508 x10**ic,r; —2.726124482x10" ¢, 7,/
—2.500000x10° ) In(r, )¢, +1.159077064 x10* ic,
—1.143558000x10% ¢, +2.863090381x 10 ir,’c,
+2.075034463x10%ic7r; +1.452672443x10" ) p
+2.000000000x10°i In (7, ) c;ry —6.319234788x10% ic,r;
+1.495398102x10" ir} p +6.249786891x10"ic7r/
+4.350394854x10*ic, —5.000000000x 10" In (7, ) c; 7'
+4.321899263x10% ¢, 7, +6.408849014 x10"ir; p
—9.236000000x10' In (7 ) c,7y +6.704677816x 10" ic,r;
—4.080000000x 10" i ¢, —1.020000000 x 10" ir; c,
—4.080000000x 10" iry c, +6.054991092 x 10 i7;'c,
+1.387200000x 10" 7’ ¢, +3.468000000x10" 7/ c,
+7.000000000x10°7In (7, ) c;7; +1.387200000x10" 7 c;
+2.500000000x10°iIn (7, ) c,7' +4.272566010x 10" ir;] p
+7.263362215x10°1° p) / (177 + 50053 + 681,
+20007, +2000+68i)7; ),

(70)

¢ = 2.000000000x 107" (—3.509551026>< 107 ¢,r

+1.202064574x 10" In (7, ) ¢, 75 +8.809405089x10" ¢, 7y
—1.447972890x10" .7, —3.817318694x 10" .
+1.455381063x10% ¢, 1} —1.220608500x 10" ¢, 7/
+1.140199529x 10" ic,r; —1.172880000x 10,
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+2.040000000 x 10°irfc, +6.951239280x 10" ¢, 7,
+3.005161436x 10" In(7, ) ;7 +4.608185160x 10 ic, 7,
+4.461943440 %10 ic, +2.154015192x 10" In (7, ) ¢, 73
+8.545132018x10”ir p +1.202064574x10" In(r, ) ¢, 7y
+1.001418528 %1017, c, +16000ic,r;
+5.385037980x10"i1In(r, ) c,7;’ +8.160000000 x10%iry'c,
+6.811699261x10"ic,r] —7.391764651x10%ic,r;
—2.671516126x 10 ic,r; +2.154015192x 101 In (7, ) ¢,y
—1.000000x10°7c, +4.272566009 x 10’ ir; p
—6.543021412x10'%irc, +8.160000000 x 10’ ir; c,

+30017 p) /(r04 (4+45,+17)),

¢, =(~3.303262047 —3.089304784i) m,
¢, =(~393.9477195 - 46.65966681i) m,

Co = (—394.7245520 - 8.2958590501') m,

(71)
(72)
(73)

(74)
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