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Abstract 
Estimating the cycle time of each job over event streams in intelligent manu-
facturing is critical. These streams include many long-lasting events which 
have certain durations. The temporal relationships among those interval-based 
events are often complex. Meanwhile, network latencies and machine failures 
in intelligent manufacturing may cause events to be out-of-order. This topic 
has rarely been discussed because most existing methods do not consider both 
interval-based and out-of-order events. In this work, we analyze the prelimi-
naries of event temporal semantics. A tree-plan model of interval-based 
out-of-order events is proposed. A hybrid solution is correspondingly intro-
duced. Extensive experimental studies demonstrate the efficiency of our ap-
proach. 
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1. Introduction 

In recent years, estimating the cycle time of each job over event streams in intel-
ligent manufacturing applications has received a lot of attention from produc-
tion control, soft computing, and operations management researchers because of 
its critical role in the competitiveness of intelligent manufacturing [1]. These 
event streams are sequences of interval-based events that are temporally ordered 
or out-of-order. The temporal relationships among events are very important in 
identifying event patterns in intelligent manufacturing. However, existing lite-
ratures on time management of events in intelligent manufacturing focus on ei-
ther ordered interval-based events [2] [3] or out-of-order instant events [4] [5]. 
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It is very important to support interval-based out-of-order event pattern detec-
tion in intelligent manufacturing. To the best of our knowledge, no prior work 
on out-of-order events considers the time intervals of events in intelligent man-
ufacturing. For pattern queries of interval-based events, the state transition de-
pends on not only the type of events, but also the relationships and the predi-
cates among events. However, due to NFA (Non-deterministic Finite Automata) 
explicitly ordering state transitions, the prior NFA-based methods are not 
straightforward to efficiently model negation and parallel events, which are 
common in interval-based events. In this paper, we propose to combine tech-
niques on addressing the detection of interval-based events and out-of-order 
events. 

Existing research works [6] [7] [8] almost focus on instant events, i.e., events 
with no duration. However, purely sequential queries on instant events are not 
enough to express many event patterns in intelligent manufacturing. There is a 
need for an efficient algorithm that can solve durable events. Meanwhile, 
real-time processing of event streams generated from distributed devices is a 
primary challenge for intelligent manufacturing applications. Most systems [9], 
either event-based or stream-based, assume events satisfy totally ordered arriv-
als. However, in intelligent manufacturing environments, event streams might 
be out-of-order at the processing engine due to machine or network failures. It 
has been illustrated that the existing technologies are likely to fail in such cir-
cumstances because of false missing or false positive matches of event patterns. 
Obviously, it is imperative to deal with both in-order as well as out-of-order 
event arrivals efficiently and in real-time. 

In addition, most of the recently proposed event processing systems use NFA 
to detect event patterns [5]. However, the NFA-based approaches have three li-
mitations: 1) current NFA-based approaches impose a fixed evaluation order 
determined by their state transition diagram; 2) it is not straightforward to effi-
ciently model negation in an NFA; 3) it is hard to support parallel events because 
NFA’s explicitly order state transition. In this paper, we use tree-based query 
plans for both logical and physical representations of query patterns. 

The main contributions of this work include: 
1) We define the notations of temporal semantics. 
2) We propose a model of interval-based out-of-order events that includes the 

logical and physical expression of these events. 
3) We use a tree-based query plan structure for event processing that is ame-

nable to a variety of algebraic optimizations. 
4) We develop a hybrid solution to solve interval-based out-of-order event 

processing that can switch from one level of output accuracy to another in real 
time. 

The rest of this paper is organized as follows. Section 2 gives the related 
works. Section 3 provides some preliminaries. Section 4 introduces the model of 
interval-based out-of-order events. Section 5 describes a hybrid solution and the 
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optimization strategy. Section 6 gives the experiment results and we conclude in 
Section 7. 

2. Related Works 

There has been some work on investigating the problems of out-of-order events 
and interval-based events respectively. However, to the best of our knowledge, 
there is no work considering the two aspects together, which is important in in-
telligent manufacturing. 

Studies on the problem of out-of-order events can be divided into two catego-
ries: one focuses on real time, whose output is unordered; the other pays more 
attention to the accuracy, whose output is ordered. Because the input event 
stream to the query processing engine is unordered, it is reasonable to produce 
unordered output events. In [5], the authors permit outputting unordered se-
quences and propose an aggressive strategy. The aggressive strategy produces 
maximal output under the assumption that out-of-order events are rare. In con-
trast, to tackle the unexpected occurrence of an out-of-order event, appropriate 
error compensation methods are designed for the aggressive strategy. 

If ordered output is required, additional semantic information such as K-Slack 
factor [4] or punctuation [5] is required to “unblock” the on-hold candidate se-
quences from being output. The introduction of the two techniques is as follows. 
A naive approach [4] on handling out-of-order event streams is to use K-Slack as 
an a priori bound on the out-of-order input streams. It buffers incoming events 
in the input queue for K time units until the order can be guaranteed. The big-
gest drawback of K-Slack is the rigidity of K, which cannot adapt to the variance 
in the network latencies that exist in a heterogeneous RFID reader network. For 
example, one reasonable setting of K may be the maximum of the average laten-
cies in the network. However, as the average latency changes, K may become ei-
ther too large (thereby buffering unneeded data and introducing unnecessary 
inefficiencies and delays), or too small (thereby becoming inadequate for han-
dling the out-of-order arriving events and resulting in inaccurate results). It also 
requires additional space and introduces more latency before evaluating events. 

Another solution proposed to handle out-of-order data arrivals is to apply 
punctuations. This technique assumes assertions are inserted directly in the data 
stream in order to confirm that a certain value or time stamp will no longer ap-
pear in the future input streams [5] [7]. The authors in [5] use this technique 
and propose a solution called the conservative method. It works under the as-
sumption that out-of-order data may be common, and thus produces output 
only when the correctness can be guaranteed. A partial order guarantee (POG) 
model is proposed under which such correctness can be guaranteed. Such tech-
niques are interesting, but they require some services first to be created, appro-
priately inserting such assertions. 

On durable events, there have been a stream of research works [2] [3] [9] [10]. 
Kam and Fu [10] designed an algorithm that uses the hierarchical representation 
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to discover frequent temporal patterns. However, the hierarchical representation 
is ambiguous and many spurious patterns are found. Papapetrou et al. [9] pro-
posed the H-DFS algorithm to mine frequent arrangements of temporal inter-
vals. Both these works transform an event sequence into a vertical representation 
using IDLists. The id-list of one event is merged with the id-list of other events 
to generate temporal patterns. This strategy does not scale well when the length 
of temporal patterns increases. Wu and Chen [2] devised an algorithm called 
TPrefix for mining on-ambiguous temporal patterns from durable events. TPre-
fix first discovers single frequent events from the projected database. Next, it 
generates all the possible candidates between the temporal prefix and discovered 
frequent events, and scans the projected database again for support counting. 
TPrefix Span has several inherent limitations: multiple scans of the database are 
required and the algorithm does not employ any pruning strategy to reduce the 
search space. In order to overcome the above drawbacks, the authors of [3] give 
a lossless representation to preserve the underlying temporal structure of the 
events, and propose an IEMiner algorithm to discover frequent temporal pat-
terns from durable events. However, they only use this representation for classi-
fication. The problem of out-of-order events is not considered. 

3. Preliminaries 

Each event has an ID and two timestamps. The application timestamp records 
the time that the event providers generate the events; the arrival timestamp is the 
time that events arrive at the consumer (responsible for processing the event). 
The application time can be further refined as a valid time and an occurrence 
time [3] [11]. In the following we will introduce some special attributes of event 
timestamps in intelligent manufacturing. 

Definition 1 (Time Interval). Suppose H = {T1, ···, Tn} is a linear hierarchy of 
time units. In it, for all 1 ≤ i < n, Ti ⊆  Ti+1. For instance, H = {minute, hour, 
day, month, year} and minute ⊆  hour. A time interval in H is an n-tuple (t1, ···, 
tn) such that for all 1 ≤ i ≤ n, ti is a time-interval in the time unit of Ti. 

Time intervals are ordered according to the lexicographic ordering < H. Thus, 
time interval T = (t1, ···, tn) < HT' = ( 1t′  ···, nt′ ) iff there exists an i (1 ≤ i ≤ n) 
such that i i it T t′<  and i nt t′=  for all j = i + 1, ···, n. Note that if i = n, then 

i nt t′= . When T < HT', we say that T occurs before T'. If T = T', we say that T 
occurs simultaneously with T'. 

Definition 2 (Out-of-Order Event). Let e.ats and e.ts be the arrival time-
stamp and the occurrence timestamp of an event e.Consider an event stream S: 
e1, e2, ···, en, where e1.ats < e2.ats < ··· < en.ats. For any two events ei and ej (1 ≤ 
i, j ≤ n) from S, if ei.ts < ej.ts and ei.ats < ej.ats, we say the stream is an ordered 
event stream. If however ej.ts < ei.ts and ej.ats > ei.ats, then ej is an out-of-order 
event. 

In the example of Figure 1, the timestamps of events e1 - e4 are listed in or-
der. But we can see that event e2 arrives later than event e3, which is called  
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Figure 1. Out-of-order event. 

 
out-of-order. 

Different from point-based queries, the expression of interval-based event 
queries may be ambiguous. Multiple interpretations may result in an incorrect 
inference of the exact relationship among events. For example, the same expres-
sion query (A (overlap) B (overlap) C) may have different meanings, as shown in 
Figure 2. In order to overcome this and distinguish the different interpretations 
of temporal patterns, the hierarchical representation with additional information 
is required [3]. Therefore, 5 variables are proposed, namely, contain count c, 
finish by count f, meet count m, overlap count o, and start count s to differen-
tiate all the possible cases. The representation for a complex event E to include 
the count variable is shown as follows. 

Thus, the temporal patterns in Figure 2 are represented as: 
(A Overlap [0,0,0,1,0] B) Overlap [0,0,0,1,0] C; 
(A Overlap [0,0,0,1,0] B) Overlap [0,0,0,2,0] C; 
(A Overlap [0,0,0,1,0] B) Overlap [0,0,1,1,0] C. 

4. The Model of Interval-Based Out-of-Order Events 

As shown in Section 3, each event is denoted as (ID, Vs, Ve, Os, Oe, Ss, Se, K). 
Here Vs and Ve denote the valid start and end time respectively; Os and Oe de-
note the occurrence start and end time respectively; Ss corresponds to the system 
clock time upon event arrival; Se means the system clock time when an event 
ends; K corresponds to an initial insert and all associated retractions, each of 
which reduces the Se compared to the previous matching entry.  

In the following query format, Event Pattern connects events together via dif-
ferent event operators; the WHERE clause defines the context for event pattern 
by imposing predicates on events; the WITHIN clause describes the time range 
during which a matching event pattern must occur. Real-time Factor specifies 
the real-time requirement of different users. 

<Query>:: = EVENT <event pattern> 
[WHERE <value constraints>] 
[WITHIN <time constraints>] 
[Real-time Factor {0,1}] 
<event pattern>:: = SEQ/PAL((Ei(relationship)Ej) 
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Figure 2. Interpretation of pattern (A (Overlap) B) (Overlap) C. 
 

(!Ek)(relationship)El))(1 ≤ i, j, k, l ≤ n) 
relationship:: = {contain, overlap, before, after, meet} 
<time constraints>:: = Time Window length W 
A query expressed by the above language is translated into a query plan com-

posed of the following operators: Sequential/Parallel Pattern (Seq/Pal), Negation 
Pattern (Neg), and Constraints (Cons) [3]. An event ei is a positive 
(resp.negative) event if there is no “!” (resp. with “!”) symbol used. The Seq/Pal 
operator denoted Seq/Pal (E1, E2, ···, En, window) extracts all events matching to 
the positive event pattern specified in the query and constructs positive sequen-
tial/parallel events. Seq/Pal also checks whether all matched event sequences oc-
cur within the specified sliding window. The Neg operator specified by Neg (!E1, 
(time constraint); ···; !Em, (time constraint)) checks whether there exist negative 
events within the indicated time constraint in a matched positive event pattern. 
The Cons operator expressed as Cons(P), where P denotes a set of constraints on 
event attributes, further filters event patterns by applying the relationship speci-
fied in the query. Figure 3 shows the logical expression of a pattern query Q. 

5. Solution Methods 

In the real world, different applications have different requirements for consis-
tency. Some applications require a strict notion of correctness, while others are 
more concerned with real-time output. So we add an additional attribute 
(“Real-time Factor”) to every query. If the users focus on real-time output, the 
“Real-time Factor” is set to “1”; otherwise, it is set to “0”. Due to users’ different 
requirements of consistency, there are two different methods, which are intro-
duced as follows. 

5.1. Real-Time Based Method 

If the “Real-time Factor” of a query is set to “1”, the goal is to send out results 
with as small latency as possible based on the assumption that most data arrives  
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Figure 3. Logical expression of query Q. 
 

in time and in order. Once out-of-order data arrival occurs, we provide a me-
chanism to correct the results that have already been erroneously output. This 
method guarantees the real-time requirements and takes some urgent actions 
timely. However, in the case of out-of-order events, the output results may be 
wrong or the correct results may be lost. In order to compensate for this, two 
kinds of stream messages are used. Insertion <+, E> is induced by an 
out-of-order positive event [5], where “E” is a new event result. Deletion <−, E> 
is induced by an out-of-order negative event, such that “E” consists of the pre-
viously processed event. Deletion tuples cancel event results produced before 
which are invalidated by the appearance of an out-of-order negative event. 

For example, the query is (A(overlap)B(!D)(before)C) within 10 min. A 
unique time series expression of this query {OSa, OSb, OEa, OEb, OSc, OEc} can 
be obtained based on the above interval expression method. For the event stream 
in Figure 4, when an out-of-order seq/pal event OSb(6) is received, a new cor-
rect result {OSa(3), OSb(6), OEa(7), OEb(9), OSc(11), OEc(12)} is output as <+, 
{OSa(3), OSb(6), OEa(7), OEb(9), OSc(11), OEc(12)}>. When an out-of-order 
negative event OSd(15) is received, a wrong output result {OSa(13), OSb(16), 
OEa(17), OEb(20), OSc(22)} is found. So we send out a compensation <−, 
{OSa(13), OSb(16), OEa(17), OEb(20), OSc(22)}>. 

5.2. Correct Based Method 

If the “Real-time Factor” of a query is set to “0”, the goal is to send out every 
correct result with less concern about the latency. Considering the time intervals, 
the methods can be improved as follows. 

Based on the event model introduced in Section 4, we can get the event se-
quence by a backward and forward depth first search in the DAG. The forward 
search is rooted at the start time of this instance ei and contains all the virtual 
edges reachable from ei. The backward search is rooted at the end time of event 
instances of the accepting state. It contains paths leading to and thus containing 
the event ei. One final root-to-leaf path containing the new event ei corresponds 
to one matched event sequence. If ei.end time (resp. ei.starttime) belongs to the 
accepting (resp. starting) state, the computation is done by a backward (resp. 
forward) search only. 

Meanwhile, we can transform the query into a certain time series based on the 
above 5 variables, which make there presentation of relationships among events 
unique. Compared with the time series of the query, the set of event sequences  

https://doi.org/10.4236/jilsa.2018.102002


C. J. Zhou et al. 
 

 

DOI: 10.4236/jilsa.2018.102002 28 Journal of Intelligent Learning Systems and Applications 
 

108 Receiving order 

OSa OEa OEb OSc OSa OEaOSb OSc

3 7 9 11 12 13 16 22

OEc

17

OEb

20

OSb

6

OSb OEb

 
Figure 4. Input events. 

 
can be further filtered. For example, the precedence relationship among start 
time and end time of different events, the time window constraints, as well as 
negative events among the event sequence. After all these steps, the remaining 
event results are transmitted into a buffer. 

The buffer is proposed for event buffer and purging using the K-ISlack se-
mantics. Different from the previous K-Slack method, we consider the time in-
terval in this paper. It means that both the start time and the end time of the 
out-of-order event arrivals are within a range of K time units. That is, an event 
can be delayed for at most K time units. The buffer compares the distance be-
tween the checked event and the latest event received by the system. A CLOCK 
variable equal to the largest end time seen so far for the received events is main-
tained. The CLOCK is updated constantly. According to the sliding window of 
semantics, for any event instance ei kept in the buffer, it can be purged from the 
stack if (ei.starttime + W) < CLOCK. Thus, under the out-of-order assumption, 
the above condition will be (ei.starttime + W + K) < CLOCK. This is because af-
ter waiting for K time units, no out-of-order events with start timeless than 
(ei.starttime + W) can arrive. Thus ei can no longer contribute to forming a new 
candidate sequence. 

In order to make some optimization, we divide the buffer into two parts: out-
dated event instances and up-to-date event instances, based on window con-
straints. A divider is set for the buffer: instances on or above it are outdated in-
stances and instances below it are up-to-date ones. The part of outdated event 
instances stores the event sequence which falls out of the time window; while the 
up-to-date event instances keep the event sequence which is less than the al-
lowed window range. For a stack without outdated events, the divider is set to 
NULL, while an in-order event triggers sequence construction. Only the events 
under the divider in each stack will be considered. 

6. Experiments 

In order to test and verify the above two algorithms, we designed an experimen-
tal environment to simulate the events generation and queries. A prototype us-
ing the C# language has been implemented. 

6.1. Experimental Environments 

Our experiments involve two parts: one is the event generator; another is the 
event processing engine. The event generator is used for generating different 
types of events continuously. We adopt multi-thread to model different sensors 
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to produce different events randomly. Then the generated events are sent to the 
event receiver, which is a part of event processing engine. The event processing 
engine includes two units: the receiver unit and the query unit. The former is 
just responsible for receiving the events from “sensors”; the latter takes charge of 
queries, and outputs the correct results. Meanwhile, it records the performance 
information which is shown in Table 1. 

Our experiments run on two machines, with Intel Dual-Core 2.0 GHz and 2.5 
GHz CPU, 2.0 G and 3.0 G RAM respectively. PC1 is used for running the Event 
Generator programs and PC2 for the Event Processing Engine. In PC1, we 
created about1000 generators, each of which can produce more than 1000 dif-
ferent-type (A, B, C or D) events randomly. Soat least 1,000,000 events will reach 
the receiver hosted in PC2 and wait to be queried. Based on such a large scale of 
event data, our experiments can test and verify the performance of the algo-
rithms much better. Additionally, in order to make the experimental results 
more convincing, we run the program for 300 times, and take the average value 
of all results. In the following, we will focus on the key performance metrics 
shown in Table 1. 

6.2. Experimental Results 

Figures 5-9 mainly examine the impact of out-of-order percentage Pio3 on the 
performance metrics. Pio3 is varied from 0% to 45%. Figure 5 shows the case 
when there no durable events arrive. From the figure, the average latency of 
three methods (Realtime Based Method, Correct Based Method and K-Slack 
Method) increases with the enlargement of out-of-order percentage, and Real-
time Based Method increases faster than the other two methods, because we add 
the cost of compensation operations into the definition of average latency. 
However, if there are durable events, the naive K-Slack method will not work, 
while the trend of Realtime Based Method and Correct Based Method are almost 
the same, as shown in Figure 5. 
 
Table 1. Parameters and performance metrics. 

Terminology Meaning 

3io
P  Out-of-order event percentage 

Buf  Buffer size of tree pattern 

QL  Event’s query length 

NoR  Number of results 

NoC  Number of compensation results 

NoCR  Number of correct results 

K  Maximum delay of out-of-order events 

AET  Average execution time 

AL  Average latency 

RoC  Rate of compensation, NoC/NoR 

ACC  Accuracy of results, NoCR/NoR 
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Figure 5. Trend of average latency. 

 

 
Figure 6. Trend of rate-of-compensation. 

 

 
Figure 7. Accuracy without interval-based events. 

 
Figure 6 just concerns Realtime Based Method, which has compensation op-

erations. The rate of compensation is determined by (NoC/NoR). From the fig-
ure, we can see that with an increase of out-of-order percentage, more compen-
sation operations are generated, and the speed of compensation rate is faster and  
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Figure 8. Accuracy with interval-based events. 

 

 
Figure 9. Trend of average execution time. 

 
faster. 

The accuracy of results is also examined, defined as (NoCR/NoR). Figure 7 
shows the accuracy of three methods when there are no durable events. In this 
case, the accuracy of Correct Based Method and K-Slack Method are both inde-
pendent of out-of-order percentage, while Realtime Based Method drops with 
the enlargement of out-of-order percentage. This is because with larger 
out-of-order percentage, more output results should be compensated. 

Figure 8 shows the accuracy of four methods (Realtime Based Method, Cor-
rect Based Method, K-Slack Method and IEMiner Method) when there are dura-
ble events. In this case, the accuracy of K-Slack Method is almost zero, because it 
cannot deal with out-of-order durable events. With the enlargement of 
out-of-order percentage, the accuracy of IEMiner Method drops fast, because it 
can only deal with durable events, but not out-of-order events. The accuracy of 
Realtime Based Method and Correct Based Method are similar to the case in 
Figure 7. 

We examine the average execution time in Figure 9, which denotes the sum-
mation of operator execution times. When there are no durable events, two ob-
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servations can be found: 1) the average execution time increases as the percen-
tage of out-of-order events increases because more recomputing operations are 
needed; 2) the average execution time of Correct Based Method is larger than 
Realtime Based Method at beginning, while with the enlargement of 
out-of-order percentage, they will tend to the same. But the execution time of 
K-Slack Method is always larger than the other two methods. If there are durable 
events, the execution time of K-Slack Method tends to be infinity, while the 
trend of Realtime Based Method and Correct Based Method are almost un-
changed. 

Figures 10-12 show the impact of buffer size on performance metrics. Figure 
10 shows that the average latency of both methods decreases with the enlarge-
ment of buffer size. When the buffer size in tree-pattern is less than 500 event 
number, the average latency of Correct Based Method is less than Realtime Based 
Method; while the opposite situation happens when the buffer size is larger than 
500 event number. i.e., the dropping ratio of Realtime Based Method is faster 
than Correct Based Method, or the buffer size has much more impact on Real-
time Based Method. That is because when the buffer is too small, there must be a  
 

 
Figure 10. Trend of average latency. 

 

 
Figure 11. Accuracy of methods. 
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Figure 12. Execution time on buffer size. 

 
lot of incorrect results output, which cause too many compensation operations 
and extend the latency. While when the buffer size is large enough, the compen-
sation results decrease quickly, so the average latency of Correct Based Method 
is larger than Realtime Based Method again. 

Figure 11 shows the accuracy trends of both methods with different buffer 
size. When the buffer size is near to zero, the accuracy of both methods is also 
about 0%, because there are almost no results generated now. However, when 
the buffer size is a little larger, the accuracy of both methods increases imme-
diately. That is to say, the parameter of buffer size has little effect on accuracy. 

The trend of average execution time is shown in Figure 12, which is similar to 
the trend of average latency. There is only a constant difference between them, 
from the first event’s arrival time to the corresponding last event’s. 

Figure 13 shows the impact of event query length on average execution time 
when there are no durable events. From the figure, we can see the trend can be 
divided into two parts. When the event query length is shorter, the average ex-
ecution time of Correct Based Method and K-Slack Method is larger than Real-
time Based Method. With the enlargement of event query length, they tend 
gradually to the same, and then Realtime Based Method becomes the largest. 
That is because when the event query length is too long, there must be many 
compensation operations of Realtime Based Method. The average execution 
time of K-Slack Method is always larger than Correct Based Method. Compared 
with Realtime Based Method, event query length has less impact on Correct 
Based Method and K-Slack Method. If there are durable events, the execution 
time of K-Slack Method tends to be infinite. 

Figure 14 shows the latency of the three methods increases with the increase 
of event query length when there are no durable events. From the figure, we can 
see that Realtime Based Method increases faster than the other two methods. 
The latency of K-Slack Method is always larger than Correct Based Method. If 
there are durable events, the latency of K-Slack Method tends to be infinite, be-
cause it cannot deal with durable events. 
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Figure 13. Execution time on event length. 

 

 
Figure 14. Latency on event length. 

7. Conclusion 

The goal of this work is to solve query processing of interval-based out-of-order 
events in intelligent manufacturing. We proposed a tree-plan model of inter-
val-based out-of-order events, which can give the logical and physical expres-
sions. A hybrid solution to solve out-of-order events is studied, which can switch 
from one level of output accuracy to another in real time. The experimental 
study compares with the method with K-Slack and IEMiner methods, and de-
monstrates the effectiveness of our proposed approach. 
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