
Journal of Applied Mathematics and Physics, 2018, 6, 932-947 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2018.64080  Apr. 30, 2018 932 Journal of Applied Mathematics and Physics 
 

 
 
 

On Maxwell Equations for Gravitational Field 

Gustavo V. López 

Departamento de Física, Universidad de Guadalajara, Blvd. Marcelino García Barragan y Calzada Olímpica, Guadalajara, Jalisco, 
Mexico 

 
 
 

Abstract 
For explicitly time depending mass density which satisfies a continuity equa-
tion, it is shown that Maxwell-like equations for gravitational field follow na-
turally without any need of General Relativity Theory approximation or re-
lated assumptions. As a consequence, it is shown that several features already 
known in Electrodynamics (Poynting vector, density of energy, tensor stress, 
and radiation) are totally reproduced for gravitational field. 
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1. Introduction 

Gravitational field is one of the most important fields created by Nature which 
has (so far) pure attractive effect among anything with mass or energy [1] [2], 
and its associated force is radial and inverse proportional to the square of the 
separation of the objects. For an arbitrary mass density distribution which is not 
depending explicitly on time, it is known that the gravitational field in the space 
can be found by solving Poisson equation with proper boundary conditions [3]. 
However, Einstein [4] saw that gravity can be seen as the component of a 
pseudo-metric defined in a space-time manifold, where the shape of this 
manifold is due to the mass and energy contained in it [5]. This was called the 
General Relativity Theory and had enormous success explaining and predicting 
many gravitational phenomena in Nature [6] [7] [8]. However, this classical 
theory has had serious difficulties to construct a more fundamental theory (as 
many thinks) which is related with the quantization of gravity (the union of 
General Relativity with Quantum Mechanics [9]), where a graviton appears as a 
quantum particle associated to the interaction with gravity which has spun two 
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[10] [11]. This direction of research has its own value, and there are many 
scientists working on this topic.  

In addition, a big effort has been made to unify gravity with electrodynamics 
[12]-[17], but still a consistent mathematical and geometrical theory is missing, 
alternatively, using perturbation theory on GR [18] [19], or the decomposition 
of the Weyl and Maxwell tensors in electric and magnetic parts [20]-[26]. The so 
called Gravito-Electromagnetism (GEM) emerges as a result of these approaches, 
which is the expression of the equations to describe the gravitational field as a 
Maxwell-like type of equations. The similarity of gravity and electrodynamics 
equations appeared long time ago when people realized that, in the static case, 
both fields satisfy Poisson’s equations. In fact, Heaviside [27] [28] was one of the 
first persons who saw the similarities between Electromagnetism and Gravity 
through Poisson’s equation, and in addition [29], for a current of mass motion 
as continuous fluid ( ρ=J v ), he postulated a gravity field h having a curl analog 
to magnetic field in Maxwell’s equations for Electrodynamics, in order to get a 
Maxwell-like equations for gravity, which, of course lead us to gravitational 
waves. Since his approach lacks of mathematical justification, it cannot be 
considered as a deduction, and it is done for a very particular case (fluid), the 
idea settled there was that Maxwell-like equations for gravity could be arisen 
without GR theory. In a similar axiomatic form, Yaroslav [30] has recently show 
the deduction of Maxwell-like equations for gravity without GR, where perihelion 
of Mercury and bending of light by massive object are presented. It also worths 
to mention works based on Hodge theory and differential forms [31], where a 
similarity with the electromagnetic permittivity and permeability was found. The 
idea of having a magnetic-like gravitational field in GR was reinforced due to 
Lense-Thirring effect [32] [33], where the angular momentum of a rotating body 
can be interpreted as a gravitational magnetic field, at large distances. Then, one 
could have the conclusion that GR is needed in order to see a gravitational field 
like GEM.  

On this paper, one will be focused on other classical aspects of the 
gravitational field, to show that a full Maxwell-like equations for gravitational 
field arises as a consequence of the continuity equation for the mass density and 
the usual Gauss’ theorem.   

2. Maxwell-Like Equation for Gravity 

For a time explicitly depending density of mass, ( ), tρ x , where the following 
continuity equation is satisfied  

0,
t
ρ∂
+∇ ⋅ =

∂
J                          (1) 

with J being the mass current density, which for a fluid-like system is given by 
ρ=J v , being v the fluid velocity. This continuity equation brings about the 

total mass conservation of the system, ( )3
3, dM tρ

ℜ
= ∫ x x . Now, it is well 

known [2] that if the law of forces between to mass elements is of the form 
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( ) 3
2 1 2 1~ − −F x x x x , where 1x  and 2x  are the vector position of the two 

elements, and 2 1−x x  is their distance separation, then it follows that the 

Gauss’ law for the gravitational field R in a compact region of the space 3Ω∈ℜ  
is  

( )4π , if
0 if

G tρ ρ
ρ
∈Ω

∇ ⋅ = 
∈Ω/

x
R                   (2) 

where G is the constant of gravitation ( 11 3 26.674 10 m kg sG = × ⋅ ). Differentiating 
this expression with respect the time, and using (1) in the region Ω, one has  

4π 4π ,G G
t t

ρ∂ ∂
∇ ⋅ = = − ∇ ⋅

∂ ∂
R J  

or 

4π 0.G
t

∂ ∇ ⋅ + = ∂ 

R J                       (3) 

This equation implies that there must exist a vector field W such that  

4π .R GJ
t

∂
+ = ∇×

∂
W                       (4) 

Of course, there is a well known indetermination of this expression that can 
be absorbed in the definition of R or W. It is necessary to mention that up to 
know non experiment has been made to try to find the W gravitational field 
(something similar when one has a current in a wire and see what happen to the 
motion of a charge nearby), and this is the gravitational field so called h by 
Heaviside [21], defined on purpose to obtain Maxwell-like equations within his 
approach. So far, one knows ∇ ⋅R  and ∇×W  of the vector fields R and W. 
To know ∇× R  and ∇ ⋅W , let us take the curl of (4) and use the known 
expression ( ) ( ) 2∇× ∇× = ∇ ∇ ⋅ −∇a a a  for any vector field a,  

( ) ( )2 4π .G
t
∂

∇ ∇ ⋅ −∇ = ∇× + ∇×
∂

W W J R             (5) 

To decouple equations for R and W, one can choose the following relations   

( )constantα∇ ⋅ =W                       (6a) 

and  

~ .
t

∂
∇×

∂
WR                          (6b) 

Denoting the constant of proportionality of (6a) as 21 λ , one has for (5) the 
following expression  

2
2

2 2

1 4π .G
tλ

∂
∇ − = − ∇×

∂
WW J                   (7) 

Now, taking the curl of (6b), it follows that  

( ) 2

1
tλ

∂∇×
∇× ∇× = −

∂
WR  

or  
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( ) 2
2

1 4π ,G
t tλ
∂ ∂ ∇ ∇ ⋅ −∇ = − + ∂ ∂ 

RR R J                 (8) 

which can be written as  
2

2
2 2 2

1 4π 4π .G G
tt

ρ
λ λ

∂ ∂
∇ − = + ∇

∂∂
R JR                   (9) 

Equations (27) and (28) represent non homogeneous wave equations with 
known sources. The wave propagates with speed “λ”, and by selecting 0α =  on 
(6a), the equations which determine the gravitational fields R and W have a 
Maxwell-like form  

( )4π ,G tρ∇ ⋅ =R x                         (10) 

2

1
tλ

∂
∇× = −

∂
WR                          (11) 

0∇ ⋅ =W                             (12) 

( )4π ,G t
t

∂
∇× = +

∂
RW J x                      (13) 

Thus, one may say in summary that if the Gauss’ theorem is valid for the 
gravitational field R, and the continuity equation is satisfied for ρ and J, then, 
there must exist a gravitational vector field W such that W and R satisfy 
inhomogeneous wave equations which propagate with an unknown speed “λ”. 
One must mention that there has not been a direct measurement of the speed of 
gravitational waves, but it is assume that gravity also travel to the speed of light 
[6]. In addition, none experiment has been so far trying to find the gravitational 
field W, and general controversy about Maxwell equations for gravitational field 
can be found in reference [34].  

Now, in terms of the vector and scalar potentials, WA  and WΦ , which is well 
known where they come from, the gravity fields can be written as   

2

1 W
W tλ

∂
= −∇Φ −

∂
AR                       (14a) 

and  

.W= ∇×W A                          (14b) 

Of course, and identical relation with the electrodynamics Maxwell’s equation 
can be gotten by choosing (11) and (13) as  

4π 1G
tλ λ

∂
∇× = +

∂
RW J                      (15a) 

and  

1 .
tλ

∂
∇× = −

∂
WR                        (15b) 

If one applies the same initial hypothesis to the electric field in the case of 
electrodynamics, one see that existence of the magnetic field and the displacement 
current must appear as a direct consequence of the continuity equation for the 
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density of charge and current. The decouple of the resulting equations would 
bring about the usual Maxwell’s equations and the non homogeneous wave 
equations for the electric and magnetic fields, with the waves traveling at the 
speed of light.  

3. Lorentz-Like Force 

Firstly, one needs to say that in the MKS system of units, one has the following 
units of our quantities and vectors  

[ ] [ ] [ ] [ ] [ ]3 2 2 2 3kg m , kg m s, m s , m s , m s .ρ λ= = ⋅ = = =J R W (16) 

Now, given the gravitational field ( ), tR x  defined in the space-time, the 
force felt by and object of mass M located at the point x at the time “t” due to the 
field R is given by  

( ), ,R M t=F R x                           (17) 

which is well known. However, given the field ( ), tW x  in the space-time, the 
only experimental evidence that this field could be associated to a magnet-like 
force is the Lense-Thirring effect [18]. In this way, the force associated to the 
gravitational field W would be  

( )2 , .W
M t
λ

= ×F v W x                        (18) 

If one considers that these are true, one gets a Lorentz-like force expression 
for an object of mass M under the gravitational interaction with the fields R and 
W,  

( ) ( )2, , ,MM t t
λ

= + ×F R x v W x                  (19) 

where v is the velocity of the object.  

4. Energy Density, Poynting Vector, Stress Matrix 

Let us write the Maxwell-like equations for the gravitational fields R and W 
(MKS units) as  

4πGρ∇ ⋅ =R                           (20) 

1
tλ

∂
∇× = −

∂
WR                          (21) 

0∇ ⋅ =W                             (22) 

4π 1 ,G
tλ λ

∂
∇× = +

∂
RW J                      (23) 

where the resulting decoupled equations for R and W are the inhomogeneous 
wave equations  

( )
2

2
2 2 2

1 4π4π GG
tt

ρ
λ λ

∂ ∂
∇ − = ∇ +

∂∂
R JR                (24) 
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2
2

2 2

1 4πG
t λλ

∂
∇ − = − ∇×

∂
WW J                    (25) 

and write the Lorentz-like law of force, acting over an object of mass m, as  

,mm
λ

= + ×F R v W                         (26) 

where v is the velocity of the object. The units of the vector fields R and W are 
the same, m/s2. As pointed out before, the field W, the speed λ, and the force 

m λ= ×F v W  still require direct experimental verification.  
Now, let us proceed as one does in Electrodynamics Theory [35]. From (22), 

one knows that there exists a vector field A (vector potential) such that  

.= ∇×W A                           (27) 

Substituting this in (21), it follows that there exists a function Φ (scalar 
potential) such that  

1 .
tλ

∂
= −∇Φ −

∂
AR                         (28) 

Using (27) and (28) in the expressions (20) and (23), and choosing the 
Lorentz-like gauge  

1 0,
tλ

∂Φ
∇ ⋅ + =

∂
A                         (29) 

one gets decoupled equations for the potentials Φ and A which also satisfy 
inhomogeneous wave equations  

2
2

2 2

1 4πG
t

ρ
λ

∂ Φ
∇ Φ − = −

∂
                     (30a) 

and  
2

2
2 2

1 4π .G
t λλ

∂
∇ − = −

∂
AA J                      (30b) 

The power density is related with the mechanical energy density as  

,uP
t

∂
= = ⋅
∂

J R                           (31) 

which can be written using (23) and (21) as  

1 1 ,
4π 4π

u
t G t G t

λ λ
λ λ

∂ ∂ ∂   = − ∇× − ⋅ − ∇× + ⋅   ∂ ∂ ∂   

R WW R R W     (32) 

bringing about the relation  

,guu
t t

∂∂
= −∇ ⋅ −

∂ ∂
S                        (33) 

where S and gu  are the Poynting vector and the gravitational energy density,  

( )
4πG
λ

= ×S R W                        (34) 

and  
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( )2 21 .
8πgu

G
= +R W                        (35) 

As one can see, the concept of gravitational energy is well defined, and the 
Poynting vector S has the usual meaning of flux of density energy per unit area 
per unit time. For pure gravitational field ( 0u = ), one obtains the continuity 
equation  

0,gu
t

∂
∇ ⋅ + =

∂
S                           (36) 

implying that the gravitational energy velocity is  

2 22 .g
gu

λ
×

= =
+

S R Wv
R W

                      (37) 

In vacuum ( 0ρ =  and =J 0 ), a solution of (24) and (25) are plane 
gravitational waves, ( ), ~ ei tω⋅ −k xR W , where k and ω are the vector wave number 
and frequency of gravitational wave, and one has the properties: 0⋅ =R k , 

0⋅ =W k , and ˆ= ×W k R . From (37) it follows that the velocity of the 
gravitational plane wave is g λ=v k . 

Now, assuming the current density of mass as a fluid in motion, where every 
element of the fluid is moving with velocity v, the current density is determined 
by ρ=J v , and from the expression (26), the density of force at any point on 
the fluid is  

d 1 ,
dV

ρ
λ

= = + ×
Ff R J W                      (38) 

This expression can be written using (20) and (23) as  

( )1 1 1 ,
4π 4π

m

t G G tλ
∂ ∂ = = ∇ ⋅ + ∇× − × ∂ ∂ 

P Rf R R W W       (39) 

where mP  is the density of mechanical linear momentum of the system. After 
adding the zero parts ( )∇ ⋅ ⋅W R  and ( )tλ∇× + ∂ ∂ ×R W R  and doing some 
manipulations, this expression can be written as  

,gm T
t t

∂∂
= ∇ ⋅ −

∂ ∂

PP
                        (40) 

where gP  and T are the gravitational linear momentum and tensor stress,   

( )2

1 1
4πg Gλλ

= = ×P S R W                    (41a) 

and 

{ }1 ,
4π gT u I

G
= ⊗ + ⊗ −R R W W                 (41b) 

being ⊗ the tensorial product, and I being the 3 3× -identity matrix. So, the 
gravitational field has a well defined linear momentum and stress tensor.  

5. Formulation in Space-Time ℜ4 

Consider the following vectors in ℜ4 with components  
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( ) ( )4: , , : ,x t x tµ
µ λ λ−x x                     (42) 

Consider also the following vector fields defined on ℜ4 (space-time) with 
components  

( ) ( ) ( ): , , : , , : , gj A S uµ µ µλρ λΦJ A S               (43) 

and the 4 4×  anti-symmetric matrix defined by the following matrix elements  

,
A AF
x x
µ ν

µν
ν µ

∂ ∂
= −
∂ ∂

                        (44) 

or, from the expressions (27) and (28), this matrix is explicitly given by  

0
0

.
0

0

z y x

z x y

y x z

x y z

W W R
W W R

F
W W R
R R R

− 
 − =  −
  − − − 

                  (45) 

Using the operators  

( ) ( )
: , , : ,

t t
µ

µ λ λ
   ∂ ∂

∂ ∇ − ∂ ∇      ∂ ∂   
                (46) 

and the operator (assuming Einstein summation convention)  
2

2
2 2

1 ,
t

µ
µ λ

∂
≡ ∂ ∂ = ∇ −

∂
                      (47) 

one can have the following identifications  

0 0j
t

µ
µ

ρ∂
∇ ⋅ + = → ∂ =

∂
J                      (48) 

1 0 0A
t

µ
µλ

∂Φ
∇ ⋅ + = → ∂ =

∂
A                    (49) 

0 0gu
S

t
µ

µ

∂
∇ ⋅ + = → ∂ =

∂
S                     (50) 

4π
4π

1 4π
G

GF j
t

µ
µν ν

ρ

λ
λ λ

∇ ⋅ =
 → ∂ =∂
∇× − = ∂

R
R JW

               (51) 

0
01 0

F F F
t

α µ ν
µν να αµ

λ

∇ ⋅ =
 → ∂ + ∂ + ∂ =∂
∇× + = ∂

W
WR

          (52) 

In fact, the last expression follows necessarily due to anti-symmetric definition 
of F. Wave Equations (24), (25), (30a) and (30b) can be written as  

( )4πGF j jµν µ ν ν µλ
= − ∂ − ∂                   (53) 

and  
4π .GA jµ µλ

= −                          (54) 

This formulation is convenient to see the change of form of these expression 
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under a change of inertial reference system.   

6. Change of Inertial Reference System 

Let S and S’ be two inertial reference systems which at 0t t′ = =  have a 
common origin, and S’ is moving with respect to S with a constant velocity V, 
the reference system S is fixed with respect the far away Galaxies in our Universe. 
Let us defined β



 as  

,β λ=V


                            (55) 

the normalized velocity of S’. Then, there must be a nonsingular matrix 

( )βΛ = Λ


 such that the space-time of the system S can be transformed on the 
space-time of the system S’,  

( ) ,x xα
µ µ αβ′ = Λ



                          (56) 

such that  

( ) ( ) ( ) ( ) ( ) ( )1
2 1 3 , , .Iβ β β β β−Λ ⋅Λ = Λ Λ = Λ − Λ =
    

0        (57) 

In other words, the set ( ){ }
[ ]0,1β

β
∈

Λ


 has the structure of group. So, the 

transformation of the fields defined in 4ℜ  that one would expect are of the 
form  

( )j jα
µ µ αβ′ = Λ



                          (58) 

( )A Aα
µ µ αβ′ = Λ



                          (59) 

( )S Sα
µ µ αβ′ = Λ



                          (60) 

( ) ( )1 .F Fβ β−′ = Λ ⋅ ⋅Λ
 

                       (61) 

It is important to point out that this ( )βΛ  transformation is not necessarily the 
know Poincaré-Lorentz transformation since the mass is not a Poincaré-Lorentz 
invariant. Of course, (48)-(54), and (55) are invariant of form (they transform 
covariantly) under a change of an inertial reference system, although this 
transformation has not given explicitly. In addition, one has that  

( ) ( )( )2
2 1 2 ,trF tr F trFβ β−′ = Λ ⋅ ⋅Λ =

 

              (62) 

that is, 2trF  is an invariant under these transformations. Therefore, one can 
define the Lagrangian density for the gravitational field as  

21 1 ,
16π

trF j A
G

µ
µλ

= +                        (63) 

and it is known from Electrodynamics [35] that Euler-Lagrange equations 
applied to this Lagrangian leads us to Maxwell-like Equations (51) and (53). 

This group of transformations also will leave some metric (defined in 4ℜ ) 
invariant. If this metric is given in the inertial reference system S by  
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2d d d d d ,ts g g x xµ ν
µν

µν
ξ ξ= ⋅ ⋅ = ⊗∑                 (64) 

where ( ), tξ λ= x , tξ  is the transpose vector, and g is a 4 4×  real constant 
nonsingular matrix. In the inertial reference system S’, this metric is given by  

( )2d d d , with d d .t ts gξ ξ ξ β ξ′ ′ ′ ′= ⋅ ⋅ = Λ


                (65) 

So, one will have invariance of the metric ( 2 2d ds s′ = ) if it follows that  

( ) ( )tg gβ βΛ ⋅ ⋅Λ =
 

                        (66) 

Then, one chooses as the reference systems S’ that one which goes with the 
object ( ′ =x 0 ), and the time defined on this system (even it is not really an 
inertial system) is called “proper time” τ. Thus, one gets  

2 2d d d .t gλ τ ξ ξ= ⋅ ⋅                          (67) 

Factorizing dt from the right hand side, one can obtain a relation between the 
proper time and the time measured in the system S of the form  

( ) ( )1 d dd d , or ,
d d

t q
tq

τ β
τβ

= = 



                 (68) 

where ( )q β  is the resulting function of this factorization, and β  is related 
with the velocity of the object (seen from the system S), β λ= v . The equations  

of motion invariant under the set of transformations ( ){ }
0 1β

β
≤ ≤

Λ


 must be of 

similar form as in special theory of relativity [36] [37] [38],  

( ) ( )2

2

d , : , .
d

qxm f f q
µ

µ µ
β

β β
λτ

 
 = ⋅
 
 

F F


                 (69) 

This formulation will be useful later on when radiation reaction force for 
gravitational field be studied. For our purposes, it is not necessary to know the 
set of transformations neither the function ( )q β , if , however, one assumes that 
Poincaré-Lorentz-like transformations can be used here, the velocity of the 
inertial system S’ is ( )0,0,V=V  (with Vβ λ= ), and the normalized velocity 
of the object is ( ), ,x y zβ β β β=     (with i ivβ λ= ), one would have  

( ) ( ) ( ) 1 22

1 0 0 0
0 1 0 0

, 1
0 0
0 0

qβ β β
γ βγ
βγ γ

−

 
 
 Λ = = −
 −
 

− 



           (70) 

7. Gravitational Waves Emission 

It is known that the particular solution of the Equations (30a) and (30b) are 
given by the convolution of the inhomogeneity with the fundamental solution of 
the wave equations [39],  

( ) ( ) ( ) ( )4π, 4π , , ,Gt G tρ
λ

Φ = − = −x A x J             (71) 
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where   is the fundamental solution,  

( ) ( )1, .
4π

t
t

δ λ−
= −

x
x

x
                       (72) 

This brings about the known retarded potentials  

( )
( ) ( ) 3,

, d d
t t t

t G t
ρ δ λ

Ω×ℜ

′ ′ ′ ′− − −
′ ′Φ =

′−∫
x x x

x x
x x

           (73) 

and  

( )
( ) ( ) 3,

, d d ,
t t tGt t
δ λ

λ Ω×ℜ

′ ′ ′ ′− − −
′ ′=

′−∫
J x x x

A x x
x x

          (74) 

where 3Ω⊂ℜ  is the domain where ρ and J are defined. For a point object of 
mass m which is moving arbitrarily, having the position ( )m tx  and velocity 

( )m tv , with ( ) ( )( ), m' t m tρ δ′ ′ ′= −x x  and ( ) ( ) ( )( ), m mJ t m t tδ′ ′ ′ ′ ′= −x v x x , a 
Liénard-Wiechert potentials are gotten, and the resulting gravitational fields are 
of the form  

ˆ, ,β β= + = ×R R R W r R


                     (75) 

where ′= −r x x  is the vector going from the object position x’, to the observer 
position x, ˆ =r r r  is the unitary vector, and the gravitational fields βR  and 

βR


 are   

( )( )2

2 3

ˆ 1

ˆ(1 )
t t r

Gm

rβ

λ

β β

β
′= −

− −
=

− ⋅

r
R

r



                   (76a) 

and  

( )
( )3

ˆ ˆ
,

ˆ1
t t r

Gm

r
β

λ

β β

λ β
′= −

 × − ×  =
− ⋅

r r
R

r


 





                (76b) 

being ( )m tβ λ= v


 the normalized velocity of the object, and t′  is the 
retarded time. The gravitational power emitted by the accelerated object per 
solid angle is  

( ) ( )2d ˆ ˆ1 ,
d

P rβ= − ⋅ ⋅
Ω

r S r


                     (77) 

and using (81), (82), and (83), one gets  

( ) ( )
( )

2
2

5

ˆ ˆd
d 4π ˆ1

GmP β β

λ β

 × − ×  =
Ω − ⋅

r r

r

 





                 (78) 

Thus, any object of mass m which is accelerated will emit gravitational 
radiation. Of course, the object must have a huge mass in order for this radiation 
to be observed. This result contrast a lot with the given by General Relativity 
since in this theory the object must have a quadrupole configuration in order to 
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emits gravitational energy [36] [37] [38], and the gravitational waves emitted are 
of quadrupole type waves. 

If one has a charged particle of charge q and mass m which is accelerated, this 
particle will emits electromagnetic [35] and gravitational energy such that the 
ratio of electromagnetic to gravitational energy emitted is  

( )
( )

2

0

d d
.

d d 4πg

P q
P Gm

Ω  
=  

Ω  



                    (79) 

where 12
0 8.854 10 F m−= ×  is the constant dielectric of the vacuum. For the 

electron, 191.6 10 Ceq −= × , this ratio is of the order of 1039, whatever be its 
acceleration, that is, the electromagnetic radiation totally dominate the 
gravitational radiation. In order for a object of mass m and charge q to emits the 
same gravitational energy as the electromagnetic energy emission, it would 
require that its mass would be 04πm q G≈  . For and object having an electron 
charge, this mass would be of the order of 21 kg.  

8. Radiation Reaction Force for Gravitational Field 

In this section, one will follow the approach given in reference [40] [41] for the 
radiation reaction force in terms of the external force. An accelerated object of 
mass m dissipate energy due to gravitational waves emission that the object does 
during its accelerated motion. From the expressions (69) and (70), the modified 
equation of motion due to to the transformation that leave invariant of form the 
Maxwell-like equations is  

( )( )d
,

d

q
m

t

β
=

v
F



                        (80) 

where F is the external force, and β λ= v . Although the function ( )q β  is 
really unknown, it is possible to assume the differentiation and to write this 
expression as the Newtonian equation of motion  

( )d ,
d

m
t
β

β=ℵ F


                           (81) 

where ℵ  is some 3 3×  matrix function depending on β . Using this 
expression in (79), it follows that  

( )

( )

222
1 1 2 2

5

cos cosd ,
d 4π 1 cos

GmP φ β φ

λ β θ

−ℵ
=

Ω −

e eF 




             (82) 

where 1e  and 1φ  are the direction and the angle resulting from the expression 

( )ˆ ˆ× ×ℵr r F , 2e  and 2φ  are the direction and the angle resulting from the 
expression ( )ˆ β× ×ℵr F  , and θ is the angle between r̂  and β . Making the 
integration of this expression with respect the solid angle and over the time 
intervale within the external force is acting, [ ]0, t , one gets the energy dissipated 
by the accelerated object as  
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( ) ( )
( )

22
2 1 1 2 2

50

cos cos
d d .

4π 1 cos

tGm
U t t

φ β φ

λ β θΩ

−
= ℵ Ω

−
∫ ∫

e e
F







       (83) 

Now, one assumes that this energy is due to the work done by a nonconserva-
tive force radF  which moves the object from the position 0x  at 0t =  to the 
position x at a time 0t > . Because d dt=x v , one obtains  

( )
0

d .
t

radU t t= ⋅∫ F v                         (84) 

Equaling (84) and (85), knowing that the angle between radF  and v must be 
π (dissipative direction), and having ˆ~radF n  with ˆ v=n v , one gets finally 
and expression for the radiation reaction force of gravitational field as 

( )
( )

22 2
1 1 2 2

2 5

cos cos
d ,

4π 1 cos
rad

Gm

v
φ β φ

λ β θΩ

ℵ −
= − Ω

−
∫

F e e
F v



           (85) 

where v is the magnitude of the velocity of the object. Therefore, the dynamical 
equations of motion which take into account the energy lost by gravitational 
radiation due to the accelerated object is 

( )( )d
,

d rad

q
m

t

β
= +

v
F F



                      (86) 

with radF  given by (86). Note that whenever =F 0 , one has that rad =F 0  too. 
If the external force is zero, there is not acceleration, implying that there is not 
radiation of gravitational waves, one expects that this happen experimentally. 

Although there have been several indirect facts [42] [43] [44] that indicates that 
the gravitational waves speed could be the same speed of light  
( 82.99792 10 m scλ = = ×  [45]), it is necessary a direct measurement of this 
important parameter for gravitational waves. The gravitational field W appears 
naturally from mathematical analysis, but requires experimental verification 
together with the law of force that it may define, mβ= ×F W . It looks like 

that the transformations ( ){ }
0 1β

β
≤ ≤

Λ


 between the inertial reference systems S  

and S’ must be of the type Poincaré-Lorentz transformation, but one might bring 
the objection that the mass is not a Lorentz invariant as the charge is. However, 
this does not represent an obstacle to propose a relation of the type (40) since 
one must have a linear relation between these vector fields defined in S and S’. If 
Poincaré-Lorentz transformation is assumed valid here, then, one could use the 
function ( )q β  as the same function used on special relativity theory  

( ) ( ) ( )1 22
1q β γ β β= = −   . 

9. Conclusion and Comments 

It has been shown that Maxwell-like equations for gravitational field can appear 
without having any relation at all with General Relativity. In fact, these types of 
equation could have been appeared much earlier than the formulation of the 
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electrodynamics. Thus, it is absolutely astonishing the existing closely relation 
between post Newtonian gravity theory and electrodynamics theory. Several im-
plications of Maxwell-like gravitational field formulation has been shown based 
on what we already know from Electrodynamics formulation. There are several 
results that one needs to point out: First, the energy associated to gravitational 
field or gravitational waves is a well defined concept. Second, linear gravitational 
waves appear from this extended Newtonian gravity theory, and General Rela-
tivity is not needed at all to explain their existence and their properties. Third, 
gravitational waves radiation appears for any accelerated object of mass m, and 
dipole type of radiation is always expected. Using this extended Newtonian ap-
proach for gravity, it is possible to include in the body equations of motion the 
dissipative effect caused by the emission of gravitational energy due to the acce-
leration of the body. This has been done through the gravitational radiation 
reaction force depending of the external force. Finally, due to this vector formu-
lation of the linear gravity, one could say that to unify gravity with quantum 
mechanics, gravity could be considered as a vector field quantity with spin one 
boson as interacting quantum particle, instead of tensor quantity with spin two 
bosons as interacting quantum particle (General Relativity), and one could do 
Quantum Gravitodynamics (QGD) under this approach through (64), although 
a concern could arise for not having a small parameter on this expression. With 
respect to the resent claimed gravitational waves detections [46] [47] [48], may-
be it is possible to see a component of the Maxwell-like gravitational waves here, 
or these same waves be of Maxwell-type gravitational waves. However, these 
statements would require a deep careful analysis which could be made later on. 
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