
Journal of Mathematical Finance, 2011, 1, 125-131 
doi:10.4236/jmf.2011.13016 Published Online November 2011 (http://www.SciRP.org/journal/jmf) 

Copyright © 2011 SciRes.                                                                                 JMF 

Stochastic Convergence in Regional Economic Activity 

Fariba Hashemi 
Swiss Federal Institute of Technology, Lausanne, Switzerland 

E-mail: Fariba.Hashemi@epfl.ch 
Received August 11, 2011; revised September 21, 2011; accepted October 5, 2011 

Abstract 
 
A stochastic model is presented, based on a double process of temporal drift and random disturbance, to fit 
the evolution of cross-country distribution of income and economic activity. Instead of assuming a steady state 
as is standard practice, a long run stationary equilibrium distribution is hypothesized, around which econo- 
mic activity fluctuates. An empirical application comparing dynamics of growth in Asia and Europe tests the 
validity of the proposed method. In particular, results point out that the distribution of income and economic 
activity is approaching a long run equilibrium at a faster rate in the case of Asia, and that the dispersion of 
the distribution is shrinking over time above all in the case of Europe. Main implications are supportive of the 
convergence hypothesis, and suggest that diffusion may be a potential technique for the analysis of growth 
dynamics. 
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1. Introduction 
 

The study is motivated by the observation that early leaders 
in industrial revolution like the UK and the Netherlands 
needed over 50 years for income to double from $2000 
to $4000, but countries that reached $2000 after 1950 
needed 10 - 20 years [1]. It would not be unreasonable to 
consider that the shortening of time required for doubling 
per capita income may be attributed to a change in the 
velocity of factor mobility. Consistent with this observa- 
tion, we hypothesize that income fluctuates around some 
long run stationary equilibrium according to a temporal 
drift and random disturbance. A drift-diffusion model is 
proposed, to express income adjustment process with noise, 
where dynamics of income rely on two counteracting 
forces: 1) a mean-reversion process along time, driven 
by mobility of factors of production and 2) a diffusion 
process across regions, driven by search and learning and 
trial and error. The present paper is one of a rather small 
group of evolutionary studies which eschews simulation 
in favour of analytical derivations. 
 
2. Theoretical Framework 
 
Debates on growth theory have contrasted the conver-
gence predictions of the neoclassical growth models of 
Swan [2] and Solow [3] with predictions of potential 
non-convergence from endogenous technological pro-

gress of Romer [4] and Aghion et al. [5]. In his classic 
Contribution to the Theory of Economic Growth [3], So- 
low proposed that we study economic growth by assum- 
ing a standard neoclassical production function with de-
creasing returns to capital. In Solow’s world, there are 
two inputs, capital and labor, which are paid their mar- 
ginal products. Countries may differ in technology, re- 
source endowments, geography and institutions. In standard 
neoclassical growth theory with diminishing returns, a 
country’s growth rate will be inversely related to its ini-
tial income. If all economies are assumed to have the 
same steady state, in the absence of shocks, countries at 
different stages of economic development are predicted 
to experience absolute convergence. It has been argued 
that much of the cross-country differences in economic 
outcomes can be traced to differing determinants of the 
steady state in the Solow growth model. If, more realis-
tically, economies are assumed to have different steady 
states contingent on differences in parameters such as 
accumulation of human and physical capital and popula- 
tion growth, then neoclassical theory only predicts condi- 
tional convergence [6]. 

In particular, since the works of Baumol [7], Barro [8] 
and Mankiw et al. [9], the existence of convergence in 
economic outcomes within groups of similar countries has 
been largely recognized. What is less known, however, is 
the dynamics in question. The present study helps fill 
this gap, by providing a novel methodology to summarize 
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growth dynamics. A model is proposed to describe the 
fluctuations over time in the density of cross-sectional 
distribution of income and economic activity. It is hy- 
pothesized that economic activity fluctuates around its 
long run stationary equilibrium according to a temporal 
drift and random disturbance. These flows follow simple 
stochastic laws that can be described with a few parame-
ters; parameters which can be estimated from historical 
data with some accuracy.  
 
3. Model 
 
Consider a region consisting of a constant number of 
countries with different levels of income and output1. The 
set of incomes forms a distribution which evolves over 
time. Consider the basic conservation law, with flux inter-
preted as the number of countries entering and number of 
countries exiting an income/output interval. Assume that 
flux is made of two different parts: a mean reversion proc-
ess—call it drift, and a random process—call it diffusion. 
The counteracting forces of drift and diffusion result in a 
long-run stationary equilibrium distribution of economic 
activity. The equilibrium is a result of tension between 
counteracting forces of convergence and divergence. 

More precisely, for the drift spread, it is assumed that 
there exists some equilibrium distribution of economic 
activity with a certain mean and variance, towards which 
the ensemble of countries gravitates, and the process is 
governed by a velocity of convergence. Convergence is a 
result of adjustment of capital-labor ratios to common 
steady-state levels starting from different initial values [1]. 
This adjustment is driven by diminishing returns [2,3]. 
For the diffusion spread, a search and learning process 
generates randomness in the system [10-13]. Bottlenecks 
in the flow of labor and capital and random effects cause 
a spread of income/output from high density towards 
lower density. Noise is generated by diffusion of knowl- 
edge and learning, and limited by the presence of obsta- 
cles in the form of trade barriers and the like. 

In order to interpret and quantify this relationship, con- 
sider a classical linear stochastic differential equation in 
which the flux of probability consists of a drift and some 
diffusion. The history of a country’s economic activity is 
governed by an ordinary differential equation  

 d d = ,X t g X t  

where  ,g x t  is the drift. Letting  ,X x t  be the so-

lution such that  ,0 =X x x , we obtain: 

    d , d = , , ,X x t t g X x t t  

 ,0 =X x x                (1) 

Assume that > 0x  and that the solution  ,X x t  
remains positive (see Appendix A). 

From the point of view of diffusion processes, con- 
sider a stochastic differential equation of the Ito type: 

      d , = d , d , X x t W t g X x t t  

 ,0 =X x x                (2) 

where   is a small positive constant, and g is the drift. 
W is a standard Wiener process (see Appendix B).   

Consider the form    =g x x u   where > 0,u  
and > 0 .   denotes the adjustment rate, which for 
simplicity is assumed constant. u denotes the mean of the 
stationary equilibrium distribution. In this case, each point 
moves toward the position u, but never reaches it. In ge- 
neral, one can study a Markov process generated by a 
matrix of transitions from one level of income/output to 
another, where the Markov process can be treated as in- 
come/output diffusion. Then one can apply the general 
Fokker-Planck equation to describe evolution in time of 
economic activity. Hence, assuming that income/output 
behaves like a stochastic process and that it is continuous 
and Markovian, we consider the most natural candidate; 
a classical linear stochastic differential equation driven 
by a standard Wiener process2. Our picture of world de- 
velopment is thus one where convergence is counterbal- 
anced by divergence. Convergence in the context of the 
present model would mean collapsing of the cross-section 
distribution. Divergence would mean that the cross-section 
distribution replicates itself because for example it hap- 
pens to be the stationary distribution for many inde- 
pendent and identically-distributed country outputs. 
 
4. Empirical Analysis 
 
4.1. Data 
 
We use data on GDP per capita for nine Asian econo-
mies between the years of 1980 to 2007. The countries are: 
China, Hong Kong, Indonesia, Japan, Malaysia, South 
Korea, Singapore, Taiwan and Thailand. Figure 1 illus-
trates the evolution of the distribution of average GDP 
per capita. We observe a steady growth with the East Asian 
Financial crisis of 1997 standing out. Table 1 reports the 
descriptive of log GDP per capita for this population. 

For comparison, consider GDP per capita for 24 coun- 
tries in the European Union: Austria, Belgium, Bulgaria, 
Cyprus, Czech Republic, Denmark, Estonia, Finland,     

1In this study, “income” and “output” will be used interchangeably to 
represent economic activity. 

2The process evolves according to an Ornstein-Uhlenbeck. This type of 
model has been widely used in Biomathematics [15,16]. Ref [17-19] 
develops and provides a full analysis of this model albeit in a different 
context. 
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Table 1. Descriptive of GDP Asia. 

 N Years Minimum Maximum Mean Std. Deviation  

All data 252 1980-2007 5.530 10.814 8.686 1.323 

Used for fit 171 1989-2007 6.419 10.814 9.021 1.208 

 

 

Figure 1. Evolution of GDP Asia. 
 
France, Germany, Greece, Hungary, Iceland, Italy, Lat- 
via, Lithuania, Luxembourg, Netherlands, Poland, Slo-
vakia, Slovenia, Spain, Sweden, and United Kingdom. 
Data were recorded from 1991 to 2007. Figure 2 illus- 
trates the evolution of the distribution of average GDP 
per capita. Table 2 reports the descriptive of log GDP 
per capita for this population. All data has been collected 
from Datastream. 
 
4.2. Estimation 
 
The expectation of the distribution representing the time 
development of the differential equation expressing the 
growth dynamics is:  

  0= 1 t t
tu u e u e              (3) 

and the variance of the distribution: 

 2 2 2 2
0= 1t t

t e e  


            (4) 

The model has been applied to log GDP per capita 
distribution for the two populations as a function of time, 
using non-linear least squares estimation3. A two-step  

 

Figure 2. Evolution of GDP EU. 
 
procedure has been employed to estimate the model pa- 
rameters, where 0u  denotes the initial mean of the dis- 
tribution, and u denotes where the mean is heading. 0  
represents the initial standard deviation,   represents the 
diffusion parameter, and   represents the velocity of in- 
come/output convergence. 

Tables 3 and 4 report estimates for the five model 
parameters, along with the standard errors and t-values 
for Asian and European populations respectively (in logs).  

Figures 3 and 4 illustrate the evolution of real versus 
fitted mean and variance of the distributions for Asia and 
Europe respectively. 

As expected, the mean of the distribution is clearly 
evolving for both European and Asian populations, cor-
responding to our theoretical predictions. The variance of 
the distribution is likewise evolving for both populations. 
Results point out that the distributions are approaching a 
long-run equilibrium (at a faster rate in the case of our 
European economies). One might speculate that this pres-
sure towards reduction of disparities across European 
countries may be attributed to the establishment of the 
Maastricht Treaty in 1993. The diffusive limit suggests 
that the distribution variance will tend toward a constant 
and concentrated around a mean u, which is larger for our 
Asian population than for our European one. 

By considerations of analytical tractability, the model 
developed in this paper is simplified. An extension 
which would significantly enrich the analysis would be 
to include exogenous control variables that shift the 
conditional mean (e.g., business cycle effects). We also    

3The expression representing the time-development of the distribution is:
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Table 2. Descriptive of GDP Europe. 

 N Years Minimum Maximum Mean Std. Deviation 

All data 685 1976-2007 8.123 11.290 9.596 0.578 

Used for fit (mu) 685 1976-2007 8.123 11.290 9.596 0.578 

Used for fit (sigma) 200 2000-2007 8.732 11.290 10.047 0.488 

 
Table 3. Parameter estimates for Asia. 

Parameter Value Std Error t-value 

λ 0.014 0.011 1.221 

u 13.393 3.578 3.743 

u0  7.781 0.125 62.250 

σo
2 2.251 0.084 26.680 

ε 0.010 0.009 1.143 

 
Table 4. Parameter estimates for Europe. 

Parameter Value Std Error t-value 

λ 0.017 0.009 1.843 

u 11.913 1.287 9.254 

u0 8.815 0.046 190.004 

σo
2 1.130 0.350 3.222 

ε −0.003 0.002 −1.323 

 
observe that the rate of approach to the final equilibrium 
as well as the relaxation time in our model only depend 
on   characterizing the drift term. This feature is en-
tirely inherent to the linearity of the dynamics considered, 
and turns out to be a limitation in the modeling capability 
offered by Ornstein-Uhlenbeck. For nonlinear drifts, this 
feature does not occur anymore and the noise strength 
strongly affects the transient behavior of the probability 
density. 
 
5. Conclusions 
 
Over the past two centuries, the interplay of geography 
and policies has produced disparities in economic outcomes. 
Given the emergence of a global system, parts of the 
developing world are now narrowing the income gap 
with richer nations [20]; we witness a tendency towards 
convergence between nations at different levels of eco-
nomic development. Monitoring this momentous devel-
opment requires appropriate techniques for quantification  

 

 

Figure 3. Asia. 
 
and interpretation. This paper proposes one such tech- 
nique. The results suggest that diffusion is a potential 
method to monitor regional growth dynamics. 
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Figure 4. Europe. 
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Appendix A 

This is a degenerate diffusion with no Brownian “noise”. 
Thus the position at time t of income/output starting at x 
does not have a probability density in the ordinary sense 
but is deterministic. It is important that a differential 
equation such as (1) defines a flow on the whole interval 
 0, . In other words, a set in  0, , for example an 
interval  ,a b , is transformed into another set, the 
interval     , , , ,X a t X b t  at time t. Assuming  ,g x t  
is a “reasonable” function, the paths from two distinct 
points, namely  ,t X a t  and  ,t X b t  will never 
meet, so an interval remains an interval under this flow. 
The flow transforms any initial measure on the interval 
 0,  into a different measure. Suppose the initial mea- 
sure is given by a density function  0 0f x  , where we  

can normalize by taking  00
d = 1



 f x x . Then the trans-  

formed measure attaches to the interval  ,a b  the mea-  

sure  d

 f x x , where   and   (which depend on t)  

are the inverse images of a and b:  tX b  ,   tX a . 
Assuming that g is not very peculiar and thus the trans- 
formed measure also has a density, call the transformed 
density  tf y . One can interpret  tf y  as the mass 
density at time t; alternatively, if we think of )(0 xf  as 

the initial probability density for a single country income/ 
output, then  tf x  is the probability density at time t. 
For the mass density interpretation, we may think of  

  d tab f y y  as the fraction of all country incomes that  

are in the interval  ,a b  at time t. Our picture of the 
world thus follows the lines of the derivation used for 
Kolmogorov’s forward differential equation. Taking the 
probability interpretation, with the initial density 0 ( ),f x  
let tY  be the randomized X-process, using 0f  for the 
density of the initial point x. Let  w y  be a smooth 
function vanishing off some finite subinterval of  0, . 
The expected value   E tw Y  can be expressed as: 

        
0

, , d = 0


       w y f y t t g y f y t y y  

Since this expression is 0 for all functions  w y  of 
the type described above, we can conclude that the 
bracket {} is identically 0.  

Appendix B 

Under mild conditions on g, Equation (2) is known to 
have a unique solution. Moreover, for each > 0t  and 
each x,  ,X x t  does have a probability density  

http://dx.doi.org/10.4236/jssm.2011.43033�
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 , ,f x y t , and  , ,f x y t  satisfies Kolmogorov’s for- 
ward equation: 

     
   

2 2, , = 1 2 , ,

, , ,

f x y t t f x y t y

g y t f x y t y

   

    
 

where x is fixed, indicating the starting point.  , ,0f x y  
is a “Dirac” function, with all the mass concentrated at x, 
and so is not a density in the ordinary sense. For > 0t ,  

one has Prob     a , , , d   
b

a
X x t b f x y t y . We may  

again suppose x is initially random. Multiplying this 
equation by 0 ( ),f x  integrating over  0,  and letting  

     0, = , , df y t f x y t f x x


 ,  

we get:  

     

   

2 2, = 1 2 ,

, ,

f y t t f y t y

g y t f y t y

 



   

    
 

To show that the solution of this equation with = 0  
is the limit of the solution as 0  , see Ref. [14, 
Chapter 4]. 

 


