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Abstract 
 
According to the Solvency II directive the Solvency Capital Requirement (SCR) corresponds to the eco- 
nomic capital needed to limit the probability of ruin to 0.5%. This implies that (re-)insurance undertakings 
will have to identify their overall loss distributions. The standard approach of the mentioned Solvency II di- 
rective proposes the use of a correlation matrix for the aggregation of the single so-called risk modules re- 
spectively sub-modules. In our paper we will analyze the method of risk aggregation via the proposed appli-
cation of correlations. We will find serious weaknesses, particularly concerning the recognition of extreme 
events, e.g. natural disasters, terrorist attacks etc. Even though the concept of copulas is not explicitly men- 
tioned in the directive, there is still a possibility of applying it. It is clear that modeling dependencies with 
copulas would incur significant costs for smaller companies that might outbalance the resulting more precise 
picture of the risk situation of the insurer. However, incentives for those companies who use copulas, e.g. 
reduced solvency capital requirements compared to those who do not use it, could push the deployment of 
copulas in risk modeling in general. 
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1. Introduction 
 
The Solvency II directive of the European Commission 
[1] focuses on an economic risk-based approach and 
therefore obliges insurance undertakings to determine their 
overall loss distribution function. The increasing complex- 
ity of insurance products makes it necessary to consider 
dependencies between the single types of risk to deter- 
mine this function properly. Neglecting those dependencies 
may have serious consequences underestimating the overall 
risk an insurer is facing. On the other hand, assuming com- 
plete dependency between risks may result in an overes 
timate of capital requirements and therefore incur too high 
capital costs for an insurance company. The Solvency II 
draft directive acknowledges this fact and proposes rec- 
ognition of dependencies by the use of linear correlations. 
Reason is that correlations are relatively easy to under- 
stand and to apply. However, the use of correlation re- 
quires certain distributional assumptions which are inva- 
lidated e.g. by non-linear derivative products and the  
typical skew and heavy tailed insurance claims data. 
Therefore aggregation of insurance risks via correlations 
may neglect important information concerning the tail of 
a distribution. 

In contrast, copulas provide full information of de- 

pendencies between single risks. Therefore they have be- 
come popular in recent years. The copulas concept in an 
insurance context was first introduced by Wang [2], who 
discusses models and algorithms for the aggregation of 
correlated risk portfolios. Frees and Valdez [3] provided 
an introduction to the use of copulas in risk measurement 
by describing the basic properties of copulas, their rela- 
tionships to measures of dependence and several families 
of copulas. Blum, Dias and Embrechts [4] discuss the use 
of copulas to handle the measurement of dependence in 
alternative risk transfer products. McNeil [5] presents 
algorithms for sampling from a specific copula class which 
can be used for higher-dimensional problems. Eling and 
Toplek [6] analyze the influence of non-linear dependen- 
cies on a non-life insurer’s risk and return profile. 

As copulas allow the separate modeling of risks and the 
dependencies between them, it will also be possible to ex- 
plore the impact of (different) dependency structures on 
the required solvency capital if they are used [7]. Differ- 
ent dependency structures can be modeled on the one hand 
through modified parameters of the copula function and 
on the other hand through the choice of a completely dif- 
ferent copula family. Following some recent contributions  
[8,9], our aim is to give an overview over the concept of 
copulas, to analyze and discuss their possible application 
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in the context of Solvency II and finally to make them 
accessible to a wider circle of users. In this context we 
would also like to discuss, if the new Solvency II direc- 
tive forms an accurate concept for considering risk de- 
pendencies or if further adjustments should be made. 
Relating to that it will also be necessary to discuss de- 
pendency ratios like the correlation coefficient but also 
others (e.g. Spearman’s rank correlation). 

We will therefore start with an overview over depen- 
dency ratios. In Section 3 we will continue with the in- 
troduction of copulas and illustrate different families and 
types of copulas. After that we will briefly describe how 
copulas and multivariate distributions can be determined 
out of empirical data in Section 4. The paper will conti- 
nue with an assessment of the presented dependence con- 
cepts in Section 5 and end with a description and an as- 
sessment of the consideration of risk dependencies in the 
Solvency II framework in Section 6. 
 
2. Dependency Ratios 
 
Using the linear correlation coefficient is a very rudi- 
mentary, but also simple way of describing risk depend- 
encies in a single number. The linear correlation coeffi- 
cient of real valued non-degenerate random variables X, 
Y is defined by the following Equation (1): 

   
   
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X Y

Var X Var Y
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,        (1) 

where ρ(X,Y) is the linear correlation coefficient of X and 
Y, Cov(X,Y) = E[XY] – E[X]E[Y] is the covariance of X 
and Y and Var(X) and Var(Y) are the finite variances of X 
and Y. 

In case of multiple dimensions the so called correlation 
matrix needs to be applied. Equation (2) shows this sym- 
metric and positive semi-definite correlation matrix: 
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The linear correlation coefficient (also called Pearson’s 
linear correlation) measures only linear stochastic de- 
pendency of two random variables. It takes values be- 
tween –1 and 1, i.e. –1 ≤ ρ(X,Y) ≤ +1. However, perfectly 
positive correlated random variables do not necessarily 
feature a linear correlation coefficient of 1 and perfectly 
negative correlated random variables do not necessarily 
feature a linear correlation coefficient of –1. Random va- 
riables that are strongly dependent may also feature a lin- 
ear correlation coefficient which is according to amount 

close to 0. 
Two pairs of random variables with a certain linear 

correlation coefficient may actually have a completely dif- 
ferent dependence structure. Figure 1 which shows reali- 
zations of two pairs of random variables (X1 and X2 re- 
spectively X1 and X3) that both have the same linear cor- 
relation, clearly illustrates this. 

The covariance and thus also the linear correlation be- 
tween independent random variables is zero. However, if 
the linear correlation coefficient between two random 
variables is near zero, it can actually exist a high correla- 
tion between them. Linear correlation is a natural de- 
pendency ratio for elliptically distributed risks. If used 
for random variables that are not distributed elliptically, 
linear correlation can lead to wrong results. Extreme events 
with high losses can be severely underestimated by using 
the linear correlation as a measure for dependencies be- 
tween risks [10]. Modeling major claims often requires 
the use of distributions with infinite variances for which 
the linear correlation coefficient is not defined. In addition 
linear correlation is not invariant concerning non-linear 
monotone transformations which may cause problems 
when an amount of loss is converted into a loss payment. 

Two other ratios for measuring risk dependencies are e.g. 
Spearman’s rank correlation and Kendall’s τ. However, 
they do also not fully inform on dependencies between 
risks, but rather compress all information into a single 
number. The coefficient of tail dependence (important 
for non-life insurers modeling extreme events) for two 
random variables X and Y describes the likelihood of Y 
taking an extreme value on condition that X also takes an 
extreme value. This also means that the coefficient of tail 
dependence does not provide full information on the de- 
pendence structure between random variables. The fol-
lowing Equations (3)-(5) show the three dependency 
ratios: 

      , ,S X YX Y F X F Y  ,        (3) 

 

 

Figure 1. Dependence structure between random variables 
X1 and X2 respectively X1 and X3 [11]. 
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where Fx is the distribution function of X, Fy is the dis- 
tribution function of Y and F would be the joint distribu-
tion function. 
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where (X1,Y1) and (X2,Y2) are two independent and iden- 
tically distributed pairs of random variables from F. 
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on the condition that this limit  0,1   exists. 

 
3. Copulas 
 
In contrast, copulas provide full information on the de- 
pendency structure between risks. Copulas allow the se- 
paration of the joint marginal distribution function into a 
part that describes the dependence structure and parts 
that describe the marginal distribution functions. 

The Copula is a multivariate distribution function with 
margins that are uniformly distributed on [0,1] and was 
defined by Sklar [12]: 

  1 1 1, , , ,   n nC u u P U u U u n ,     (6) 

where C( ) is the copula, (U1, ,Un)
T with Ui ~ U(0,1) 

for all i = 1, , n a vector of random variables and  
(u1, ,un)

T  [0,1]n realizations of (U1, ,Un)
T. 

The risk modeling process with copulas consists of 
two steps. First one has to determine the marginal distri- 
bution of every single risk component. Secondly the de- 
pendence structure between these risk components has to 
be determined via the copula function. In order to obtain 
the joint distribution function the n single risks Xi have 
then to be transformed each into a random variable Ui that 
is uniformly distributed on [0,1] by using using the cor- 
responding marginal distribution Fi  

 i i iU F X .              (7) 

We obtain the multivariate distribution function by in- 
serting these transformed random variables into the co- 
pula function: 
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In case of continuous and differentiable marginal dis- 
tributions and a differentiable copula the joint density is: 
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where fi(xi) is the respective density for distribution func-
tion Fi and 
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the density of the copula. 
In this way we can derive a multivariate distribution 

function out of specified marginal distributions and a co- 
pula that contains information about the dependence 
structure between the single variables. But also the oppo- 
site holds: A copula can be determined out of the inverse 
of the marginal distributions and the multivariate distri- 
bution function. 

The most important copula families are (the bands in 
which the dependencies are stronger or weaker differ): 
 Elliptical copulas 

o Gaussian copulas 
o Student copulas 

 Archimedean copulas 
o Gumbel copulas 
o Cook-Johnson copulas 
o Frank copulas 
Equation (10) shows the definition of the Gaussian 

copula: 

      1 1
1 1, , , ,Gau n

n nC u u u u 
      ,  (10) 

n
  is the distribution function of the n-variate standard 

normal distribution with correlation matrix ρ an 1d   
is the inverse of the distribution function of the univari-
ate standard normal distribution. The dependency in the 
tails of multivariate distributions with a Gaussian copula 
goes to zero [13], which means that the single random 
variables of the joint distribution function are almost 
independent in case of high realizations. Insurance risks 
feature in most cases weak dependency for lower values 
and strong dependency for higher realizetions. From this 
perspective the Gaussian copula does not provide a pro- 
per basis for modeling insurance risks. 

In contrast, Student copulas do not feature independ- 
ency in the tails of a distribution [7]. Equation (11) shows 
how they can be defined: 

      1 1
, 1 , 1, , , ,Stu n

n v nC u u t t u t u    
   ,   (11) 

where ν is the number of degrees of freedom, ,
nt   the 

distribution function of the n-variate Student distribution 
with ν degrees of freedom and a correlation matrix of ρ 

and 1t
  the inverse of the distribution function of the 

univariate Student distribution with ν degrees of freedom. 
The Figures 2 and 3 show the densities for both the 

bivariate Gaussian and the bivariate Student copula. An-
other class of copulas is given by the Archimedean 
copulas which can be written in the form: 

      1
1 1, , n nC u u u u      ,    (12) 

for all 10 , ,  nu u 1   and   is some continuous 

function (called the generator) satisfying: 
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Figure 2. Density of a Gaussian copula (correlation ρ of 0.7). 
 

 

Figure 3. Density of a student copula (correlation ρ of 0.7). 
 

1) ;  1 0 

2)   is strictly decreasing and convex and; 

3)  is completely monotonic on  . 1 0,

Among others the Gumbel copulas belong to the Ar- 
chimedean copulas. Similarly to the Student copulas they 
are tail dependent, however, not in both the upper and 
the lower tail, but only in the upper one (see Figure 4). 

Therefore they are adequate for modeling extreme events: 
On the one hand stress scenarios [14] (with high losses 
and high dependence) can be captured and on the other 
hand common (lower) losses which in general appear 
independent can be modeled. Equation (13) shows the 
formula for Gumbel copulas: 
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β ≥ 1 is a structural parameter. β = 1 leads to a multi- 
variate distribution of independent random variables. Only 

in this case the Gumbel copula is independent in the up- 
per tail. 

Cook-Johnson copulas represent another Archimedean 
copula. Contrary to the Gumbel copulas they are tail de- 
pendent only in the lower tail (see Figure 5). Therefore 
they perform good results if used for modeling yields on 
shares [15]. The following equation describes the Cook 
Johnson copulas: 

   
1

1 1, , 1  


       C J
n nC u u u u n ,  (14) 

β > 0 is a structural parameter. 
The third type of Archimedean copulas presented in 

this paper is the Frank copula. This type of copulas is 
completely tail independent [16,17]. The dependence 
structure given by a copula of this type is similar to one 
represented by a Normal copula even though the dependence 
 

 

Figure 4. Gumbel copula with structural parameter β = 2. 
 

 

Figure 5. Cook-Johnson copula with structural parameter  
β = 2. 
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in the tail is even lower (see Figure 6). Equation (15) 
shows the definition of Frank copulas: 
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(15) 

β > 0 is a structural parameter. 
 
4. Determination of Copulas and 

Multivariate Distributions 
 
Using the concept of copulas for capturing dependencies 
between risks in an insurance company, first of all the 
corresponding copulas have to be determined. Two al- 
ternative approaches for achieving this are parametric 
and non-parametric approaches. Using a parametric ap- 
proach means to first determine the respective type of 
copula [10]. As shown above the various types of copu- 
las describe a different type of dependence structure each. 
Therefore it is necessary to choose that type of copulas 
that best fits the actual dependence structure. We can 
follow a procedure for the bivariate case established by 
Genest and Rivest [18] which uses the dependency ratios 
for identifying a type of Archimedean copula that fits the 
observations. The procedure is carried out in 3 steps [19]: 

1) Estimation of Kendall’s τ out of the observations 
(X11, X21), , (X1n, X2n). 

2) Define an intermediate random variable Zi = F(X1i, 
X2i) with distribution function K. Genest, C. and Rivest, 
L.-P. (1993) showed that the following statement holds: 

   
 
z

K z z
z




 


            (16) 

 

 

Figure 6. Frank copula with structural parameter β = 2. 

 z  is the generator of (and therefore determines) an 

Archimedean copula. 
Construct a non-parametric estimate of K: 
a) Define pseudo observations Zi = {number of (X1j, 

X2j) such that X1j < X1i and X2j < X2i}/(n – 1) for i = 1, ,n. 
b) Estimate of K is Kn(z) = {number of Zi ≤ 

z}/{number of Zi}. 
3) Construct parametric estimate of K using the rela-

tionship of (16): Use the estimate of Kendall’s τ from 
Step 0 and the given relation between Kendall’s τ and the 
generator of a specific type of a copula  z  to come 
to a parametric estimate of K. 

Repeat step three with generators for different types of 
copulas. At the end choose that type of copula where the 
parametric estimate of K most closely resembles the 
non-parametric estimate of K calculated in Step 0. 

Once the type of copula is chosen, the parameters of 
the copula have to be determined as a best-estimate. This 
can be achieved in course of the estimation of the pa- 
rameters of the marginal distribution by using the maxi- 
mum likelihood method [16]. Since one of the advan- 
tages of using copulas is the separate estimation of the 
marginal distributions and the dependence structure also 
a two-step approach can be applied: in the first step the 
parameters of the marginal distributions are estimated and 
in a second step those of the copula. 

Using the non-parametric approach means determining 
an empirical copula out of the empirical data and therefore 
not determining a specific copula type in advance [10]. 

5. Assessment 

In the previous sections we provided an overview over 
dependency ratios and copulas, two—very different—con- 
cepts for describing dependencies between risks. Both of 
these concepts will be assessed in the following. How- 
ever, first we will introduce 5 criteria that dependency 
ratios should meet. 

5.1. Criteria for Dependency Ratios 

The following five criteria are desirable for a dependency 
ratio. Therefore we will first explain the criteria and af- 
terwards match the introduced dependency ratios with 
them. If δ( ) is a dependency ratio, the criteria can be 
described as the following: 
1) symmetry: δ(X,Y) = δ(Y,X); 
2) standardization: –1 ≤ δ(X,Y) ≤ 1; 
3) conclusion based on and on co- and countermono- 

tonity; 
a) δ(X,Y) = 1   X,Y are comonotone; 
b) δ(X,Y) = –1   X,Y are countermonotone; 
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4) Invariance with regard to strictly monotone trans- 
formations: For a transformation  strictly mono- 
tone on the codomain of X the following holds: 

:T 

a) δ(T(X),Y) = δ(X,Y), if T is strictly monotonic in- 
creasing; 

b) δ(T(X),Y) = –δ(X,Y), if T is strictly monotonic de- 
creasing; 

5) conclusion based on and on independence 
δ(X,Y) = 0  X,Y are independent. 

The first criterion is desirable for dependency ratios 
because otherwise the resulting dependency ratio would 
depend on the order of the considered risks. If a depend- 
ency ratio fulfills the second criterion, this will lead to an 
unique measure which makes dependencies between pairs 
of random variables comparable. Conclusion based on and 
on co- and countermonotonity helps to immediately de- 
tect strongly dependent random variables. 

Invariance with regard to strictly monotone transfor- 
mations is mainly important if the dependency ratio is 
used for practical applications. If a random variable X is 
transformed into another variable T(X) using a strictly 
monotone function T, the dependence structure between 
X and a second random variable Y will be the same as the 
dependence structure between T(X) and Y. Therefore also 
the dependency ratio should take on the same value for 
T(X) and Y as for X and Y. The last criterion makes sure 
that also independency between random variables can be 
detected. 
 
5.2. Assessment of the Introduced Concepts 
 
First, we want to assess the dependency ratios. The most 
popular of those—the Pearson linear correlation coeffi- 
cient—only fulfills the first two criteria of the above 
mentioned five. From this point of view it is inferior com- 
pared to Spearman’s rank correlation and Kendall’s τ which 
fulfill the first four of the mentioned five criteria. Further- 
more, the Pearson linear correlation coefficient is defined 
only if the variances of the random variables are finite.  

Another advantage of both Spearman’s rank correla- 
tion and Kendall’s τ is that they do not only measure the 
linear dependency between random variables, but also 
the monotone dependence in common [13]. Their calcu- 
lation may be sometimes easier, but sometimes more 
difficult than the calculation of the Pearson linear corre- 
lation coefficient. Using e. g. multivariate normal distri- 
butions or multivariate Student distributions the calculation 
of the momentum based linear correlation coefficient is 
easier. However, if we consider multivariate distributions 
that have a dependence structure represented by a Gum- 
bel copula, the calculation of Spearman’s rank correla- 
tion and Kendall’s τ might be easier. 

The coefficient of tail dependence introduced in Section 
2 should not be compared to one of the above mentioned 

three dependency ratios, since it focuses only on the de- 
pendency in the tails of a distribution. It should therefore be 
applied if it is required by the respective problem. This is 
the case mainly if extreme events are modeled. Therefore 
we think that matching the five criteria with the coeffi- 
cient of tail dependence is not reasonable. 

Copulas can be used to model multivariate distributions 
which fully describe the dependence structure. In this way a 
whole picture of the aggregate risk an insurer is facing. 
The fact that a given copula implies a certain value for 
the correlation, but in general not the other way around, 
makes clear that a copula contains much more information 
than a dependency ratio. Especially, when dependencies are 
not linear, but are located in the tails, risk could be sig- 
nificantly underestimated if incomplete information is 
considered. 

From a technical point of view copulas offer the op- 
portunity to first model the marginal distribution func- 
tions representing the single risks and in a second step 
modeling the dependence structure independently from 
the single risks. Furthermore, similar to Spearman’s rank 
correlation and Kendall’s τ copulas are invariant with 
regard to strictly monotone transformations [11]. A fur- 
ther technical advantage of using copulas instead of di- 
rectly modeling multivariate distributions is that the mar- 
ginal distribution function can then be of any type, whe- 
reas if the multivariate distribution function was directly 
modeled, each of the marginal distribution functions would 
have to be of the same type. Besides, directly modeling 
the multivariate distribution function presumes that a 
dependency ratio is given and therefore once more allows 
only the use of only a ratio as a dependency measurement. 

In summary, we can say that the concept of copulas is 
clearly superior with regard to the quality of estimating 
dependencies between risks. Even though ratios currently 
have advantages in their practical usage—if the usage of 
copulas becomes more popular in future, these advan- 
tages of dependency ratios will be likely to disappear. 

All in all we can say that since dependency ratios do 
not provide a complete picture of the actual situation 
with regard to risk dependencies, therefore provide sig- 
nificant less information and finally may lead to an un- 
derestimation of the actual risk of an insurance company, 
copulas should be used to describe dependencies between 
risks in an insurance company if possible. Particularly 
for the option of introducing an internal risk model the 
application of copulas seems to be suitable. 
 
6. Solvency II 
 
6.1. Consideration of Risk Dependencies in 

Solvency II 
 
According to the new European solvency system (Solvency 
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II) insurance undertakings will have to determine the so 
called Solvency Capital Requirement (SCR) which re- 
flects the amount of capital that is necessary to limit the 
probability of ruin to 0.5%. That implies that they will 
also have to determine their overall loss distribution fun- 
ction. Hereby at least the following risks have to be con- 
sidered [1]: 
• non-life underwriting risk; 
• life underwriting risk; 
• health underwriting risk; 
• market risk; 
• credit risk; 
• operational risk. 

Insurers will be able to either use a standard approach 
or to determine the Solvency Capital Requirement or parts 
thereof by the use of an internal model. In the latter case 
the internal model has to be approved by the supervisory 
authorities. Using the standard approach, the SCR is the 
sum of the Basic Solvency Capital Requirement, the ca- 
pital requirement for operational risk and the adjustment 
for the loss-absorbing capacity of technical provisions 
and deferred taxes. 

The Basic Solvency Capital Requirement consists at 
least of a risk module for non-life underwriting risk, for 
life underwriting risk, for health underwriting risk, for 
market risk and for counterparty default risk each. These 
risk modules have to be split into sub-modules [1]. The 
sub-modules shall be aggregated using the same approach 
as for the aggregation of the risk modules that is descri- 
bed in the following. 

After having been determined, the risk modules have 
to be aggregated. The Solvency II directive clearly states 
that for the standard approach this has to be done by us-
ing correlations and the following Equation (17): 

,,
* *  i j i ji j

BSCR SCR SCR ,      (17) 

BSCR is the Basic Solvency Capital Requirement, SCRi 
respectively SCRj are risk-modules i respectively j and 
ρi,j is the correlation between them.  

Table 1 shows the correlation matrix for aggregating 
risk modules in Solvency II, where i,j = 1: risk module 

for market risk, i,j = 2: risk module for counterparty de-
fault risk, i,j = 3: risk module for life underwriting risk, 
i,j = 4: risk module for health underwriting

 

 risk, i,j = 5: 
sk module for non-life underwriting risk. 

6.2. ules with 
Regard to Risk Dependencies 

capital to the Basic Solvency Capital Re-
qu

 for small and medium-sized insurance un- 
de

ncies and that other dependency ratios should 
be preferred.

Table 1. Correlation matrix for aggregating risk modules in Solvency II. 

ri
 

 Assessment of the Solvency II R

 
On a first level the Basic Solvency Capital Requirement, 
the capital requirement for operational risk and the ad- 
justment for the loss-absorbing capacity of technical pro- 
visions and deferred taxes have to be aggregated. This is  
done simply by adding the capital requirements which 
assumes that those risks are fully dependent. However, 
the assumption that full dependence between e.g. the op- 
erational risk and the risks covered by the BSCR is not 
realistic and therefore the result for the SCR will be too 
high. However, the amount of solvency capital for the 
operational risk is limited [1]. Against this background we 
think that it would be sensible to only consider the op- 
erational risk qualitatively like Switzerland has decided 
in the Swiss Solvency Test instead of simply adding an 
amount of 

irement. 
The Solvency II framework closely recognizes depen- 

dencies at least in the calculation of the BSCR. However, 
the standard approach uses the concept of linear correla- 
tions to consider dependencies between the risk modules 
and not copulas which is certainly due to the application 
of the proportionality principle in the Solvency II direc- 
tive which has to assure that the regulation is not too 
burdensome

rtakings. 
Another shortcoming of the regulation set is that the 

given values for the correlations which are shown in Ta- 
ble 1 seem to be highhanded and do not reflect the spe- 
cific situation of an insurance company. Moreover, we 
have shown in Section 5 that some serious underestima- 
tions may occur if linear correlations are used for meas- 
uring depende

j = 1: market risk 
underwriting risk underwriting risk 

j = 5: non-life 

underwriting risk 

j = 2: counterparty j = 3: life j = 4: health 
ji ,  

default risk 

i = 1: market risk 1 0.25 0.25 0.25 0.25 

i = 2: counterparty default risk 0.  

0  

k 0.25 

 

25 1 0.25 0.25 0.5 

i = 3: life underwriting risk 0.25 .25 1 0.25 0 

i = 4: health underwriting ris 0.25 0.25 1 0 

i = 5: non-life underwriting risk 0.25 0.5 0 0 1 
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However, the Solvency II ves the possi- 

bility to apply also the conc to capture de- 
odel. T supervisory aut

mp
a

ers which measure the dependencies
be

ve
us

pean Par-
liament and of the Council on the Taking-Up and Pursuit 

ss of Insurance and Reinsurance,” 2009. 
nsilium.europa.eu/pdf/en/09/st03/ 

Valdez, “Understanding Relation-

T of

78, No. 6, 2007, pp. 
doi:10.1080/00949650701255834

 framework gi
ept of copulas 

pendencies in an internal m
ties may even require the co

he 
anies to apply an inter- 

ho- 
ri
n l model for calculating the Solvency Capital Require- 
ment, or a part thereof, if it is inappropriate to calculate 
the Solvency Capital Requirement using the standard ap- 
proach [1]. That means that if the approach for consider- 
ing dependencies that is given in the standard model does 
not lead to a realistic picture of the actual risk situation 
of the company, the supervisory authorities may oblige 
the company to use a more sophisticated way for captur- 
ing dependencies. 

Since the Solvency II framework does not use copulas 
in the standard formula for reason of the proportionality 
principle, we recommend that Solvency II should at least 
reward those insur  

tween their risks in a more sophisticated way. This could 
be achieved either by reducing the SCR for those insur- 
ers or the other way around by imposing higher require- 
ments on companies which use the rudimental standard 
approach. That would also be justifiable from an econo- 
mical point of view: Companies that use linear correlations 
may severely underestimate their overall risk and should 
therefore be protected by higher capital requirements. 

It would also make sense and give additional incen- 
tives to explicitly mention the concept of copulas in the 
directive and to rework the standard formula once the de- 
velopment in multivariate modeling allows the effecti  

e of copulas also for smaller insurance companies [20]. 
Moreover, we have discovered that the given correlations 
do not seem to reflect an actual average of the insurance 
industry. So, if correlations are used, they should at least 
be actually measured in the insurance industry. 
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