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Abstract 

We consider a continuum model for the evolution of an epitaxially-strained 
dislocation-free anisotropic thin solid film on isotropic deformable substrate 
in the absence of vapor deposition. By using a thin film approximation we de-
rived a nonlinear evolution equation. We examined the nonlinear evolution 
equation and found that there is a critical film thickness below which every 
film thickness is stable and a critical wave number above which every film 
thickness is stable. 
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1. Introduction 

Spontaneously formed periodic domain structures of nanoscale islands (quan-
tum dots) in epitaxially strained thin solid films have become a subject of intense 
theoretical and experimental study. These islands have unique, optical, electron-
ic and magnetic properties which signify their importance in quantum dot ap-
plications [1] [2]. These islands are small (a few nanometers) in size and hence 
difficult to prepare by standard lithographic techniques. One promising way is 
the formation of islands by a Stranski-Krastanow growth process whereby the 
planar film undergoes a morphological instability [3] [4] [5] [6]. During hete-
roepitaxial growth, the instability of surfaces under strain and subsequent island 
formation is caused by the competition between the surface free energy and the 
strain energy of the system [7] [8] [9] [10] [11]. 

In experimental study of the nonlinear evolution of the stress-driven instabil-
ity of thick films the formation of deep, cusp-like grooves was observed [12] [13]. 

How to cite this paper: Tekalign, W. and 
Atena, A. (2018) Thin Film Evolution Equ-
ation for a Strained Anisotropic Solid Film 
on a Deformable Isotropic Substrate. Jour-
nal of Applied Mathematics and Physics, 6, 
864-879.  
https://doi.org/10.4236/jamp.2018.64074   
 
Received: March 23, 2018 
Accepted: April 23, 2018 
Published: April 26, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.64074
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.64074
http://creativecommons.org/licenses/by/4.0/


W. Tekalign, A. Atena 
 

 

DOI: 10.4236/jamp.2018.64074 865 Journal of Applied Mathematics and Physics 

 

In [14] this instability was studied numerically and they showed that the surface 
instability creates a groove that sharpens as it grows deeper. In [15] a fully non-
linear bifurcation analysis was performed and tracking the branch of steady state 
solutions numerically they found that the steady state solution branch termi-
nates as the solutions form a cusp singularity. 

In a thin film, however, cusp formation is suppressed as the surface ap-
proaches the film substrate interface. The different stress fields and the different 
surface energies of the film and the substrate affect the surface morphology and 
the film-substrate interface is prevented from being exposed when the wetting 
criterion is satisfied. Stranski-Krastanow islands will be formed in this case [16]. 
The steady states of island shapes were studied by many researchers [17]-[22]. 

While the understanding of some of the theoretical and modeling issues is 
well developed, the implementation of the models as large-scale numerical si-
mulations is not yet feasible. The central issue is that the dynamics of the surface 
morphology is coupled to the elastic strain in the system, so dynamic models 
require solving the elasticity problems throughout the film and substrate at each 
time step and are limited by storage limitations for 3-dimensional problem. Si-
mulations involving the full elasticity problem are limited to one or few islands 
[23] [24]. Only one recent work [25] explored a large number of islands using a 
large-scale 3-dimensional calculation. This work uses the same elastic constants 
for both the film and the substrate. In [26] the evolution of a large number of 
islands was obtained using small slope approximation on a rigid substrate. 

In [27] we developed an approximate solution to the elasticity problem which 
is valid when the film is thin. This elasticity solution is valid for arbitrary elastic 
constants in the film and substrate. The resulting elasticity solution then re-
moves the necessity for solving the full 3-dimensional elasticity problem numer-
ically, and may provide a means for implementing large-scale simulations. Our 
work here is to include anisotropic properties of the film to the evolution equa-
tion to study the formation of islands. Within this framework, in [28] a 
non-linear evolution equation with a second-order approximation for the stress 
field and a nonlinear wetting potential for the interface was considered and it 
was claimed that the combined effect of nonlinear stress and wetting can termi-
nate the coarsening process and lead to the formation of arrays of equal-sized 
islands. And, [29], found that wetting interaction can damp the long-wave per-
turbations and lead to Turing-type instability, further a weakly nonlinear analy-
sis showed a possibility for spatially periodic arrays of quantum dots which are 
unstable. 

The rest of the paper is organized as follows. In Section 2 we present the full 
nonlinear model for morphological evolution in thin solid films. In Sections 3 
and 4 we describe the thin-film scalings and derive a systematic approximation 
to find the dominant terms in thin film evolution. In Section 5 we analyze the 
stability properties of this reduced equation and finally in Section 6 we summar-
ize our results. 
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2. Model for Film Growth 

We begin with the model from [6]. This model describes the evolution of a 
strained film due to surface diffusion in response to the driving forces of elastic 
strain energy and surface energy. We consider here the simple case of annealing 
of a film (no vapor deposition). The film lies in ( )0 , ,z h x y t< < , the vapor in 

( ), ,z h x y t> , and the substrate occupies 0z < . The vapor is taken to be at zero 
pressure The states of stress and strain in a deformed crystal being idealized as a 
continuum are characterized by symmetric second-rank tensors ijσ  and ijE , 
respectively, each comprising six independent components. Hooke’s law of li-
near elasticity for the most general anisotropic solid expresses each component 
of the stress tensor linearly in terms of all components of the strain tensor in the 
form  

ij ijkl ijc Eσ =                             (1) 

where ijklc  is the array of elastic stiffness constants. Each of the nine equations 
for a stress component involves nine material parameters. The fourth-order 
tensor ijklc  comprises 81 components. The symmetry of the stress and strain 
tensors further imply that the components of the stiffness tensor must satisfy 

ijkl ijlk jiklc c c= = . As a consequence, the number of independent elastic constants 
is reduced from 81 to 36. Using this fact and rewriting the stress and strain using 
their symmetric properties, 1 can be written in a simpler format  

.i ij ic Eσ =                              (2) 

Cubic symmetry is a property of crystals that possess three fourfold axes of 
rotational symmetry, the cube axes, and four threefold axes of rotational sym-
metry, the cube diagonals. Alternatively, cubic symmetry may be described as 
invariance of material structure under a translation of a certain distance in any 
of three mutually orthogonal directions; these directions are usually identified as 
the cube axes. Consider a cubic material for which the [100], [010] and [001] 
cube axes are parallel to the axes of an underlying rectangular x; y; z-coordinate 
system. For this case, it is evident that  

11 22 33 12 23 31 44 55 66; ;c c c c c c c c c= = = = = =                (3) 

All the other elastic constants vanish because of the fourfold rotational sym-
metry of the reference axes. Hence elastic response of any cubic crystal is cha-
racterized by three independent elastic constants and the stress-strain relation-
ship is given by  

11 11 11 12 22 12 33c E c E c Eσ = + +                      (4) 

22 12 11 11 22 12 33c E c E c Eσ = + +                      (5) 

33 12 11 12 22 11 33c E c E c Eσ = + +                      (6) 

23 44 232c Eσ =                           (7) 

31 44 312c Eσ =                           (8) 

https://doi.org/10.4236/jamp.2018.64074


W. Tekalign, A. Atena 
 

 

DOI: 10.4236/jamp.2018.64074 867 Journal of Applied Mathematics and Physics 

 

12 44 122c Eσ =                           (9) 

where 11 12, c c  and 44c  are the elastic stiffnesses of the material and  

( )1 .
2ij i j j iE u u= ∂ + ∂                       (10) 

Here iu  is the ith Cartesian component of the displacement vector where the 
index 1,2,3i =  corresponds to the , ,x y z  coordinates respectively, and j∂  
indicates partial derivative with respect to the jth coordinate. The quantities 

, ,i ij iju Eσ  are defined separately in the film (F) and substrate (S). Since me-
chanical equilibrium exists within the film and the substrate,  

0 in F,S.j ijσ∂ =                        (11) 

Upon substituting the formulas for stress and strain in these equations we ob-
tain Navier’s equations for the equilibrium displacements, which is valid both in 
the substrate and film:  

( ) ( )
22 2 2 2

31 2 1 1
11 12 44 44 12 44 442 2 2 0

uu u u uc c c c c c c
x y x zx y z

∂∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂∂ ∂ ∂
     (12) 

( ) ( )
22 2 2 2

32 1 2 2
44 12 44 11 12 44 442 2 2 0

uu u u uc c c c c c c
x y y zx y z

∂∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂∂ ∂ ∂
    (13) 

( ) ( )
2 2 22 2

3 3 31 2
44 12 44 44 12 44 112 2 2 0

u u uu uc c c c c c c
x z y zx y z

∂ ∂ ∂∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂∂ ∂ ∂
     (14) 

The stress balance boundary conditions at the film free surface,  

( )ˆ 0 on , ,F
ij jn z h x y tσ = =                   (15) 

where  

( )
2 2

, ,1
ˆ

1
x y

x y

h h
n

h h

− −
=

+ +
                         (16) 

is the unit normal to the film surface and at the film-substrate interface read  

ˆ ˆ 0  on 0f s
ij j ij jn n zσ σ− = =                    (17) 

The substrate is taken to be semi-infinite, and so the strains vanish far beneath 
the film,  

0 as .S
ijE z→ →−∞                       (18) 

Finally on 0z =  (the film/substrate interface), continuity of displacement 
taking into account the lattice mismatch  is  

.
0

F S
i i

x
u u y

 
 = +  
  

                           (19) 

The evolution equation is given by surface diffusion in response to a chemical 
potential μ,  
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( )2 21 S
h D h
t

µ
∂

= + ∇ ∇
∂

                     (20) 

where 2
S∇  the surface Laplacian,  

( ) ( )

( ) ( ) ( )

2 2 2 2 2
2 2

2 2

2 2

1 1 2 1
1

1 2 1

1

S y x x y x y x y
x y

y xx x y xy x yy
x x y y

x y

h h h h
h h

h h h h h h h
h h

h h

∇ = + ∂ − ∂ ∂ + + ∂+ +

+ − + +
− ∂ + ∂

+ + 

        (21) 

D is a constant related to surface diffusion, and the surface chemical potential 
is  

( )hµ γκ ω= + +                         (22) 

where  is the elastic energy density, γκ  represents the surface energy, and 
( )hω  is the wetting energy. In the above,  

( )1 on , ,
2

F F
ij ijE z h x y tσ= =                    (23) 

and the curvature of the film κ is given by  

( ) ( )
( )

2 2

3/22 2

1 2 1
.

1

y xx x y xy x yy

x y

h h h h h h h

h h
κ

+ − + +
= −

+ +
                (24) 

For the wetting energy ( )hω  we use the two-layer wetting model where the 
surface energy depends on the film thickness according to  

( ) ( )e wh
F S Fh δγ γ γ γ −= + −                      (25) 

The model for the wetting energy ( )hω  is from [30], based on a surface 
energy which depends on the film thickness and undergoes a rapid transition 
from Fγ  to Sγ  over a length scale δ:  

( ) ( ) ( ) ( )1 1 ,
2 2F S F Sh f hγ γ γ γ γ δ= + + −               (26) 

which gives the wetting term,  

( ) ( )yh n hω γ ′=                         (27) 

where  

( ) ( )2 arctan
π

f h hδ δ=                     (28) 

and  

.S Fγ γ γ∆ = −                         (29) 

Hence we get  

( ) 2 22

1 .
π1

h
hh

γ δ
ω

δ
− ∆

=
++ ∇

                  (30) 

Equation (20) is a non-linear moving boundary problem coupled to partial 
differential equations for the elasticity problem (12)-(19). 
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3. Steady State Solutions 

The governing equations in Section 2 describe the stress state and surface evolu-
tion of an epitaxially strained film. They have a basic-state solution correspond-
ing to a completely relaxed, stress-free substrate,  

0,  0   for , 1, 2,3s s
i iju i jσ= = =                   (31) 

and a planar film with spatially uniform stress and strain,  

12
1 2 3

11

2
,  ,  f f f cu x u y u z

c
 −

= = =  
 


                 (32) 

11 22 001 33,  0f f fMσ σ σ= = =                      (33) 

where  
2
12

001 11 12
11

2 cM c c
c

 
= + − 
 

                    (34) 

which is the biaxial modulus in the plane with normal in the (001) material di-
rection (in our case (001) material direction is the direction parallel to the 
z-axis). 

The total elastic energy store in the film due to epitaxial and wetting stresses is  

2
0 001

1
2

f f
ij ijE Mσ= =                      (35) 

In Section 5 we perform a linear stability analysis of this basic state of an epi-
taxial film. 

4. Nondimensional Anisotropic Governing Equations 

Here we derive the evolution equation based on approximation that wavelength 
of surface undulations is large compared to the characteristic film thickness 0H . 
Define  

0 1
H
l

α =                            (36) 

where l is characteristic length scale in ( ),x y . Let us use the following scalings:  

( ) ( ), , , ,i i

h Hl
x lX
y lY
z lZ
t T
u x y z lU X Y Z

l

α

α
τ

δ δ

=


= 
= = 
= 
=


= 

                   (37) 

Next let us write the elastic stresses, strains and elastic energy density as ex-
pansions in α:  
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( ) ( ) ( )2
0 1 2ij ij ij ijσ σ α σ α σ= + + +               (38) 

( ) ( ) ( )2
0 1 2ij ij ij ijE E E Eα α= + + +               (39) 

2
0 1 2α α= + + +                       (40) 

Expanding the other quantities in (9) we obtain  

( ) ((
( ))) ( )

3 2 2

2 5

1 2

3 2

XX YY Y XX X Y XY X YY

XX YY

H H H H H H H H H
l

H H H

κ α α

α

= − + + − +

− ∇ + +
     (41) 

and the surface Laplacian has the expansion,  

( ) (
( )( ) ( )) ( )

2 2 2 2 2 2 2 2
2

2 2 2 4

1 2

.

S X Y Y X X Y X Y X Y

XX YY X X Y Y X Y

H H H H
l

H H H H H

α

α

∇ = ∂ + ∂ + ∂ − ∂ ∂ + ∂

+ + ∂ + ∂ − ∇ ∂ + ∂ +


    (42) 

We choose the time scale τ as  
4l

D
τ

γ
=                             (43) 

and length scale l as  

0

.l γ
=


                            (44) 

We also assume that the characteristic film thickness is much larger than the 
wetting layer thickness, so  

.α δ                             (45) 

Hence (30) can be written as:  

( )
2

22
2 2 2 2

1~ 1 .
π 2

lH H
l H H
γ δ δ

ω α α
α α

 −∆
− ∇ − + 

 

 

      (46) 

To balance the wetting energy term ( )2δ α  with the surface energy term 
( )α  in (20) we choose  

( )3δ α=                             (47) 

and define  
* 3δ δ α=                             (48) 

where ( )* 1δ = . Then defining  

( )1 ,l lHω ω α
α γ

=                         (49) 

we obtain  

( )2 4
0 2ω ω α ω α= + +                          (50) 

where  
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*

0 2π H
γ δ

ω
γ

−∆
=                          (51) 

*
2

2 2

1 .
2 π

H
H

γ δ
ω

γ
−∆

= ∇                      (52) 

We substitute these expansions into the evolution Equation (20) to obtain  

( )( ) ( ) ( )2 2 2 2
1 0 2

H E H E
T

ω α α
∂

= ∇ −∇ + + ∇ +
∂

            (53) 

where  
1

1
0

l
γ

= =





                        (54) 

and  
2 2

2
0

.l
γ

= =

 



                       (55) 

Equation (53) is the thin film evolution equation. It depends on elastic re-
sponse through 1

  and 2
 , which we now determine. 

4.1. Elastic Response of Film  

Now we find 1
  by solving the elasticity problem. Using scalings given in (37), 

(12)-(14) can be written as:  

( )

( )

2 2 2 2
1 1 1 2

11 44 44 12 442 2 2 2

2
3

12 44

1

1 0,

U U U Uc c c c c
X YX Y Z

Uc c
X Z

α

α

∂ ∂ ∂ ∂
+ + + +

∂ ∂∂ ∂ ∂
∂

+ + =
∂ ∂

         (56) 

( )

( )

2 2 2 2
2 2 2 1

44 11 44 12 442 2 2 2

2
3

12 44

1

1 0,

U U U Uc c c c c
X YX Y Z

Uc c
Y Z

α

α

∂ ∂ ∂ ∂
+ + + +

∂ ∂∂ ∂ ∂
∂

+ + =
∂ ∂

        (57) 

( )

( )

2 2 2 2
3 3 3 1

44 44 11 12 442 2 2 2

2
2

12 44

1 1

1 0.

U U U Uc c c c c
X ZX Y Z

Uc c
Y Z

αα

α

∂ ∂ ∂ ∂
+ + + +

∂ ∂∂ ∂ ∂
∂

+ + =
∂ ∂

        (58) 

The same way we can write stress and strain using (37) and from the boun-
dary condition (15) we obtain:  

31 2 1 2
11 12 12 44

31
44

1

1 0,

X Y
UU U U Uc c c H c H

X Y Z Y X
UUc

Z X

α α
α

α

∂∂ ∂ ∂ ∂   + + + +  ∂ ∂ ∂ ∂ ∂  
∂∂ − + = ∂ ∂ 

   (59) 

31 2 1 2
44 12 11 12

32
44

1

1 0,

X Y
UU U U Uc H c c c H

Y X X Y Z
UUc

Z Y

α α
α

α

∂∂ ∂ ∂ ∂  + + + +   ∂ ∂ ∂ ∂ ∂   
∂∂ − + = ∂ ∂ 

    (60) 
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3 31 2
44 44

31 2
12 12 11

1 1

1 0

X Y
U UU Uc H c H

Z X Z Y
UU Uc c c

X Y Z

α α
α α

α

∂ ∂∂ ∂   + + +   ∂ ∂ ∂ ∂   
∂∂ ∂ − + + = ∂ ∂ ∂ 

       (61) 

on ( ), ,Z H X Y T= . 
We proceed by finding elasticity solutions in the film satisfying the boundary 

condition on ( ), ,Z H X Y T= . These solutions have unknown constants to be 
determined from the boundary conditions on 0z = . Then we construct elastic-
ity solutions in the substrate to determine these constants. Finally we substitute 
the final elasticity solutions into evolution equation. 

Now let us expand the displacements U in α,  
2

0 1 2i i i iU U U Uα α= + + +                   (62) 

We substitute (62) in (56)-(58) and compare by order in α. 
At ( )1  we obtain:  

2
10

44 2

2
20

44 2

2
30

11 2

0

0

0

Uc
Z
Uc
Z
Uc
Z

∂
= ∂ 

∂
= 

∂ 
∂

= 
∂ 

                        (63) 

with the boundary conditions,  

10
44

20
44

30
11

0 on

0 on

0 on

Uc Z H
Z

Uc Z H
Z

Uc Z H
Z

∂ − = = ∂ 
∂ − = = 
∂ 

∂
− = = ∂ 

                   (64) 

We expect the ( )1  strain tensor is  

12 11

0 0
0 0
0 0 2

F

c c

 
 =  
 − 

E




                    (65) 

and solving (63) and using (64) we obtain ( )1  solution:  

10

20

30 0

U X
U Y
U

= 
= 
= 


                           (66) 

Solving the ( )α  differential equations we obtain  

( ) ( )1 1 1, , , 1, 2,3.i i iU B X Y Z A X Y i= + =              (67) 

Using ( )α  boundary conditions,  

11 0,B =                             (68) 
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21 0B =                              (69) 

and  

12
31

11

2 .cB
c

−
=


                          (70) 

The same way using the ( )2α  differential equations we obtain  

( ) ( )2 2 2, , for 1,2,3.i i iU B X Y Z A X Y i= + =             (71) 

And the ( )2α  boundary conditions gives us,  

2
12

12 11 12 31,
44 11

2 ,X X
cB c c H A

c c
 

= + − − 
 

                (72) 

2
12

22 11 12 31,
44 11

2 ,Y Y
cB c c H A

c c
 

= + − − 
 

                (73) 

and  

( )12
32 11, 21,

11

.X Y
cB A A
c

= − +                    (74) 

Returning to our expansion for   we obtain  
2

2 212
0 11 12 001

11

2 cc c M
c

 
= + − ≡ 

 
                   (75) 

and  

( )( ) 11 21
1 11 12 11 12

11

2 .A Ac c c c
c X Y

∂ ∂ = − + + ∂ ∂ 


                (76) 

4.2. Elastic Response of Substrate  

The functions 11A  and 21A  appearing in 1  are determined by the response 
of the substrate. Since the substrate is a semi-infinite domain, we can seek solu-
tions in terms of Fourier transforms in ( ),X Y . In the substrate let  

( ) ( )

2 2

, , , ,

, 1, 2,3i i

X Y

x y z l X Y Z

u lU i

a a a

=
= = 


= + 



                      (77) 

The elasticity Equations (12)-(14) and far field condition (18) become  

( )

( )

2 2 2 2
1 1 1 2

11 44 44 12 442 2 2

2
3

12 44 0,

S S S S S

S S

U U U Uc c c c c
X YX Y Z

Uc c
X Z

∂ ∂ ∂ ∂
+ + + +

∂ ∂∂ ∂ ∂
∂

+ + =
∂ ∂

         (78) 

( )

( )

2 2 2 2
2 2 2 1

44 11 44 12 442 2 2

2
3

12 44 0,

S S S S S

S S

U U U Uc c c c c
X YX Y Z

Uc c
Y Z

∂ ∂ ∂ ∂
+ + + +

∂ ∂∂ ∂ ∂
∂

+ + =
∂ ∂

         (79) 
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( )

( )

2 2 2 2
3 3 3 1

44 44 11 12 442 2 2

2
2

12 44 0.

S S S S S

S S

U U U Uc c c c c
X ZX Y Z

Uc c
Y Z

∂ ∂ ∂ ∂
+ + + +

∂ ∂∂ ∂ ∂
∂

+ + =
∂ ∂

         (80) 

and  
0 as .iU Z→ →−∞                     (81) 

Using the Fourier transform to define ( )ˆ ,X YH a a  and ( )ˆ , ,i X YU a a Z  we 
have,  

( )

( )

( )
( )2

ˆ exp d d

ˆ exp d d

1ˆ exp d d
2π

X Y X Y

S S
i i X Y X Y

S S
i i X Y

H H ia X ia Y a a

U U ia X ia Y a a

U U ia X ia Y X Y

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞


= − −

= − − 

= + 


∫ ∫

∫ ∫

∫ ∫

        (82) 

Then using (82) we write (78)-(80) as  

( ) ( )
( )

2 2 2
44 1 11 44 1 12 44 2

12 44 3

ˆ ˆ ˆ

ˆ 0,

S S S S S
X Y X YZ

S S
X Z

c U a c a c U c c a a U

ia c c U

∂ − + − +

− + ∂ =





         (83) 

( ) ( )
( )

2 2 2
44 2 44 11 2 12 44 1

12 44 3

ˆ ˆ ˆ

ˆ 0,

S S S S S
X Y X YZ

S S
Y Z

c U a c a c U c c a a U

ia c c U

∂ − + − +

− + ∂ =





         (84) 

and  

( )( )2 2
11 3 44 3 12 44 1 2

ˆ ˆ ˆ ˆ 0S S S S
X YZ Z Zc U a c U i c c a U a U∂ − − + ∂ + ∂ =

  

      (85) 

in 0Z < . With the condition that  
ˆ 0 as .S

iU Z→ →−∞                     (86) 

We expand displacement in the substrate using powers in α,  

0 1
S S S
i i iU U Uα= + +                     (87) 

with  

( )ˆ exp d d .S S
ij ij X Y X YU U ia X ia Y a a

∞ ∞

−∞ −∞
= − −∫ ∫            (88) 

Using (87) and the solution for 0
F
iU  we obtain,  

0 0, 1, 2,3.S
iU i= =                          (89) 

Using (86), (89) and (19), an ( )α  comparison gives us  

1 10 0
for 1,2,3.F S

i iZ Z
U U i

= =
= =



                 (90) 

The ( )α  solution of the form (82) satisfying (83)-(85) and (86) has the 
form  

11 1 1

21 2 2

3 331

ˆ

ˆ e e
ˆ

S

S aZ aZ

S

U

U Z

U

α β
α β
α β

          = +               

 

                     (91) 
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where iβ  is obtained from (83)-(85) in terms of iα  and iα  is obtained from 
the boundary conditions at the film/substrate interface. Then for  

( )1 1
ˆ exp d d ,i i X Y X YA A ia X ia Y a a

∞ ∞

−∞ −∞
= − −∫ ∫                (92) 

using (88) and (90)  

1
ˆ , 1, 2,3.i iA iα= =                           (93) 

The second boundary condition is (17). At ( )α  we obtain  

( ) ( )31 311 1
,F Sσ σ=                           (94) 

( ) ( )32 321 1

F Sσ σ=                            (95) 

and  

( ) ( )33 331 1

F Sσ σ=                            (96) 

which gives us a linear system of equations for 1 2, α α  and 3α . Solving this 
system we obtain  

( )1 1 1
001 3 1 3

ˆ s
X X XM ia H ia u au aµ δ− = − + +                 (97) 

( )1 1 1
001 3 2 3

ˆ s
Y Y YM ia H ia u au aµ δ− = − + +                 (98) 

and  

( ) ( )( )1 1 1 1
1 2 3 31 0.S S

X Yia U ia U aU iaν ν δ− − + − + =               (99) 

Solving (97), (98) and (99) we obtain  

1
1 001

ˆ 1s
X

s

a H iU M
a

ν
µ
−

=
                      (100) 

1
2 001

ˆ 1s
Y

s

a H iU M
a

ν
µ
−

=
                      (101) 

1
3 001

ˆ 2 1
2

s

s

HU M ν
µ
−

=
                      (102) 

Hence the Fourier transform [ ]1 1
ˆ =    can be written as  

1 0
ˆ ˆEaH= −                          (103) 

where  

001
1 .

S

SE M ν
µ
−

=                         (104) 

Hence in nondimensional form,  

1
ˆ ˆEaH= −                          (105) 

Note that the constant E contains the interaction of the elastic response of the 
anisotropic film and isotropic substrate. 

The evolution equation at ( )1  is thus  

2 2
1 2

H rH
T H

∂  = ∇ −∇ − ∂  
                   (106) 
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where  
1 1

1 1̂
ˆaEH− −   = = −                       (107) 

with the strength of the wetting energy quantified by  
*

.
π

r γδ
γ

∆
=                         (108) 

Equation (106) contains the dominant effects for thin films, derived in a 
self-consistent thin film approximation. The three terms on the right hand side, 
correspond to elastic energy ( 1

 ), surface energy ( 2H∇ ) and wetting energy 
( 2r H ). Of particular note is that in this equation elasticity is linear in H, but 
remains a non-local term in the evolution equation. In addition, the only nonli-
near contribution is from the wetting energy. 

5. Linear Stability Analysis 

To determine the stability of planar films of thickness H  we consider nor-
mal-mode perturbation with wavenumbers Xa  and Ya :  

( )ˆ exp .X YH H H T ia X ia Yσ= + + +                (109) 

We consider Ĥ H , substitute (109) into (106), and linearize to obtain the 
characteristic equation  

4 3 2
3

2 .ra Ea a
H

σ = − + −                     (110) 

When the film wets the substrate, 0r >  and a typical graph of (110) is as 
shown in Figure 1. 

In Figure 2 we plot the neutral stability condition 0σ =  for the film thick-
ness H  versus a. We see that there is a critical film thickness, cH  below  
 

 
Figure 1. Linear stability growth rate σ versus the wave number a. 
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Figure 2. Schematic of the stability diagram for the film thickness H  versus perturba-
tion wavenumber a. 

 
which every film thickness is stable,  

1 3

2

8
c

rH
E

 =  
 

                        (111) 

and there is a critical wave number, ca  above which every film thickness is sta-
ble,  

.ca E=                            (112) 

The evolution equation thus has the property that sufficiently thin films are 
stabilized by the wetting effect, but thicker films are unstable to the stress driven 
morphological instability. 

6. Summary 

We derived a self-contained evolution equation where the film thickness is 
smaller than wavelength of surface variations. Our evolution equation includes 
effects of anisotropic elastic constants for cubic symmetry in the film and iso-
tropic elastic constants in the substrate, isotropic surface energy, and wetting 
energy. This evolution equation possesses steady state solutions corresponding 
to island formation, and is a possible candidate for use in large scale simulations 
of island systems. 
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