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Abstract 
The purpose of the paper is to use fundamental theoretical and experimental 
elements of electrodynamics for deriving properties of radiation fields and of 
bound fields. A wide variety of examples prove that radiation fields and bound 
fields do not represent the same physical object. This conclusion is new. Some 
examples belong to the classical domain and others belong to the quantum 
domain. Consequences of this outcome affect several physical issues. In par-
ticular, these fields should be treated separately. For this reason, changes must 
be introduced to the present form of the fields’ Lagrangian density of quan-

tum electrodynamics, where the fields tensor F µν  is a sum of bound and 
radiation fields. Since the Lagrangian density is a key element of the theory, its 
revision may entail changes of other specific issues. The recent failure of 
quantum electrodynamics to explain the electron and the muon data of the 
proton charge radius supports this conclusion. 
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1. Introduction 

Maxwell has derived his equations of electromagnetic fields from known formu-
las of radiation-free fields which have been constructed on the basis of experi-
mental data. He has added a term called Maxwell displacement current and de-
rived a set of differential equations which are consistent with the continuity 
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equation (see [1], pp. 217-218) 
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∇ ⋅ + =
∂

J                           (1) 

A mathematical analysis of Maxwell equations yields solutions that describe 
electromagnetic radiation. At that time there was no laboratory confirmation for 
these waves. Maxwell’s electromagnetic radiation shares two important proper-
ties with light waves: They are transverse waves that travel at the speed of light in 
every inertial frame. Later, Hertz has detected electromagnetic radiations in ex-
periment [2]. These waves are now extensively used in theoretical work as well 
as in modern technology. 

This evidence shows that the scientific recognition of bound fields and of rad-
iation fields has a different history. Obviously, this fact says nothing on the 
problem of whether bound fields and radiation fields represent an identical 
physical object. This problem is the main topic of the present work. It is studied 
by an examination of relevant experimental data as well as by an analysis of the 
theory’s mathematical structure. The analysis applies to many specific examples 
where some of which belong to classical electrodynamics and others belong to 
the quantum domain. 

The variational principle plays a central role in the following discussion. This 
principle is adopted by many modern textbooks on field theory [3] [4]. For ex-
ample, it is stated that the variational principle and its Lagrangian function are 
“the foundation on which virtually all modern theories are predicated” (see [5], 
p. 353). The results of this work prove that the present form of the Lagrangian 
density of electrodynamics should be changed. Evidently, due to the primary 
role of the Lagrangian density in the theoretical structure of electrodynamics, 
many specific theoretical changes are expected to follow this conclusion. 

This work uses standard notation of relativistic expressions and a system of 
units where 1c= = . The metric is diag. (1, −1, −1, −1). The second section 
defines radiation fields and bound fields. The third section describes a wide va-
riety of examples, each of which shows inherent differences between bound 
fields and radiation fields. The fourth section discusses some results that are ob-
tained from the physical differences between these fields. The last section con-
tains concluding remarks. 

2. A Definition of Radiation Fields and Bound Fields 

A definition of radiation fields also defines bound fields, because the latter are 
the fields of a given system of charges that are not radiated. The present form of 
the Lagrangian density of electromagnetic fields together with the interaction 
term is (see [1], p. 596; [3], p. 75; [4], p. 349) 

1 ,
16πEM F F ej Aµν µ

µν µ= − −                      (2) 

where the electromagnetic field tensor is (see [1], p. 550; [3], p. 65)  
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Aµ  is the 4-potential of the fields, e denotes the electric charge and jµ  
denotes the probability 4-current. 

Let us examine a system of point charges. Actual calculations prove that the 
fields of a point charge can be derived from the Lienard-Wiechert 4-potential 
(see [1], p. 656; [3], p. 174)  

.
v

A e
R v

µ
µ α

α

=                            (4) 

Here Rµ  and vµ  denote the charge’s retarded coordinates and velocity, 
respectively. The electromagnetic fields are (see [1], p. 657; [3], p. 175)  

( )
( )

( )
( )
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3 3

1 v ee R R
R R

−
= − + × − ×  − ⋅ − ⋅

E R v R R v a
R v R v

         (5) 

and  
.R= ×B R E                            (6) 

Here R is the 3-vector that is related to the retarded 4-vector Rµ , and v and a 
denote the charge’s retarded velocity and acceleration, respectively. The first 
term of (5) and that of (6) are called velocity fields and the second ones are 
called acceleration fields. At a large enough distance (called the far zone) velocity 
fields decrease like 2R−  whereas acceleration fields decrease like 1R− . 
Therefore, velocity fields can be ignored at the far zone. 

The fields at the far zone are called radiation fields. They are obtained from 
the interference of acceleration fields of all charges of the system. These fields 
decrease like 1/R. Thus, the associated Poynting vector (see [1], p. 237, [3], p. 81)  

4π= ×S E B                            (7) 

decreases like 21 R . This is a necessary condition for the existence of radiation 
energy which is emitted from the system. And indeed, actual calculations show 
that at the far zone the fields E, B are perpendicular to each other and to the 
Poynting vector S (see [3], p. 185). In this caes, the Poynting vector (7) points 
outwards and represents the current of the radiated energy. 

The Poynting vector (7) together with energy conservation of electrodynamics 
proves the role of velocity fields. Indeed, the product of the fields in (7) shows 
that effects of velocity fields decrease either like 4R−  or like 3R− . In either case, 
velocity fields do not contribute to energy that flows outwards from the system 
of charges. Hence, energy conservation proves that velocity fields are pure 
bound fields and energy which is associated with these fields does not leave the 
charges’ vicinity. 

3. Differences between Radiation Fields and Bound Fields 

Let us examine differences between radiation fields and bound fields that have a 
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solid physical basis. For this end, electromagnetic properties of specific 
experiments are analyzed. Other examples are derived from theoretical arguments. 
Electrodynamics is a mature science and its theory successfully explains 
experimental data. The fact that this theory is used by physicists and engineers in 
their work demonstrates its reliability. Each of the items discussed in this section 
shows that radiation fields and bound fields are inherently different physical 
objects. 

3.1. Atomic States and External Fields 

Let us use the hydrogen atom as an experimental device and examine its 
interaction with external radiation fields and with external bound fields. These 
issues are regarded here as experimental procedures, because the experimenter 
controls the external fields. It is well known that quantum mechanics provides a 
good explanation of the hydrogen atom data. Therefore, results of actual 
experiments can be replaced by information which is found in quantum 
mechanical textbooks. 

Let us take the 1s ground state of the hydrogen atom whose quantum 
numbers are 0, 1 2, 1 2l s j= = = . If an incoming photon has the appropriate 
energy which is consistent with energy conservation then it induces a transition 
to the 2p excited state whose spatial angular momentum is 1l = . This is an 
example of the selection rules of this kind of transition where the difference 
between the initial angular momentum l  and the final angular momentum l′  
and between the corresponding m values are (see [6], p. 264, 265)  

1; 0, 1.l l m m′ ′− = ± − = ±                       (8) 

This process conserves angular momentum and parity. Hence, it is concluded 
that the spin/parity of the photon is 1jπ −=  (see the photon data in [7]). 

Another kind of the hydrogen atom interaction with external fields is the 
weak Zeeman effect where the ground state of the hydrogen atom is put in an 
external rather weak uniform magnetic field (see [6], pp. 292-294; [8], pp. 
476-481). Here the ground state splits and the energy of 1 2zs =  is not the 
same as that of 1 2zs = − . Unlike the photon’s case, this energy split increases 
continuously with the intensity of the external magnetic field. The parity of the 
magnetic field is even (see [1], p. 249). Therefore, another property of the 
interaction with an external magnetic field says that this interaction does not 
alter the parity of the hydrogen atom quantum state. Hence, there is a striking 
difference between a real photon and a static magnetic field. Indeed, the 
photon’s parity is odd whereas the parity of magnetic field is even. 

Parity is a well defined property of systems whose state is determined by 
strong or electromagnetic interaction. The previous examples show fundamental 
differences between radiation fields and magnetic bound fields: The parity of a 
real photon is odd whereas that of a static magnetic field is even. 

3.2. Angular Momentum 

The Zeeman effect shows another aspect of the inherent difference between 
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bound magnetic field and radiation. As shown above, the parity of the magnetic 
field is even. Therefore, its expansion in eigenfunctions of angular momentum 
contains only even values of the quantum number l  (see [6], pp. 73-74; [8], p. 
96). By contrast, it is already shown above that the spin of the photon is unity. 
Hence, angular momentum data prove that a static magnetic field and a photon 
are inherently different physical objects. 

3.3. Atomic Properties 

The interaction of an atom with external bound fields is discussed in the 
previous subsections. The following lines describe properties of bound fields 
associated with the charged particles of a free atom. Angular momentum is an 
important physical quantity which is used in classical and quantum physics. 
Evidently, atomic properties belong to the quantum domain (see [6], pp. 
141-149; [8], pp. 78-106). These textbooks demonstrate that the angular 
momentum of an atomic state is derived from an application of the angular 
momentum operator to the wave function of massive particles of the quantum 
system. Here the electromagnetic bound fields of the atomic charged particles 
make no contribution to this quantity. 

Parity is another important attribute of a quantum system whose state is 
determined by strong or by electromagnetic interactions (see [6], p. 139; [8], pp. 
94-96). Like the angular momentum case, the parity of an atomic state is derived 
from an application of the parity operator to the wave function of massive 
particles of the quantum system. Here the atomic bound fields make no 
contribution to this quantity. 

This treatment of angular momentum and of parity of atomic states has a 
solid experimental support. By contrast, fields of a real photon are not ignored 
and the selection rules (8) prove that an interaction with an incoming real 
photon changes angular momentum and parity of an atomic state. 

The following statements are derived from the examples described above: 
radiation fields are related to a genuine physical entity, which is called a real 
photon. These fields cannot be ignored in a description of their atomic interaction, 
because an interaction with a real photon changes the atomic angular momentum 
and parity. By contrast, bound fields are ignored in calculations of atomic 
angular momentum and parity. This issue demonstrates another inherent 
difference between bound fields and radiation fields. 

The fact that bound fields are ignored in a quantum calculation of angular 
momentum and parity means that if bound fields represent a particle then its 
spin and parity are 0jπ += . This is inconsistent with the spin and parity of a 
real photon, which are 1jπ −= . 

3.4. Kinematical Properties 

Special relativity and Maxwell equations are well established physical theories. 
These theories state that in every inertial frame electromagnetic radiation 
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propagate at the speed of light. 
Let us examine the bound electric field of a system that comprises one charge 

in the inertial frame where it is at rest. Like the charge itself, the electric field is 
motionless. Hence, due to the laws of special relativity, there is no inertial frame 
where this field moves at the speed of light. The same result holds for the bound 
magnetic field of a superconducting ring that carries an electric current. 

These examples show inherent differences between electromagnetic fields of 
radiation and bound electromagnetic fields. 

3.5. Lorentz Invariants of Fields 

Electromagnetic fields have two Lorentz invariants (see [3], pp. 67, 68)  

2 2
1

1
2

Inv F F B Eµν
µν= = −                        (9) 

and  

2
1 ,
2

Inv F Fµν αβ
µναβε= = ⋅E B                     (10) 

where µναβε  is the completely antisymmetric unit tensor of the fourth rank. 
Let us examine fields of free electromagnetic particles. A real photon is the 

quantum version of electromagnetic radiation emitted from a specific source. In 
the units used herein, radiation fields have the following properties (see [3], p. 
185)  

,=E B                             (11) 

.⊥E B                              (12) 

A substitution of (11) into the first fields invariant (9) yields a null value. 
Let us compare this result with electromagnetic fields of a single pointlike 

charge. Evidently, this charge moves inertially because the system does not 
contain other physical objects with which it can interact. In principle, invariants 
of fields can be calculated in any inertial frame. Thus, it is simpler to examine 
the fields at the frame where the charge is at rest. Here one finds that at every 
spatial point outside that of the charge, the fields are  

0, 0.> =E B                          (13) 

Contrary to the photon case, a substitution of the charge’s fields (13) into the 
first fields invariant (9) yields a negative value throughout all points of the entire 
space-time (except at the location of the point-charge). 

The following issues describe another aspect of this matter. In the case of 
bound fields there are devices that produce static magnetic fields in a specific 
inertial frame. (For example, a motionless ring along which a constant electric 
current flows produces a static magnetic field.) This example, together with that 
of a single charge, show time-independent electric and magnetic fields. By 
contrast, the invariant (9) and the relations (11) and (12) between radiation 
fields prove that such a separation between the electric and the magnetic fields 
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cannot be done for radiation fields. 

3.6. Wigner’s Work 

Wigner has analyzed the irreducible representations of the inhomogeneous 
Lorentz group [4] [9] [10] [11]. Important results of his work state that a 
massive quantum particle has a well defined mass and spin. A massless particle 
belongs to a different category. By definition, it has a zero mass and it moves at 
the speed of light in all inertial frames. Instead of spin, it has two components of 
helicity. 

The constant speed of light in the vacuum is recognized as an inherent 
property of Maxwellian wave equation of electromagnetic potentials and of their 
fields (see [3], p. 117). In the standard vector notation, this equation is  

2

2 2

1 0,
c t

∂
∆ − =

∂
AA                         (14) 

where the speed of light c is written explicitly. This equation demonstrates 
relativistic properties of Maxwellian electrodynamics, where the wave propagate 
at c in every inertial frame. 

A special property of the speed of electromagnetic waves c is that the photon 
is a massless particle. This fact is consistent with the form of the electromagnetic 
fields’ Lagrangian density (2). Indeed, unlike the case of a Lagrangian density of 
a massive quantum particle, the Lagrangian density of Maxwellian fields (2) is 
mass-independent. 

The Poynting vector (7) together with the Lorentz invariants (9) and (10) 
prove an important property of radiation fields: They carry a nonvanishing 
amount of linear momentum density in every inertial frame. Simple mechanical 
arguments show that a nonvanishing linear momentum is a necessary condition 
for the existence of a moving elementary particle. In particular, this property is a 
requirement for a consistent definition of a real photon. 

Let us examine the fields of a system that comprises a single charged particle 
in the inertial frame where it is motionless. In this system the charge does not 
accelerate. Therefore, the Lienard-Wiechert fields (5), (6) show that it does not 
radiate and its fields are bound fields. The electromagnetic fields of this charge 
are  

0; 0.≠ =E B                           (15) 

The null magnetic field of (15) and the Poynting vector (7) prove that these 
fields have no linear momentum density. Hence, if a particle is associated with 
bound fields then it is not a real photon. Indeed, it is shown above that in any 
inertial frame, a real photon has a non-vanishing linear momentum. 

3.7. The Fields’ Energy-Momentum Tensor 

The energy-momentum tensor of electromagnetic fields is a very important 
element of the theoretical structure of electrodynamics. Indeed, it is used in a 
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relativistic proof of local conservation of energy-momentum and shows energy- 
momentum currents throughout the entire space-time (see [1], pp. 601-608; [3], 
pp. 86-89). The energy-momentum tensor is a second rank tensor denoted by 
T µν . Physical requirements, like a consistent definition of angular momentum 
as well as the laws of general relativity show that this tensor must be symmetric. 
Angular momentum arguments can be found in [1], pp. 601-608 and in [3], pp. 
82-89. The energy-momentum tensor is also used in Einstein equations of 
general relativity (see [3], p. 297)  

1 8π ,
2

R g R kTµν µν µν− =                      (16) 

where Rµν  is the second rank curvature tensor, gµν  is the metric tensor and k 
is the gravitational constant. The tensors Rµν  and gµν  are symmetric. 
Therefore, general relativity requires a symmetric energy momentum tensor. 

The variational principle is used for a derivation of the energy-momentum 
tensor of electromagnetic fields. It turns out that a direct derivation of this 
tensor yields the following asymmetric expression (see [3], p. 86)  

1 1 .
4π 16π

AT F g F F
x

µν νλ µν αβλ
αβ

µ

∂
= − +

∂
               (17) 

The first term of (17) is an asymmetric second rank tensor whereas the second 
term is symmetric. Hence, the tensor T µν  of (17) is inconsistent with the 
required symmetry of the energy-momentum tensor. Furthermore, there are two 
other objections to (17) (see [1], p. 604).  
• Maxwell equations are gauge invariant. This property means that the 

energy-momentum tensor must depend only on the fields tensor F µν . 
• This tensor is not traceless, which means that it is inconsistent with the fact 

that the photon has no rest frame.  
As stated in the introduction to this work, the variational principle is regarded 

as an important principle of physics. Its application yields (17), and the first 
term of this expression proves that an unacceptable result is obtained. This issue 
casts certain doubts concerning the merits of the variational principle as a 
fundamental element of theoretical physics [12]. Textbooks show how (17) can 
be corrected (see [3], pp. 86, 87). Here one adds to (17) the following term  

( )1 1 .
4π 4π

AW F A F
x x

µ
νµν µ νλλ

λ λ

∂ ∂
= =

∂ ∂
               (18) 

Arguments claim that this operation is justified because it is a divergenceless 
quantity , 0W µν

ν = , which is consistent with conservation laws. This operation 
settles all problems: It yields the well known symmetric traceless tensor which 
depends only on the electromagnetic fields (see [3], p. 87; [1], p. 605)  

1 1 .
4π 4

T g F F g F Fµν µα βν µν αβ
αβ αβ

 = + 
 

               (19) 

Although the above mentioned symmetrization procedure yields nice results, 
it has no profound theoretical basis. Indeed, if an addition of a divergenceless 
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term to the energy-momentum tensor is a theoretically legitimate procedure 
then instead of adding the tensor W µν  to (17), one may add the tensor aW µν , 
where 1a ≠  is a real number. The unacceptable result obtained in this case 
means that an addition of a divergenceless tensor lacks the general validity 
which is required from a physically legitimate mathematical procedure. 

Let us turn to the main objective of the present work—the examination of 
differences between radiation fields and bound fields. The following article [13] 
proves that radiation fields directly yield the symmetric tensor (19), because in 
this case the correction term W µν  of (19) vanishes identically. This result 
means that the unphysical properties of the energy-momentum tensor which are 
derived from the electromagnetic fields Lagrangian density are related to bound 
fields only, whereas radiation fields directly yield the correct energy-momentum 
tensor. 

3.8. The Darwin Lagrangian 

As stated in the introduction to this work, the variational principle is used as a 
fundamental element of the theoretical structure of electrodynamics. Let us take 
a system of charges and examine their interaction with the fields of each other. 

Maxwell equations prove that the fields depend on retarded quantities of each 
charge. Let R denote the distance from the spatial point where the fields are 
calculated to the retarded position of a given charge (see [3], p. 174). Calculations 
show that electromagnetic potentials depend on the retarded position and on the 
retarded time of the charge. If the origin of the space-time coordinates is chosen 
at the point where the fields are calculated then the retarded quantities ( ),t R  
of a given charge are obtained from the following equation (see [3], p. 174)  

( ) 0.t R t c+ =                           (20) 

Here the speed of light c is written explicitly. It is shown in (5) and (6) that the 
electromagnetic fields can be written as a sum of two terms. One term depends 
on the charge’s velocity and the other term depends also on its acceleration (see 
[3], p. 175; [1], p. 657). At a large distance from the system of charges, velocity 
fields decrease like 2R−  whereas acceleration fields decrease like 1R− . The 
Poynting vector (7) which depends quadratically on the fields, represents energy 
current. Hence, velocity fields are related to bound fields and acceleration fields 
are related to radiation fields. 

A power series expansion proves that velocity fields of a given charge can be 
replaced by an expression that depends on its position and its velocity at the 
instant when the fields are measured. This expression is called the Darwin 
Lagrangian (see [1], pp. 593-595; [3], pp. 179-182). The electromagnetic 
interaction terms of this Lagrangian take a mechanical-like form which depends 
on the instantaneous position and velocity of the charged particles  

( )( )Darwin,int .
2

j i j i
j i j ij i ij

j i j j i jij ij

e e e e
L

R R> >

 = − + ⋅ + ⋅ ⋅ ∑∑ ∑∑ v v v n v n        (21) 

Here ,i iev  denote respectively the velocity and charge of the ith particle and 
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,j i  run on the particles’ index. ijR  is the distance between the ith and the jth 
particle and ijn  denotes the unit vector in the direction from the ith particle to 
the jth particle. The Darwin Lagrangian depends on the instantaneous value of 
the coordinates and of the velocity of the charged particles but is independent of 
the electromagnetic fields and of their potentials. In the quantum domain, the 
Darwin Lagrangian of a system of Dirac particles yields the Breit interaction (see 
[14], pp. 170, 195). 

The next term in the power series expansion depends on the second derivative 
of the charge’s coordinates with respect to time, namely, on its acceleration. The 
following article [15] proves that this term cannot be removed from the 
Lagrangian. 

The Lagrangian function determines the dynamics of the system. It is shown 
above that velocity fields can be removed from the Lagrangian and their effect is 
replaced by appropriate terms of the Darwin Lagrangian (see [3], pp. 179-182). 
In the quantum domain, the Breit interaction takes the task of the Darwin 
Lagrangian (see [14], pp. 170, 195). By contrast, a mathematical analysis of the 
laws of Maxwellian electrodynamics proves that acceleration fields cannot be 
replaced by an appropriate mechanical-like term of the Lagrangian [15]. This 
result means that acceleration fields are related to a genuine entity: In classical 
physics it is the energy radiated by a given system and in the quantum domain it 
is called a real photon. The removal of velocity fields from the Lagrangian 
function means that they do not represent a genuine physical particle. This issue 
demonstrates another inherent difference between bound fields and radiation 
fields. 

3.9. Magnetic Monopoles 

It is recognized that a magnetic monopole (called briefly monopole) has not 
been detected in experiment. The monopole part of [7] presents a very long list 
of reports on this kind of experimental failure. For example, the CERN’s ATLAS 
collaboration reports the failure of its recent experimental attempt aiming to 
detect monopoles: “No events were observed in data in the signal region” [16]. It 
is interesting to point out that this systematic failure of the monopole quest has 
been predicted a quite long time ago [17]. This state of affairs means that the 
monopole issue should be discussed theoretically. Evidently, this approach must 
rely on well established theoretical elements. 

The following items outline very briefly how the required Regular Charge- 
Monopole Theory (RCMT) is constructed. Furthermore, they also show the 
obvious constraints that are imposed on this theory, and references to articles 
that explain appropriate details. Here the symbol g is the monopole analog of the 
electric charge e. 

1) As explained in the introduction section, also the RCMT should be 
constructed on the basis of the variational principle. Therefore, the following 
items explain how the Lagrangian of a classical monopole theory is constructed. 
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Evidently, like in the case of electrodynamics of charged particles, this Lagrangian 
can be utilized for the construction of a quantum theory of monopoles. 

2) The main objective is to find how monopoles are embedded in Maxwellian 
electrodynamics. The present form of the Lagrangian density of Maxwellian 
electrodynamics (2) can be regarded as the limit 0g =  of the required 
Lagrangian function of the RCMT, because this limit holds for the standard 
form of Maxwellian electrodynamics, where 0g =  throughout the entire space. 
Therefore, this limit is a constraint which is imposed on the required RCMT. 

3) The next step is to find a theoretical definition of a monopole. This matter 
can be found in the standard literature, which utilizes the following duality 
transformation (see [18], p. 1363)  

,→ →−E B B E                          (22) 

together with this charge transformation  

; .e g g e→ →−                           (23) 

The fields transformations (22) can be put in a tensorial form  

;F F F Fµν µν µν µν∗ ∗→ → −                      (24) 

where *F Fµν µναβ
αβ=  . The transformations (22) and (23) are sometimes called 

duality rotations by π/2 (see [1], p. 252). 
4) An application of the duality transformations (22) and (23) to the 

Lagrangian density of electromagnetic fields and their interaction with charged 
particles (2), yield the following Lagrangian density of a monopole system  

* *
Monopole

1 .
16π

F F gj Gµν µ
µν µ= − −                   (25) 

Here Gµ  is a sum of 4-potentials of monopoles, where each of which 
corresponds to the ordinary Lienard-Wiechert 4-potential of an electric charge. 
Note also that F F F Fµν µν

µν µν
∗ ∗= . 

5) The foregoing application of the duality transformation (23) to a system of 
charges without monopoles yields (25), which is a system of monopoles without 
charges. The next assignment is to find the form of a Lagrangian density of a 
combined system of charges and monopoles. The previous point means that now 
we have a second constraint that is imposed on the RCMT: In the case of a 
chargeless system, the charge-monopole Lagrangian density should take the 
form of (25). This constraint is dual to that of item 2 above. 

6) Relying on mathematical properties of Maxwellian electrodynamics, it is 
proved that a regular Lagrangian function can be constructed for the fields of a 
charge-monopole system, provided bound fields of charges, bound fields of 
monopoles and radiation fields are treated separately [19] [20]. This separation 
between the fields is compatible with the linearity of Maxwell equations. It 
should be noted that the analysis assumes nothing on the specific properties of 
these fields. It means that the results are derived mathematically. The Lagrangian 
function which is obtained in this way shows that bound fields and radiation 
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fields have different dynamical properties. This result can be regarded as an 
additional proof of the main assertion of the present work: bound fields and 
radiation fields have different physical properties. 

The Lorentz invariant (9) takes a negative value for the bound field of a 
charge; it takes a positive value for the bound field of a monopole; it takes a null 
value for radiation fields emitted from a system of charges and for radiation 
fields emitted from a system of monopoles. The distinction between these three 
kinds of fields, which is used in the RCMT construction, is consistent with these 
relativistic properties. 

The monopole theory that is described above is used as an element of the long 
lasting successful prediction of the failure of the present form of experimental 
monopole search [17]. This evidence indicates the physical merits of the 
monopole theory described above. 

4. Discussion 

In principle, one solid support of an inherent difference between two physical 
objects justifies its acceptance. Therefore, the above mentioned wide variety of 
distinct arguments, where each of which shows inherent physical differences 
between radiation fields (namely, real photons) and bound fields, provide a 
reliable basis for the main assertion of this work: Radiation fields and bound 
fields do not represent the same physical object. The following lines point out 
few examples showing that this conclusion solves some theoretical problems and 
also explains experimental effects that are unsettled in the present mainstream 
literature. 

It is shown in subsection 3.7 that a symmetric energy momentum tensor is 
required for a consistent definition of the fields angular momentum (see [3], p. 
84). Moreover, (17) proves that in the present literature the Lagrangian density 
of electromagnetic fields does not yield a symmetric energy-momentum tensor. 
This is certainly a problem because the photon’s helicity is a well defined 
quantity, and this property indicates that a photon has a well defined angular 
momentum 1j =  (see the photon data in [7]). Therefore, the symmetric energy 
momentum tensor that is directly obtained from the radiation fields Lagrangian 
density and the interrelations between classical and quantum electrodynamics 
indicate that if radiation fields and bound fields are treated separately then the 
photon’s angular momentum is defined consistently. 

The analysis of subsection 3.8 shows how electromagnetic velocity fields of the 
classical Lagrangian are removed and the mechanical-like Darwin Lagrangian is 
derived. This Lagrangian depends on the instantaneous position and velocity of 
the charged particles. Furthermore, the Breit interaction represents the effects of 
the Darwin Lagrangian in the quantum domain. An analogous feature is shown 
in subsection 3.3 which discusses angular momentum and parity of an atomic 
quantum state. Here the electromagnetic bound fields of the atomic charged 
constituents are ignored, and the wave function of the massive constituents of 
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the atom yields eigenvalues of the system’s angular momentum and parity. 
The calculation of the 4-potential (4) and its fields (5) and (6) depends on 

retarded quantities. This issue indicates that these expressions are related to a 
genuine physical object which cannot travel faster than light. An indeed, (5) and 
(6) contain expressions for radiation fields, which are related to a genuine 
quantum object which is called a photon. The introduction of the Darwin 
Lagrangian and the associated Breit interaction bears a profound change in the 
interpretation of bound fields. The instantaneous quantities which are used in 
the Darwin Lagrangian and in the Breit interaction mean that bound fields 
cannot represent a genuine physical object simply because a genuine physical 
object cannot travel faster than light. 

The primary assertion of this work says that radiation fields and bound fields 
do not represent the same physical object. The topics that are mentioned in the 
previous two paragraphs go one step further. By showing that important physical 
quantities like energy, angular momentum and parity are derived only from the 
electronic wave function, they indicate that bound fields do not represent a 
genuine independent physical object but are just auxiliary mathematical quantities. 

Another issue pertains to the theoretical structure of quantum electrodynamics 
(QED) which uses the following form of the Lagrangian density of free 
electromagnetic fields (see [4], p. 342; [21], p. 70)  

1 .
16πEM F Fµν

µν= −                         (26) 

Here the fields tensor F µν  is a sum of bound fields and radiation fields  

( ) ( ).Bou RadF F Fµν µν µν= +                         (27) 

A substitution of (27) into (26) proves that the present structure of the QED 
Lagrangian density of free electromagnetic fields is  

( ) ( ) ( ) ( ) ( ) ( )
1 2 .

16πEM Bou Bou Rad Rad Bou RadF F F F F Fµν µν µν
µν µν µν

 = − + +          (28) 

The last term of (28) means that this expression is unacceptable. Indeed, 
radiation fields represent a photon whose parity is negative (see the photon data 
in [7]), whereas the discussion of the Zeeman effect which is presented in 
subsection 3.1 proves that a magnetic bound field has an even parity. 
Furthermore, the conclusions of subsection 3.3 show that atomic bound fields 
must have an even parity. Let us use these issues and see how a parity 
transformation affects (28) in the case of the static magnetic field which is used 
in the Zeeman effect of subsection 3.1. The even parity of ( )BouF µν  and the odd 
parity of ( )RadF µν  prove that the first and the second terms of (28) do not change 
sign: ( )21 1+ =  and ( )21 1− = . On the other hand, the even parity of the 
magnetic field and the odd parity of the photon prove that the last term of (28) 
changes sign. Thus, a parity transformation of the Lagrangian density (28) yields  

( ) ( ) ( ) ( ) ( ) ( )_
1 2 .

16πEM P Bou Bou Rad Rad Bou RadF F F F F Fµν µν µν
µν µν µν

 = − + −       (29) 
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Hence, the last term of (28) violates parity, whereas electrodynamics conserves 
it. Angular momentum arguments yield an analogous result. 

This theoretical QED contradiction is supported by the following experimental 
evidence: QED calculations of electron data and of muon data of the proton 
charge radius yield inconsistent results (see [22] and the proton data of [7]). This 
evidence means that QED has already lost its long-lasting reputation as an 
extremely accurate theory. 

The last example refers to the RCMT of subsection 3.9. One result that is 
derived from this theory says that the dynamics of this system, which consists of 
electric charges and magnetic monopoles, abide by the following laws: 

A. Charges do not interact with bound fields of monopoles; monopoles do not 
interact with bound fields of charges; radiation fields of the system are identical 
and charges as well as monopoles interact with them.  

Furthermore, another result of the RCMT says that the size of an elementary 
monopole g is a free parameter and like the electric charge, it should be derived 
from experiments. 

Conclusion A is obtained from a pure theoretical analysis [19] [20]. It turns 
out that it has a striking manifestation in physical data. Indeed, real photons 
represent electromagnetic radiation; electrons represent electric charge and 
quarks represent dyons, which are particles that carry an electric charge and a 
magnetic monopole [23]. Experiment proves that in quarks g e . This is the 
reason that explains why strong interactions are much stronger than 
electromagnetic interactions. Moreover, the data prove the following evidence: 

B. Electrons do not interact with strong fields of quarks (see [24], p. 2); quarks 
interact electromagnetically with bound fields of electrons (see the data on deep 
inelastic electron-quark scattering, [25], pp. 266-274); photons interact with 
electrons as well as with the strong monopole charge of quarks [26]. The fact 
that g e  and the last point explain why the hard photon interaction with a 
proton is very similar to the corresponding interaction with a neutron.  

The impressive correspondence between the elements of item A, which are 
derived from theoretical considerations, and those of item B, which describe a 
collection of experimental data, provide a strong support for the validity of the 
RCMT. 

It is interesting to note that several very well known authors have already put 
forward the idea that monopoles are constituents of hadrons (see e.g. [27] [28] 
[29] [30]). The RCMT and, in particular, the correspondence between the 
elements of the theoretical item A and the corresponding elements of the 
experimental item B, provide an important support for this idea. Many other 
aspects of the correspondence between the RCMT and strong interactions are 
discussed in [31] [32] [33]. 

An important point of the forgoing discussion is put in the following 
statements. Experimental data prove the following properties of the two primary 
QED particles: Electrons do not participate in strong interactions (see [24], p. 2). 
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By contrast, a real photon participates in strong interactions [26]. Evidently, a 
real photon is a very important elementary particle. Referring to the strong 
interactions of a real photon with hadrons, it is quite strange to realize that today 
it is very hard to find an appropriate discussion of this topic in modern QFT 
textbooks as well as in particle physics textbooks. The present work may 
contribute to attempts aiming to close this gap. 

5. Conclusions 

This work discusses properties of radiation fields and bound fields of 
electrodynamics. The variational principle is used as a basis for the theoretical 
discussion. Some examples belong to classical physics and other examples 
belong to the quantum domain. The main result of this work proves that 
radiation fields and bound fields represent inherently different physical objects. 
The wide variety of different cases, which are described in Section 3, provide a 
good basis for the main assertion of this work. It is proved in the penultimate 
section that the QED Lagrangian density is affected by the outcome of this work. 
It is also explained why the results of this work together with the variational 
principle indicate that magnetic monopoles are linked to strong interactions. 

It is interesting to mention that a discussion based on the main assertion of 
this work solves the QED problems of infinite physical quantities [34]. At 
present, these infinities are removed by a process called renormalization. 
Renormalization is certainly a doubtful process because it takes the mathematically 
unacceptable difference between two infinite quantities. One should realize that 
two eminent QED figures have used the following words for denying 
renormalization: Dirac said that it has an “illogical character” [35] whereas 
Feynman called it “a dippy process” [36]. An analogous opinion is put forward 
in Ryder’s QFT textbook (see [37], p. 390). This author compares quantum 
divergences to classical ones and says: “In the quantum theory, these divergences 
do not disappear; on the contrary, they appear to get worse, and despite the 
comparative success of renormalisation theory the feeling remains that there 
ought to be a more satisfactory way of doing things.” As mentioned in the 
previous section, the failure of QED to explain the proton charge radius data 
supports the above mentioned theoretical arguments concerning the problematic 
status of the present form of QED. 
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