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Abstract 
We investigate the dividend and equity issuance problem in the presence of 
interest rate. The evolution of the financial reserves of an insurance company, 
where management payout dividends and issue new equity, is described by a 
stochastic differential equation. The work of Lokka and Zervos [1] is extended 
by including the interest rate component into the model in order to make the 
model more realistic. The aim is to maximise the expected discounted divi-
dends pay-out until the time of bankruptcy. In order to investigate this prob-
lem, the stochastic control theory for diffusion processes will be used. In order 
to handle the problem, the Hamilton-Jacobi-Bellman equation (HJB) is de-
rived and solved. The second order ordinary differential equation associated 
with the problem turns out to belong to the class of Kummer’s confluent hy-
per-geometric differential equations. This category of equations is not easy to 
solve. The equation is non-dimensionalised and change of variables is effected 
in two different stages. The results show that interest rate affected the rate at 
which the value function and threshold level change. 
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1. Introduction 

The field of stochastic control has evolved a long way from the 1970s, specifically 
in its application to finance. This is supported by classical works of [2] [3] [4] [5]. 
The concept of control, from the point of view of mathematics of finance, can be 
described as the process of influencing the behaviour of a financial system to 
achieve a desired goal. Stochastic control theory has been applied to design 
strategies for control of streams of dividends. In the early stages of corporate 
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history, Lintner [5] published work on distribution of dividends as well as 
retention of earnings for investment purposes which however initiated debate. 
His classic work constructed a foundation of corporate finance. 

Diffusion models for companies that can control their risk exposure by means 
of their dividend payments have attracted significant interest in the recent years. 
Komrattanapanya, P. and Suntraruk, P. [6] highlighted that dividend policy has 
developed into one of the fascinating topics in financial literature today whereas 
Bistrova and Lace [7] argued that the subject of dividend is insufficiently 
researched in the emerging countries. On the authority of Dewri and Islam [8], 
there are prevailing investor demands for dividend specifically in these emerging 
countries. Actually, these investors regard dividends as the main component of 
stock returns [9], abiding by the theory of bird-in-the-hand where investors 
inclined towards dividends from stocks to capital gains [10] and [11]. 

Miller and Modigliani [2] highly influenced in the development of Dividend 
Irrelevance Theory. They argued that dividend policy was irrelevant in perfect 
markets as it had no effect on firm value. According to them, the investor is 
indifferent between dividend payment and capital gains. However, there is 
plenty of evidence to support that dividend policy does affect firm value, since 
Miller-Modigliani assumptions fail to comply with the real-life financial markets. 
The work of many finance scholars has therefore examined various market 
imperfections taxes, asymmetric information, agency problems, etc. in order to 
reflect the importance of dividend policy as well as to determine the optimal 
dividend policy. Højgaard and Taksar [12] reviewed a model for financial 
valuation of a firm which has a control of the dividend stream and its risk as well 
as potential profit by choosing different business activities among those available 
to it. This model extended the Miller-Modigliani theory of firm valuation, to the 
situation of controllable business activities in a stochastic environment. 

Of late DeAngelo and DeAngelo [13] have questioned MMs irrelevance 
dividend policy. They indicated that MMs irrelevance theorem compels firms to 
select only among dividend policies that administer the full present value of free 
cash flow to shareholders. By the inferred conjecture, distributions at a lower 
level than the totality of earnings are eliminated. In the opinion of Chang [14], 
the MMs first theorem can be substantiated in a setting where financial market 
for lending and borrowing is absent, with investors and companies not 
employing identical interest rate. Bailey [15] revealed how the MM-theorem can 
be proved when capital market is perfect. If an investor is to reproduce the 
consequences of an economic trend taken by a firm, he must have the capability 
of borrowing or lending under the same conditions as the firm. As stated by 
Bailey [15], the rate of taxation being the same is more significant than taxes 
being neutral implying that the MMs irrelevance theorem does not automatically 
fail when taxes vary among financial structure and income source.  

Kouki [16] gave theoretical and empirical proof of the significance of payout 
policy in clarifying the relationship between leverage and the firm value. 
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Jeanblanc and Shiryaev [17], Lokka and Zervos [1] and Radner and Shepp [18] 
respectively, modelled the liquid reserves of a company by means of a Brownian 
motion with drift, while Asmussen et al. [19] considered more general diffusions. 

Taskar and Zhou [20] regarded a model of a corporation, which could choose 
a business policy among an available set of control policies with different 
expected profits and associated risks. A choice of the amount of dividends to be 
paid out to shareholders was also considered. Not withstanding any policy 
decision there was constant payment of a corporate debt such as bond liability or 
loan amortization. They showed the existence of an optimal level b1 such that the 
optimal dividend policy was to keep the company’s wealth below b1 and pay-out 
as dividends all the amounts in excess of this level. The problem is modelled as a 
mixed classical-singular stochastic control problem, because a company can 
choose also a production policy. 

Asmussen and Taksar [19] studied the optimal dividend policy of a company 
that tries to maximize the expected value of the dividends received by the 
shareholders. Liquid assets are modelled as a Brownian motion process with a 
drift. In the latter of these papers, the company has another control, which is the 
amount of liquid assets that are risky. Some of the liquid assets can be invested 
in a risky security. The problem is modelled as a stochastic singular control 
problem. In Radner and Shepp [18] the firm also chooses parameters of the 
production process. Choulli, Taksar and Zhou [21] extended some of these 
results to the case of an insurance company that re-insures some of its risks. 
Choulli, Taksar and Zhou [22] considered the case in which the drift and the 
volatility of the liquid assets are related since higher risk implies higher expected 
return. 

Lin He and Zongxia Liang [23] examined an insurance company in which the 
dividends payout, equity issuance and the risk exposure are controlled by the 
management. They assumed that the company can only reduce its risk exposure 
by proportional reinsurance policy for simplicity. The value of the company was 
associated with the expected present value of the dividend payout minus the 
equity issuance. Transaction cost was also taken into consideration in the model. 
The problem was modelled as a mixed singular-regular control problem on 
diffusion models. 

Pierre, E. et al. [24] considered the dividend and investment policies of a cash 
constrained firm that operate in an environment where equity trading is not 
feasible but has access to loans. In this situation a firm can raise fund only by 
issuing collateral debt when it runs out of liquidity. In their study they maximize 
the shareholders value through dividend and optimal debt issuance. Since by 
rule, debt cannot directly be used to pay dividend, steadiness in dividend 
payment is not assured. 

Black [25] posed the question again, “Why do corporations pay dividends?” In 
addition, he posed a second question, “Why do investors pay attention to 
dividends?” Although, the answers to these questions may appear indisputable, 
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he concluded that they are not. Over two decades after Black’s paper, the 
dividend puzzle continued. On the other hand, the study by Chevalier, Vath and 
Scotti [26] examined the problem of determining the optimal control on the 
dividend and investment policy of a firm. Furthermore, they reviewed the fact 
that the firm carries a debt obligation in its balance sheet. In conjunction, they 
considered debt as a means of stimulating investment and in this paper the 
issuance of equity is considered as a source of funding the firm. 

Mtunya A.P., et al. [27] studied on how firm’s management can establish 
effective investment resolution under the impact of random interest rates. They 
reflected that interest rate varies steadily and additionally implemented a 
stochastic discount factor in the optimization of investment level. Their 
stochastic optimal control was predominantly on investment yet in this paper it 
it is mainly on dividends and issuance of equity. In the real financial markets, 
equity issuance is an important approach for a company to earn profit and 
reduce risk. 

Barth, et al. [28] revealed the solutions to several variants of the dividend- 
distribution problem in a multi-dimensional diffusion setting. They also pointed 
out that the manager of a corporate must balance the retention of earnings and 
the distribution of dividends. 

They applied dynamic-programming approach, where the state variables are 
the prevailing levels of cash reserves and of the stochastic short-rate, in addition 
to time. This developed in a family of Hamilton-Jacobi-Bellman variational 
inequalities whose solutions were approximated numerically. Mtunya A.P et al. 
[29] showed how the firms financial management should safeguard a stable 
dividend payout growth for the shareholders as well as optimizing the dividend 
policy. 

In this study, dividends payout and issuance of equity being done in the 
presence of transaction costs and interests will be viewed. Despite the fact that a 
large number of studies have explored issues concerning diffusion models for 
companies that can control their risk exposure by means of dividend payments, 
very few results concerned with the inclusion of interest rate component in the 
diffusion models have been produced. The work of Lokka and Zervos [1] will be 
extended by including the interest rate component into the model in order to 
make the model more realistic. The second order differential equation in Lokka 
and Zervos [1] has a characteristic equation with solutions that consist of 
exponential functions. The inclusion of such an interest rate component would 
therefore attract the application of Kummer’s confluent hyper-geometric 
differential equation, from which the value function is calculated and optimal 
control is determined. It is mandatory for banks and insurance companies to 
maintain positive reserves at all times in order to operate. Lokka and Zervos [1] 
pointed out that, issuance of new equity provides a strategy that can be used by 
such institutions in meeting their regulatory requirements, ideally in an optimal 
way. 
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The uncontrolled reserves dynamics will be modelled by a Brownian motion 
with drift. Dividend payments and issuance of new equity take the form of 
“singular” controls. The optimisation problem which corresponds to the 
maximisation of the performance index J over a set of appropriate admissible 
dividend and issuance of equity strategies, will be considered. For the resulting 
optimisation problem leads us to results that have interesting economic 
interpretations. In this problem, it is optimal to issue minimal new equity so as 
to reflect the reserves process at 0 and make minimal dividend payments so as to 
reflect the reserves process at a certain level *x . 

The paper is organised as follows. Section 2 is concerned with the formulation 
of the stochastic control problem. In Section 3, we work out a solution of 
Hamilton-Jacobi-Bellman (HJB) equation. The nature of the second order 
differential equation is transformed into Kummer’s confluent hyper-geometric 
equation. The solution of the optimal control problem is established that is the 
optimal value function ( )V x  and the corresponding optimal control *u  are 
derived in this section. 

2. Problem Formulation 

In order to place the discussion in a rigorous mathematical framework, let 
( ), , ,t PΩ    be a filtered probability space satisfying the usual conditions and 
carrying a standard, one dimensional t -Brownian motion { } 0t t

W
≥

. Consider 
that an insurance company’s management can control the liquid reserves of the 
firm by paying out dividends and by raising capital through issuance of equity. 
The cumulative amount of dividends paid from the initial time 0 : 0t =  up to 
time t is denoted by tL , and the total amount raised through issuance of equity 
from initial time 0 : 0t =  up to time t is denoted by tG . It is assumed that both 
the dividend process tL , and an issuance of equity process tG  are increasing, 

t -adapted processes. Suppose that the reserves tX , at time t, of the firm, earn 
interest at a constant rate ρ. Assume that, for no equity issuance and dividend 
payout the liquid reserves tX  at time t of the company are modelled by the 
following stochastic differential equation  

( ) 0d d d , .t t tX X t W X xµ ρ σ= + + =                 (1) 

Given a dividend process tL  and an issuance of equity process tG , the 
evolution of liquid reserves of the company is modelled by following the 
stochastic differential equation  

( ) 0d d d d d , ,t t t t tX X t W L G X xµ ρ σ= + + − + =            (2) 

where 0x ≥  represents the reserves at time zero, μ and σ are parameters 
describing the growth rate and the volatility of the reserves process respectively. 

Accordingly, we define the bankruptcy time τ by  

{ }inf 0 : 0 .tt Xτ = ≥ <  

Following Lokka and Zevos [1] we define the performance functional 
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( ); ,J x L G  by  

( ) [ ] [ ]( )0, 0,
; , : limsup e d e d ,x rt rt

t tt tt
J x L G E L G

τ τ
β− −

∧ ∧→∞

 = −  ∫ ∫
       

(3) 

over all admissible controls, ( ),L G  where xE  denotes expectation with 
respect to P, x represents initial reserves, discount factor r can be the risk free 
interest rate and the constant 1β >  provides a measure for the transaction 
costs arising from the issuance of equity. We will denote by ( )x  as the set of 
all admissible controls. 

The problem is to find the value function V and the corresponding optimal 
control ( )* * *,u L G=  such that  

( )
( ) ( )

( ) ( )* * *

,
, sup , , , , .

L G x
V x x J x L G J x L G

∈
= =

              
(4) 

3. Main Result 

At this juncture the problem that arises is addressed. The problem aims at 
maximising the expected discounted dividend flow minus the expected 
discounted costs of issuing equity over all dividend and issuance of equity 
strategies associated with a positive reserves process. The objective of this paper 
is to find ( )* *, ,0V x x x x≤ ≤ . The development was done by employing the 
same arguments as in [30]. It can be viewed that ( )*,V x x  satisfies he following 
second order differential equation.  

( ) ( ) ( ) ( )2 * * * *1 , , , 0, 0
2

V x x x V x x rV x x x xσ µ ρ′′ ′+ + − = < <
      

(5) 

with boundary conditions  

( )
( )

*

* *

0; 0

; 1

V x

V x x

 =


′ =
 

We can therefore let the function mx represent ( )*,V x x  in (5) yielding the 
following second-order differential equation  

( ) ( )21 0, 0
2

m x x m x rmx xσ µ ρ′′ ′+ + − = >
             

(6) 

with the boundary condition  

( )0 0.m =                           (7) 

The second order differential equation has a constant factor Ψ and unique 
solution mx and hence from (5)-(7) we can let  

( ) ( )* *, .V x x m x= Ψ
                      

(8) 

Setting *x x=  and then differentiating with respect to x to get  

( ) ( )* * *; .V x x m x′ ′= Ψ
                      

(9) 

Applying ( )* *; 1V x x′ =  in (6)  
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( )*

1
m x

Ψ =
′

 

hence substituting in (8)  

( ) ( )
( )

* * *
*

; , 0 .
m x

V x x x x
m x

= ≤ ≤
′

                
(10) 

The first order variable separable equation  

( ) ( )
( )

*
*

;
m x

V x x
m x

=
′

                      
(11) 

can be reduced to  

( ) ( ) ( )* *; .m x V x x m x′ =
                    

(12) 

Integrating both sides with respect to x  

( ) ( ) ( )* *
* *; d d ,

x x

x x
m x V s x x m s x′ =∫ ∫                 

(13) 

yields the following result  

( ) ( ) ( )( ) ( ) ( )* * * * *; ;m x V x x V x x m x m x′ − = −
           

(14) 

which simplifies to  

( ) ( ) ( )
( )

( )
( )

*
* * *

* *
; ; .

m xm x
V x x V x x

m x m x
− = −

′ ′
              

(15) 

But  

( ) ( )
( )

*
*

;
m x

V x x
m x

=
′

                      
(16) 

which implies that  

( ) ( )
( )

*
* *

*
;

m x
V x x

m x
=

′
                      

(17) 

and from (5)-(6) 

( ) ( )* * * *; , ; ,V x x x V x x x= =
                  

(18) 

hence substituting these values in (17) results with  

( ) ( )* * * * *; ; , .V x x x x V x x x x= − + >
               

(19) 

The company’s management takes minimal action to keep the liquid reserves 
X being below *x  by paying dividends when ever *x x> . 

With reference to standard theory of optimal control, the Hamilton-Jacobi- 
Bellman(HJB) equation corresponding to this problem is given by  

( ) ( ) ( ) ( )21max 0, 0
2

v x x v x rv x xσ µ ρ β ′′ ′+ + − = ≥ 
         

(20) 

combined with the boundary condition  
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( )0 0.m =                           (21) 

The value function is zero at time 0.t =  
Conjecture—The value function V identifies with a solution m to this HJB 

equation satisfying the second-order differential equation  

( ) ( ) ( ) ( )21 0.
2

m x x m x rm xσ µ ρ′′ ′+ + − =
             

(22) 

The nature of the differential equation for the function ( )m x  can be 
transformed into Kummer’s confluent hyper-geometric equation. Firstly we non 
dimensionalise the equation and then make use of change of variables in two 
stages. Similar developments were made by [31] but however there are variations 
in the definition of z. In order to have our calculations as explicit as possible, we 
need suitable transformations. First of all we define  

( )2
z x

ρ
µ ρ

ρσ
= +

                      
(23) 

and the function ( )f z  such that ( ) ( )m x f z= . Hence  

( ) ( ) ( ) ( ) ( )2

2d 2, .
d

zm x f z f z m x f z
x

ρ ρ
σ σ

′ ′ ′ ′′ ′′= = =
        

(24) 

Substituting ( ) ( ) ( ), ,m z m z m z′ ′′  in Equation (22) and simplifying yields the 
differential equation for ( )f z  

( ) ( ) ( ) 20, .rf z sf z f z z µ
ρ σ ρ

 ′′ ′+ − = > 
              

(25) 

In the subsequent stage, accordingly we define 21
2

t z= −  and the function 

( )h t  such that ( ) ( )f z h t= . Hence  

( ) ( ) ( ) ( ) ( ) ( )2d , .
d

tf z h t zh t f z z h t h t
z

′ ′ ′ ′′ ′′ ′= = − = −
        

(26) 

Substituting ( ) ( ) ( ), ,f z f z f z′ ′′  in (24) and simplifying yields the 
differential equation for the function ( )h t  

( ) ( ) ( )
2

2

1 0, .
2 2

rth t t h t h t t µ
ρ ρσ

  ′′ ′+ − − − = < −  
             

(27) 

The function indeed satisfies the Kummer’s equation of the form  

( )
2

2

d d 0
dd

y yx c x ay
xx

+ − − =
                   

(28) 

with parameters  
1 , .
2 2

rc a
ρ

= = −
                      

(29) 

The general solution to the hyper-geometric differential equation is  

( ) ( ) ( ) ( ) ( )1 e 1 ,2 , e , ,c t tm x h t t M a c t U c a c tα β−= = − − − − + − −      (30) 

where  
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( ) ( ) ( ) ( )1, , 1, 2 , , , , e , ,c zM a c x z M a c c x U a c x U c a c x−= − + − = − −  

and  

( ) ( )
2

22
2

1 1 1 12
2 2

t z x xρ µ ρ µ ρ
ρσ ρσ

 
= − = − + = − + 

         
(31) 

where a and c are given by (29). 
The general solution to the differential equation is given by  

( ) ( ) ( ) ( )1 2 ,m x h x C p x C q x= = +                 (32) 

where 1C  and 2C  are constants and ( )p x  and ( )q x  are defined by  

( ) ( )1 e 1,2 , .c zp x z M a c c x−= − + −                 (33) 

and  

( ) ( )e , , .zq x U c a c x= − −                     (34) 

Substitute for the values of z, ( )p x  and ( )q x  in (32).  

( ) ( ) ( ) ( )1
1 2e 1 ,2 , e , ,c t tm x C t M a c t C U c a c t−= − − − − + −        (35) 

where a and c are given by (29) and  

( ) ( )
2

22
2

1 1 1 2 1 .
2 2

t z x xµ ρ µ ρ
σ ρ ρσ
 

= − = − + = − +  
 

(36) 

The ratio between α and β follows from the condition that ( )0 0m = . We 
may set  

2

2, ; ,U c a c
p
µα
σ

 
= − 

                       
(37) 

and  
12 2

2 21 , 2 ; .
c

M a c
p p
µ µ

β
σ σ

−
   

= − − −   
                   

(38) 

Taking derivatives in 30 we obtain  

( ) ( ) ( ) ( )
2

2

d 2 .
d

tm x h t x h t
x

µ ρ
σ

′ ′ ′= = − +
              

(39) 

Using the product rule we obtain  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )1

1 e 1 , 2 ;

1 e 2 ,3 ; e 1, 1; .
2

c t

c t t

h t h t c t M a c t

a t M a c t c a U ca c t
c

α

α

−

−

′ = − − − − −

− − − − − − + − + + − − 

 

Finally, we set *x x=  in (39) and substitute it and (35) in (11) to obtain 

( )*;V x x .  
Now, considering the time value of money that can lead us to the conclusion 

that it is optimal to postpone the issuance of new equity for as long as possible. 
We therefore conjecture that it is optimal to issue equity only when the reserves 
become zero. Such a conjecture indicates that it is optimal for the company’s 
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management to take no action as long as the reserves process takes values in 

( )*0, x  for some * 0x > , take the minimal action by issuing new equity so as to 
prevent the reserves process X from entering ( ),0−∞  and take minimal action 
to keep X below *x . This strategy is associated with a solution to the HJB 
Equation (20) that is characterised by 

( ) ( ) ( ) ( )21max 0, 0.
2

m x x m x rm x xσ µ ρ ′′ ′+ + − = > 
         

(40) 

Remark 3.2. In the limiting situation 0σ = , we have  

( )d d d d .t t t tX X t L Gµ ρ= + − +                  (41) 

Multiplying throughout by the integrating factor e pt−  resulting with  

e d e d e d e d e d .t t t t t
t t t tX X t t L Gρ ρ ρ ρ ρρ µ− − − − −− = − +           (42) 

Integrating throughout and simplifying to 

0 0 0 0
e e e d e e d e e d

t t tt t s t s p t s
t s sX X s L Gρ ρ ρ ρ ρ ρ ρµ − − −= + − +∫ ∫ ∫        

(43) 

Since 0X x= .  

0 | 0 0
e e e d e e d

t tt t t s t s
t s st

X x s L Gρ ρ ρ ρ ρµ −
− − −= + − +∫ ∫            

(44) 

where 
|t

s −
−  is calculated at the force of interest ρ. The determination of 

( )*;V x x  is now an exercise of compound interest. Let 0t  be the time when 
( ) *

0X t x= . Then we find that  

( ) ( )0* * *; e ; .rtV x x V x x−=
                    

(45) 

Applying the boundary conditions we have ( )
*

* *; xV x x
r

µ ρ+
=  hence this 

simplifies to  

( )
*

*
*; .

r

x xV x x
rx

ρµ ρ µ ρ
µ ρ

 + +
=  +                  

(46) 

Remark 3.3. When 0ρ =  the equation takes the form of the Equation (7) in 
Lokka and Zervos [1], that is 

( ) ( ) ( )21 0.
2

m x m x rm xσ µ′′ ′+ − =
                

(47) 

Since the first order linear equation  

0m am′ − =                          (48) 

has an exponential function as a solution e xm α= . This gives an idea to try as a 
solution of equation the function  

2e , e , e .x x xm m mα α αα α′ ′′= = =                 (49) 

Substituting (49) in (47) and simplifying to 

2 21 0.
2

rσ α µα+ − =
                     

(50) 

where  
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2 2

2

2
.

rµ µ σ
α

σ
− ± +

=
                    

(51) 

Therefore the real numbers 1 2,α α  are given by 
2 2

1 2

2 rµ µ σ
α

σ
− + +

=
                     

(52) 

and  
2 2

2 2

2 rµ µ σ
α

σ
− − +

=
                    

(53) 

There are two distinct roots 1α  and 2α . 
The general solution is therefore  

( ) 1 2
1 2e ex xm x d dα α= +                      (54) 

where 1 2,d d ∈  are constants. 
Since every solution to ( )m x  that satisfies the boundary condition 
( )0 0m =  is associated with the relation 1 2 0d d+ = . It follows that 1 2d d= − . 

From the formula in (16)we get  

( )
1 2

1 2

*
* *

1 2

e e; .
e e

x x

x xV x x
α α

α αα α
−

=
−                   

(55) 

We are then prepared to calculate ( )*;V x x . 
For given 0x > , we want to find *x  which maximizes ( )*;V x x . From (5) 

and (6) we obtain  

( )
( ) ( )

( )

( ) ( )
( )

*
* * *

*

*
* *

* * *
*

; ; 0

;

; ; .

m x
V x x x x

m x
V x x

x m x
V x x x x

m x

 ′′
− < <

′∂ = 
∂ ′′

− ≥
′

 

From (11) and (12) it follows that  

( )
( ) 2

0 2 0.
0

m
m

µ
σ

′′
= − <

′
                      

(56) 

Hence ( )*
* ;V x x

x
∂
∂

 is positive for small values of *x . Since ( )*; 0V x x →  

for *x →∞ , we gather that ( )*;V x x  attains is maximum for a finite and 

positive value of *x . According to (56), the first order condition is that  

( )* 0.m x′′ =
                         

(57) 

It turns out that this equation has a unique solution * **x x= . Therefore this is 
the thresh hold which maximizes ( )*;V x x , independently of x. We note that 
since  

( ) ( )
( )

*
*

;
m x

V x x
m x

=
′

                      
(58) 
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hence we have  

( ) ( )
( )

* *
*

; ; 0
m x

V x x x x
m x

′′
′′ = < <

′
                 

(59) 

and from the boundary conditions  

( )* *; 0.V x x′′ =
                        

(60) 

Thus if we set * **x x x= =  in (9) and use the second condition in (10), we see 
that  

( )* * *; 0,x rV x xµ ρ+ − =  

from which it follows that  

( )
**

* *; .xV x x
r

µ ρ+
=

                     
(61) 

The ( )* *;V x x  is similar to the present value of a perpetuity, where the 
payment rate is the sum of the drift and the interest on the initial capital. 
Equating equation in (9) when *x x=  to the formula in (55) we have  

( )
** **

1 2

** **
1 2

* *

1 2

e e; .
e e

x x

x x
V x x

α α

α αα α

−
=

−                   
(62) 

This is equivalent to  
** **

1 2

** **
1 2

**

1 2

e e .
e e

x x

x x

x
r

α α

α α

µ ρ

α α

+ −
=

−                   
(63) 

For 0ρ =  the equation reduces to  
** **

1 2

** **
1 2

1 2

e e .
e e

x x

x x

α α

α α

µ
σ α α

−
=

−                      
(64) 

Taking logarithms both sides, simplifies to 

( )** 1
1 2

2

log .x σ µα
α α

σ µα
 −

− =  −                    
(65) 

Hence  

** 1

1 2 2

1 log .x σ µα
α α σ µα

 −
=  − −                    

(66) 

The results of this paper are summarised in the following theorem. 
Theorem 3.1. For the process tX  given by (1), consider the problem of 

maximising the profit by (3) over a set of appropriate admissible dividend and 
issuance of equity strategies ( ),L G . The optimal stopping policy is to issue 
equity only when the reserves become zero and pay dividends when the liquid 
cash reaches threshold level of  

** 1

1 2 2

1 logx σ µα
α α σ µα

 −
=  − −                    

(67) 
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with a corresponding value function of  

( )
( ) ( )

( )

( ) ( )
( )

*
* * *

*

*
* *

* * *
*

; ; 0

;

; ; .

m x
V x x x x

m x
V x x

x m x
V x x x x

m x

 ′′
− < <

′∂ = 
∂ ′′

− ≥
′

 

4. Conclusion and Suggestions 

Based on the concept of stochastic process, the dividend and equity issuance 
problem in the presence of interest rate was investigated. The objective was to 
maximise the expected discounted dividend payments minus the expected 
discounted costs of issuing new equity. When modelling this problem, the 
stochastic control theory for diffusion was used with the application of Hamilton- 
Jacobi-Bellman equation (HJB) dynamic principle. The mathematical formulation 
of the problem, eventually lead to a stochastic differential problem which belonged 
to a class of Kummer confluent hyper-geometric equation. However the model 
studied is not a true description of the real world around us, since corporates or 
companies are exposed to large, sudden and unpredictable movements in the 
financial market and other natural disasters like floods, drought and earthquakes. 
Hence for further research, we can address the optimal dividend and issuance 
control problem of the insurance company in the presence of interest with jumps. 
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