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Abstract 
We report on the efficient photodetection (PD) properties of graphene based 
p-i-n photodetector, where all the three layers are either single or multilayer 
graphene sheets. We report the bandwidth and responsivity performance of 
the device. This simple structure paves the way for the next generation flexi-
ble wireless communication systems. A theoretical model is used to study 
the carrier distribution and current in a graphene based p-i-n photodetector 
system. 
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1. Introduction 

Photodetectors (PD) play key role in high performance of optoelectronic and 
photonic systems. P-i-N photodetector is one type of photodetectors which 
converts optical signal into electrical response. This type of PD usually consists 
of heavily doped P and N regions, separated by an intrinsic layer. Usual P-i-N 
PD systems consist of semiconductor materials like, Germanium, Indium gal-
lium arsenide, Lead sulphide and Silicon. The next generation flexible and 
wearable communication systems require efficient photodetector material which 
is compatible with the flexible fabrication process. In recent years, copious 
amount of research is going on to fabricate flexible PD systems using various 
types of flexible materials, like, Tin Monosulfide, CsPbBr3 microcrystals, 
two-dimensional (2D) layered materials, organic semiconductors and perovskite 
materials [1] [2] [3]. Among all existing flexible PD materials, graphene based 
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PD systems are attractive research topic owing to its unique advantages. Gra-
phene is a zero band gap hexagonal honeycomb carbon atomic layer [4]-[10], 
which allows absorption in broad range of wavelengths. Along with other unique 
properties of graphene, this wonder material is extremely flexible and it has huge 
potential to be used in flexible device fabrication. In the past few years, graphene 
based photodetectors have been successfully reported [11] [12] [13] [14], they 
are mostly fabricated on rigid substrates, providing a limitation of its utilization 
is flexible electronic systems. Thus, though there are vast applications of photo-
detector mainly in the nano-metric dimensions with unique features, several 
areas require immediate attention to optimize the engineered properties of such 
devices. Implementing a useful model for graphene based photodetector is still 
under research. In this letter, we describe a model for graphene based p-i-n 
photodetector based on simple concepts, where all the layers of the device is 
made of graphene sheets allowing its applicability in flexible electronics applica-
tions.    

2. Model  

The model is based on the previously reported study on photodetector devices 
[15] [16] [17] [18] [19]. We consider the graphene based p-i-n photodetector 
structure, as shown in Figure 1. For practical fabrication process, mechanically 
exfoliated graphene single layer or multilayer sheets can be utilized. In order to 
create doped graphene structures, chemical doping of the graphene sheets can be 
realized. P-type graphene sheets can be realized by intercalating halogen dopants 
(Cl, Br, I and F), alkali metal based dopants (K, Li, Na, etc.), acids (HCl, HNO3 
and H2SO4) and some organic compounds [9] [20] [21] [22]; whereas, N-type 
graphene structures are usually created by intercalating metallic compounds like 
ZnMg [23].  

Here, the light is incident on the P side. The structure consists of a single layer 
of N+ graphene layer, an undoped multi-layer graphene with thickness l and fi-
nally a single layer graphene P+ layer. The nominal N+ and P+ region doping is 
taken of the order of 1 × 1012 cm−2, which is practically reliable value [24].  

In the theoretical model, we have to consider the effect of photogenerated car-
riers in the intrinsic layer as because the widths of the three regions are compa-
rable to each other. Thus, the current continuity equations in the depletion layer 
is given by [15]  

( ) ( ), ,
n

n x t n x t
v g

t x
∂ ∂ 

− = 
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                      (1) 

 

 
Figure 1. Schematic structure of a graphene based p-i-n 
photodetector. 
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where, g is the photo carrier generation rate, v is the velocity, n and p denote the 
electron and hole, respectively. Incident optical powers, absorption coefficient of 
graphene at the operating wavelength, reflectivity of the graphene surface are 
some of the important parameters which control the generation rate of the pho-
to carriers.   

Carrier distribution N(x,jω) for electrons and P(x,jω) for holes in the deple-
tion region (in frequency domain) are calculated by solving the above current 
continuity equations simultaneously. In general, all the uppercase variables are 
used to indicate the Laplace transform of the corresponding lowercase variables. 
The entire depletion region is subdivided into equal energy spacing (Δx) for 
calculation. Along its path of motion, each carrier represents a specific position 
and energy state in the depletion region of the device. For this reason, each car-
rier is specifically represented as a function of two indices: one position index (i) 
and one energy index (j). So, we substitute N(x, jω) by N(i, j, jω) and P(x, jω) by 
P(i, j, jω).  

To obtain the photo-current density, the carrier distribution N(i, j, jω) and 
P(i, j, jω) are multiplied by equal energy spacing (∆x) and then summed for all i 
and j. The current density J of the device is obtained using Equation (3) 

( ) ( ) ( ) ( ){ } ( ), , , ,n pi j

qJ N i j j v i P i j j v i x i
L

ω ω = + ∆ ∑ ∑         (3) 

where, L, q and v are the length of the PD, electronic charge and the carrier ve-
locity respectively. We consider here that the carrier velocity is only function of 
the position. Suffix n and p is used for electrons and for holes respectively. 

3. Results and Discussions  

The material parameters for the graphene layer have been taken from the litera-
ture [11] [12] [13] [14] [24]. Using those parameters in this present model, 3-dB 
bandwidth, frequency response and responsivity of the device have been calcu-
lated. The calculated values are justified by the performance of the fabricated 
graphene based PD devices as described in literature [11] [12] [13] [14]. 

Figure 2 shows the 3-dB bandwidth variation i-layer thickness, where p and n 
layer consist of single layer graphene sheets (thickness ~1 nm). Areas of the PD 
devices are also varied in this case. Maximum bandwidth (~5 GHz) is obtained 
for the multilayer graphene i-layer (5 nm). Effect of device dimension on band-
width can also be observed from the plot, where smaller sized devices have better 
bandwidth compare to the larger sized devices. Keeping i-layer thickness con-
stant at 5 nm where maximum bandwidth is obtained, the P+ and N+ layer 
thicknesses are varied from 1 to 5 nm and area of the device is also varied, as 
seen from Figure 3. There is no significant variation of the 3-dB bandwidth 
when the P+ and N+ layer thicknesses are changed, which concludes that the  
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Figure 2. Variation of bandwidth with i-layer thickness keeping N+ and 
P+-layer thicknesses fixed at 1 nm. 

 

 
Figure 3. Variation of bandwidth with N+ and P+-layer thicknesses keeping 
i-layer thickness fixed at 5 nm. 

 
bandwidth of the device is dependent on the intrinsic layer thickness. This con-
clusion facilitates the applicability of the model in real fabrication of the device, 
since producing multilayer graphene sheets is comparatively easier than single 
layer graphene sheets. 

Figure 4 shows the frequency response, keeping device area fixed at 50 µm2, 
which gave rise to the maximum 3-dB bandwidth as observed from Figure 2 and 
Figure 3. The i-layer thickness is varied from single layer graphene to few layers 
of graphene. Again we observe the multilayer graphene i-layer gives rise to better 
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response. This is likely due to the fact that multilayer graphene sheets have poor 
electrical conductivity as compared to the single layer graphene sheets, giving 
rise to better performance of the intrinsic layer. 

Keeping i-layer thickness as 5 nm and device area as 50 µm2, the responsivity 
of the system has been investigated, where p and n layer thicknesses are kept 
fixed at 1 nm. Figure 5 shows the change of responsivity of the PD system with  

 

 
Figure 4. Normalized frequency response with i-layer thickness. 

 

 
Figure 5. Responsivity is plotted as a function of wavelength for 5 nm i-layer (b) 
thickness in a Graphene-Graphene-Graphene n+-i-p+ Photodiode (PD). n+(a) and 
p+(c) Graphene layer thicknesses are taken to be 1 nm. 
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Figure 6. Responsivity is plotted as a function of bias at 633 nm for 5 nm i-layer 
(b) thickness in a Graphene-Graphene-Graphene n+-i-p+ Photodiode (PD). n+(a) 
and p+(c) Graphene layer thicknesses are taken to be 1 nm. 

 
Table 1. Performance of p-i-n Photodetector (PD) based on Graphene: p = n = 1 nm, i = 
5 nm, V = 1.5 V. 

Area (µm2) 
Bandwidth 

(GHz) 
Responsivity 

(A/W) 
Rise Time (Sec) EQE (%) 

50 5.28 0.34 0.066 × 10−9 67.23 

 
wavelength, which shows a linear response of the device for different applied bi-
as voltages. We also investigate the responsivity of the PD at 633 nm wavelength, 
as a function of applied bias which is comparable with the reported values in the 
literature [14] as shown in Figure 6. Table 1 shows the performance of p-i-n 
Photodetector (PD) based on the optimized parameters discussed in this paper. 

4. Conclusion  

We have designed an effective graphene based flexible PD system whose per-
formance matches well with the experimental values in the literature. The PD 
system can be effectively used in the next generation communication systems. 
Further investigations are under progress to fabricate graphene based PD devices 
on flexible polymer substrates. 
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