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Abstract 
This research used the common decomposition of the velocity and pressure in 
an average part and a fluctuating part, for high Reynolds number, of the 
Navier-Stokes equation, which leads to the classic problem of turbulent clo-
sure. The Prandtl’s mixing length model, based on the Boussinesq hypothesis 
and traditionally used for free shear flows, was chosen and adapted for inter-
nal flows to solve the closure problem. For channel flows, Johann Nikuradse 
proposed a model for the Prandtl mixing length. In the present paper, which 
has an academic character, the authors made a return to the model of the 
mixing length of Prandtl and the model of Nikuradse, to solve turbulent flows 
inside a plane channel. It was possible to develop an ordinary differential 
model for the velocity in the direction of the flow whose solution occurs 
computationally in a simple but extremely accurate way when compared with 
Direct Numerical Simulation databases. For the viscous stress on the wall, it 
was possible to determine the exact mathematical solution of the ordinary 
differential equation. It is a model of great academic value and even to be used 
as reference for verification of computational codes destined to the solution of 
complete numerical and computational models. 
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1. Introduction 

Turbulent flows are more common in nature and in industrial applications when 
compared to laminar flows. It is possible to determine exact and numerical solu-
tions for laminar flows. However, for transition to turbulence and for fully tur-
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bulent flows, there are no exact solutions, except for some cases of canonical 
flows. Due to the high complexity and, at the same time, its high practical im-
portance, this subject has been the object of great efforts of the scientific com-
munity around the world. 

Due to the great academic and industrial interest related to this theme, many 
concepts and methods were developed to model the average characteristic in-
formation of turbulent flows, incorporating the effects of the turbulence itself, 
Boussinesq (1877) [1], Reynolds (1884) [2], Prandtl (1925) [3] and Kolmogorov 
(1941) [4]. Numerous theoretical and experimental studies have been developed, 
but none, without many limitations, Schlichting (1968) [5], Nikuradse (1966) 
[6]. The studies by material experimentation are limited by the constructive dif-
ficulties of the experimental apparatus, as well as by the difficulties of instru-
mentation for the development of the measures. Computational experiments are 
limited by the methodologies used to solve differential models, as well as by the 
processing and storage power of computers. Finally, it is important to comment 
on the methods of exact solution, which are feasible only for some canonical 
flows, due to the complexity of the differential mathematical models associated 
to the turbulent flows. 

Studies involving exact solutions of canonical turbulent flows, such as, free 
shear flows, can be found in the literature, Schlichting [5] and Wilcox [7]. Also, 
some works can be found about turbulent flows in flat channels, for instance, 
Nikuradse [6]. 

Numerous works are found about turbulence closure modeling, such as the 
Prandtl mixing length model [3]. In the present work, the turbulence closure 
problem was modeled using the mixing length cited by Prandtl [3] as well as the 
proposal of Nikuradse [6] for modeling the characteristic length of turbulence 
for flows in flat channels and in circular ducts. Thus, the main objective of the 
present work is related to the semi-analytical study of turbulent flows in flat 
channels. We present the differential model for the mean velocity field as well as 
the closure model based on the Prandtl and Nikuradse proposals. The model of 
the mixing length of Prandtl [3] was, in the present work, modified, using 
damping functions, to consider the presence of walls. With these functions, it 
was ensured that the effects of turbulence near walls were damped to zero, as 
expected from the physical point of view. The solution of the differential model 
for the mean velocity was obtained by numerical and computational methods. 
The solution to the viscous stress on the wall was obtained exactly. 

It is important to emphasize that for internal flows, in the near regions of 
walls, the viscous molecular effects grow dramatically as it approaches the walls, 
which dampens the effects of the turbulence. The model of the mixing length of 
Prandtl, by itself, does not correctly model this physical characteristic of the in-
ternal flows. Nikuradse [6] proposed a polynomial function for evaluation of the 
mixing length along the whole channel, including the wall regions. However, as 
will be shown in the results chapter, this polynomial function is not enough to 
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correctly model the problem. In the present work, it was proposed to use an ad-
ditional damping function proposed by Van Driest (1956) [8]. It will be shown 
that the use of this additional damping function of the mixing length of Prandtl, 
promotes an additional damping, apparently small, but that presents very im-
portant consequences in the prediction of average flow over the whole channel. 

2. Plane Channel: Physical and Mathematical Models 
2.1. Physical Model 

Poiseuille laminar and turbulent flows in flat and circular channels are among 
the first flows that were solved by the scientific community. Initially this type of 
flow was solved in laminar regime by Poiseuille (1846) [9]. Later, it was mod-
eled, in turbulent regime, by Prandtl [3] and by Nikuradse [6]. The physical 
model for the flat Poiseuille flow is shown in Figure 1, where the walls, the en-
trance and the exit, the coordinate axes system ( ), ,x y z , the half-width of the 
channel, R, the average speed profile, ( )u y  and the axis of symmetry is illu-
strated. A Poiseuille flow is characterized by being developed in the x-axis, having 
components 0v w= = . The flow is maintained with a pressure gradient p x∂ ∂ . 
On average, the flow is considered in permanent regime. The fluid is Newtonian, 
and the flow is incompressible. This is the physical basis that will be used to es-
tablish the differential mathematical model, presented in the following item. 

2.2. Differential Mathematical Model 

Laminar and turbulent, isothermal flows of Newtonian fluids can be modeled by 
the continuity and Navier-Stokes equations. These equations, for incompressible 
flows, when submitted to the mean temporal operator, are written below, using 
indicial notation: 

0.i

i

u
x
∂

=
∂

                            (1) 

1 .i ji i
i j

j i j j

u uu up u u
t x x x x

ν
ρ

 ∂∂ ∂∂ ∂ ′ ′+ = − + −  ∂ ∂ ∂ ∂ ∂ 
             (2) 

Equation (1) represents the mean mass balance over a fluid particle, while 
Equation (2) represents the linear momentum balance over the same fluid 

 

 
Figure 1. Schematic illustration of the Poiseuille flow between parallel plates. 
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particle. These differential equations can be simplified by the assumption of 
Poiseuille flows, i.e.: 0v w= = , 0p x∂ ∂ ≠  and 0u x∂ ∂ = . Finally, the average 
flow is considered to be in steady state. Thus, Equation (3) and Equation (4) are 
obtained: 

0.u
x

∂
=

∂
                            (3) 

1 .p u u v
x y y

ν
ρ

 ∂ ∂ ∂ ′ ′= − ∂ ∂ ∂ 
                     (4) 

It is observed that the Equation (4) presents an additional term u v′ ′  that is 
not known. This term makes the model mathematically open. This fact requires 
an additional equation for the closure of the model. 

2.3. Boussinesq Hypothesis 

The decomposition of velocities and pressure leads to the appearance of the 
Reynolds stress tensor, which, for the three-dimensional formulation, is given by 
Equation (5): 

.

u u u v u w

v u v v v w

w u w v w w

τ

 ′ ′ ′ ′ ′ ′
 
′ ′ ′ ′ ′ ′=  

 
′ ′ ′ ′ ′ ′  

                       (5) 

Boussinesq proposed to model this tensor using his hypothesis, which consists 
of making an analogy to the Stokes model for the molecular viscous stress tensor. 
The model is represented by Equation (6), for one-dimensional flows, as is the 
case of the flow analyzed in the present work: 

d d 2
d d 3t xy
u vu v k
y x

ν δ
 ′ ′− = + − 
 

                     (6) 

where ( )1 2k u u′ ′=  is called turbulent kinetic energy, xyδ  is the Cronecker’s  

operator, and tν  was defined as the kinematic turbulent viscosity. While mo-
lecular viscosity is a physical property of fluids, turbulent viscosity is a property 
of the flow. Substituting this model into Equation (4) and simplifying terms, re-
sults in Equation (5): 

( )d d 1 d .
d d dt

u p
y y x

ν ν
ρ

 
+ = 

 
                      (7) 

The turbulent viscosity modeling is presented in the following section. 

2.4. Prandtl Mixing Length Model 

The turbulent viscosity that appears in Equation (7) remains to be modeled and 
calculated. One of the first proposals for this was made by Prandtl [3]. This 
proposal was made for parallel flows, which is given by Equation (8): 

2 d
.

dt m

u
l

y
ν =                            (8) 
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Substituting Equation (8) into Equation (7) gives equation (9): 

2 dd d d 1 d .
d d d d dm

uu u pl
y y y y x
ν

ρ
 

+ =  
 

                   (9) 

Analyzing Figure 1 we conclude that: 

d d
d d
u u
y y
= −                          (10) 

Equation (10) is valid for any value of the coordinate 0 y R≤ ≤ . Substituting 
Equation (10) into Equation (9) we obtain Equation (11), which is written in a 
form suitable to be solved. 

2
2d d d 1 d .

d d d dm
u u pl

y y y x
ν

ρ

  
 −  = 
   

                  (11) 

where d
d
p
x

 is a constant, the term ml  is called Prandtl’s mixing length and its  

modeling varies depending on the flow. This method is used for solving mixing 
layer flows, and the most basic solution is to consider ml  linear. Usually it is 
assumed as ml xβ= , where β is a constant that depends on the flow, where 
every value is obtained empirically, and shown by Silveira [10]. 

2.5. Variable Mixing Length without Wall Function 

Even though linear ml  gives a satisfactory result for free-shear flows, like mix-
ing layer, for internal flows, inconsistent results are generated. Since the mole-
cular viscous effects are more relevant near the wall than the turbulent effects, 
Nikuradse proposed a polynomial empirical equation in [6], Rewritten by Equa-
tion (12). This model gives a mixing length model that varies with y coordinate, 
zeroing near the walls. 

( )
2 4

0.14 0.08 0.06 .ml y yL y
R R R

   = = − −   
   

            (12) 

Now, Equation (11) can be rewritten using Equation (12): 

( )
2

2 2d d d 1 d .
d d d d

u u pL y R
y y y x
ν

ρ

  
 −  = 
   

              (13) 

Considering that Equation (13) is a second order differentiation equation, its 
solution requires two boundary conditions. On the walls the non-slip condition 
must be applied by Equation (14). In the center of the channel, a second specie 
boundary condition of Neumann, that is, a condition of symmetry was used, 
given by Equation (15).  

( ) 0.u R =                            (14) 

( )d 0
0.

d
u

y
=                           (15) 

Integrating Equation (13) we have: 
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( )

( )

2
2 2

2
2 2

d d 1 dd d
d d d

d d 1 d .
d d d

u u pL y R y
y y x

u u pL y R y c
y y x

ν
ρ

ν
ρ

  
 −  = 
   

 
⇒ − = + 

 

∫ ∫
               (16) 

Applying the boundary condition given by Equation (15) we obtain: 

( ) ( )22 2 1 d0 0 0 0.
d
pL y R c c
x

ν
ρ

⋅ − = ⋅ + ⇒ =                (17) 

Now, rearranging Equation (16), we have the following second order poly-

nomial equation in 
d
d
u
y

: 

( ) 22 2 d d 1 d 0.
d d d

L y R u u p y
y y xν ρν

 
− + = 

 
                (18) 

This second-order equation in 
d
d
u
y

 can be solved and two roots can be de-

termined. Only one provides a physically consistent result, which is given by 
Equation (19): 

( )

( )

2 2

2

2 2

d1 1 4
dd .

d
2

L y R p y
xu

y L y R
ν ρ

ν

− −
=                   (19) 

In Equation (19), the presence of ( )L y  in the denominator generates inde-
terminacy, since it can assume null value. To remove this indetermination, the 
authors proposed the following algebraic manipulation was performed: 

2 2 2 2

2 2

2 2 2 2

2

d d1 1 4 1 1 4
d dd

d d2 1 1 4
d

L R p L R py y
x xu

y L R L R p y
x

ν ρ ν ρ

ν ν ρ

   
   − − + −
   
   =

   
   + −

             (20) 

2 2

2

1 d2
d d .
d d1 1 4

d

py
u x
y L R p y

x

ρ

ν
ν ρ

=
 
 + −
 
 

 

The Equation (20) is a first order, homogeneous, non-linear ordinary diffe-
rential equation, with no exact solution. Therefore, a numerical tool is required, 
and the software MATLAB was used to resolve this equation, using the fourth 
order Runge-Kutta method already implemented in the software as a function, 
and well explained in Cheever [11]. For an illustration of the results that are ob-
tained, the following values of the parameters were chosen for convenience and 
to facilitate solving: 

3 3 2d1 m, 100 kg m , 100 Pa m, 10 m .
d

spR
x

ρ ν −= = = =  
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The velocity distribution, as a function of the y-coordinate, taking into ac-
count the conditions given above, is shown in Figure 2. The velocity distribution 
shows a typical behavior of a turbulent flow, showing a strong velocity gradient 
near the walls of the channel. This behavior results from the strong diffusion of 
momentum, from the center of the channel towards the walls. As well-known, 
turbulence intensify the process of molecular diffusion. The Reynolds number 
that appears in Figure 2 was defined and calculated as bellow: 

average 0

1 d .
R

u u y
R

= ∫                        (21) 

Consequently: 

average2
.D

Ru
Re

ν
=                        (22) 

2.6. Nondimensionalization 

Equation (20) was nondiminesionalized, resulting in an equation with a single 
parameter. This procedure facilitates the comparison of the results obtained in 
the present study with results of other authors. Let’s introduce the following pa-
rameters without dimensions: 

, , .
u Ry uy u Re

R u
τ

τ
τ ν

= = =

                   (23) 

Two new terms appeared in Equation (23), the friction velocity ( uτ ) and the 
friction velocity Reynolds number ( Reτ ). These parameters are quite used in the 
study of turbulent channels and ducts. The friction velocity is defined by Equa-
tion (24): 

 

 
Figure 2. Mean velocity profile of a flow with ReD = 40950. 
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.wuτ
τ
ρ

=                          (24) 

where wτ  is the shear stress on the wall, which is illustrated in Figure 3. It is 
possible to balance the forces around the control volume, to find the value of 

wτ . Using the terms shown in Figure 3, and taken into account the forces, we 
obtain: 

1 22 2 2wp R x p Rτ= ∆ +                      (25) 

1 2 .w p p
R x
τ −

=
∆

 

Taken lim 0xδ →  in Equation (25) and using Equation (24), we obtain: 
2d .

d
w up

x R R
ττ ρ

− = =                        (26) 

Using these parameters, Equation (20) can be transformed into Equation (27). 
2 2

2 22 22 2 2 2

2 2

12 2 2d .
d 1 1 4

1 1 4 1 1 4

u u uy y yReu R R R
y L Re yu uL R L Ry y

R R

τ τ τ
τ

ττ τ

ρ
ρ

ρν ν
ν ρ ν

− − −
= = =

    + +
   + + + +
   
   





 (27) 

Multiplying both sides of Equation (27) by R uτ  we obtain the final nondi-
mensional form: 

2 2

2d .
d 1 1 4

yReu
y L Re y

τ

τ

−
=

+ +









                     (28) 

The new nondimensional boundary conditions are given by Equation (29) 
and Equation (30). Reminding that equation (30) was already applied. 

( )1 0,u =                           (29) 

( )d 0
0.

d
u

y
=





                         (30) 

Equation (28) requires only one control parameter, the Reynolds number 
 

 
Figure 3. Schematic illustration of a control volume inside a channel. 
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based on the friction velocity, uτ , in order to characterize the physical flow to be 
simulated and compared with other authors. Once we obtain the velocity profile 
we can obtain the DRe , using Equation (21) and Equation (22), as shown below:  

1average average

0 0

2 21 2 d 2 d
RD Ru RuRe u y u y

Re Re u R R uτ τ τ τ

ν
ν ν

= = = =∫ ∫  
    (31)

 

1

0
2 d .DRe Re u yτ= ∫    

3. Initial Results 
3.1. Results without Damping Function 

To validate the method presented in the present work, DNS data already existent 
in the literature, was used. The results to be compared are from DNS simulations 
of a turbulent channel done by JHTDB [12] and ICES Turbulence Database [13]. 
Four different Reτ  values were chosen to compare: 180, 395, 590 and 1000. 

Beginning with 180Reτ =  and 395Reτ = , the mean velocity profiles are 
plotted in Figure 4. The results are compared with DNS results. We see that the 
results obtained in the present work do not match with the reference results. 
Results for 590Reτ =  and 1000Reτ =  are shown in Figure 5. 

For each case it is possible to calculate DRe  using Equation (31), therefore: 
for 180Reτ = , 3490DRe = ; 395Reτ = , 9230DRe = ; 590Reτ = , 

14975DRe = ; and 1000Reτ = , 28036DRe = . By Figure 4 and Figure 5 it is 
possible to notice that the calculated curve better approaches DNS results for 
higher Reynolds number values. 
 

 
(a)                                         (b)                 

Figure 4. Comparison of the c
yu u
R

 
 
 

 profiles for 180Reτ =  (a) and 395Reτ =  (b). 
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(a)                                         (b)                 

Figure 5. Comparison of the c
yu u
R

 
 
 

 profiles for 590Reτ =  (a) and 1000Reτ =  (b). 

 
That happens because the method used in the present paper is for completely 

turbulent flows. It is not valid for laminar and transitional flows. Thus, the lower 
is the Reynolds values, worst is the precision of the method. However, even with 
high Reynolds number values the results do not agree with DNS data base, since 
there is still a big difference between the presented curves and DNS curves. 

3.2. Results with Damping Function 

As previously stated, the Prandtl mixing length should tend to zero near the 
walls, since the viscous effects are more relevant than the turbulent effects. The 
mixing length function given by Equation (12), effectively zeroes on the walls, 
but not as fast as it should. This requires the application of an additional damp-
ing function. Van Driest (1956) [8] proposed a wall damping function, which is 
presented here by Equation (32). 

260.4 1 e .
y Re
R

ml y
τ − 

 
 

= − 
  

                      (32) 

However, Equation (32) is only valid for 40y R Reτ≤ , thus it is necessary to 
separate the velocity profile in two parts. Cebeci and Bradshaw (1984) [14], 
proposed an expression that combines Equation (12) and van Driest’s damping 
term given by Equation (32), resulting in Equation (33), which is valid for the 
whole domain and is already nondimensionalized: 

( ) ( ) ( )1
2 4 260.14 0.08 0.06 1 e

Rey
mlL y y y
R

τ −  
  = = − − − 
  



             (33) 
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In Figure 6 the mixing length is plotted with and without the damping term. 
It can be seen that with the damping model, the mixing length dampens more 
quickly when compared to the curve obtained without the damping function. 

4. Final Results 
4.1. Mean Velocity Profile 

Applying (32) on ODE (28) and solving it, enables to generate the mean velocity 
profile for the four different Reτ  stated before, now calculated with the damp-
ing function. Comparison with the DNS results from JHTDB [12] and ICES Tur-
bulence Database [13] were performed. Beginning by 180Reτ =  and 395Reτ = , 
or 5660DRe =  and 14219DRe =  respectively, the results are shown in Figure 
7. After, 590Reτ =  or 22521DRe = , and 1000Reτ =  or 40950DRe = . The 
results are presented in Figure 8. 

The euclidean norm ( 2L ) and infinity norm ( L∞ ) was also calculated for a 
quantitative comparison between the no damping and damping curve, to the 
DNS. The results are presented in Table 1 and Table 2.  

With the damping equation the profiles and norm practically coincide with 
the DNS. As presented, for the mixing length without wall function, the higher 
the Reynolds value, the higher the precision of the method. In the case 

180Reτ = , the DRe  is only 6000, which characterize a low Reynolds number 
turbulence, being out of limit for the use of this method. With the correction of 
the damping function, the results fit better with the turbulent flow characteristics. 

4.2. Reynolds Stress 

Combining Equations (6), (8) and (10) it is possible to calculate the Reynolds 
stress, with Equation (34), for 0y ≥ . 
 

 
Figure 6. Comparison of the mixing length with and without damping. 
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(a)                                              (b)                    

Figure 7. Comparison of the c
yu u
R

 
 
 

 profile for 180Reτ =  (a) and 395Reτ =  (b) with and 

without damping function. 
 

 
(a)                                              (b)                    

Figure 8. Comparison of the c
yu u
R

 
 
 

 profile for 590Reτ =  (a) and 1000Reτ =  (b) with and 

without damping function. 
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Table 1. Euclidean norm ( 2L ) for the velocity profile curves comparison with DNS. 

 180Reτ =  395Reτ =  590Reτ =  1000Reτ =  

No Damping 0.0792 0.0684 0.0637 0.0567 

Damping 0.0200 0.0089 0.0063 0.0043 

 
Table 2. Infinity norm ( L∞ ) for the velocity profile curves comparison with DNS. 

 180Reτ =  395Reτ =  590Reτ =  1000Reτ =  

No Damping 0.1511  0.1557 0.1566 0.1567 

Damping 0.0429  0.0295 0.0257  0.0212 

 
2

2 d .
dm
uu v l
y

τ
 ′ ′= =  
 

                       (34) 

Using the parameters in (23), it is possible to obtain the nondimensional 
Reynolds stress, using the wall stress Wτ , It is given by (35): 

2
2 d .

dW

uL
y

τ
τ

 
=  

 





                        (35) 

But, Equation (28) gives us the derivative d du y

  exactly, and we can obtain 
the exact solution for Wτ τ : 

( ) ( )
2

2 2

2
.

1 4W

yReL y
L y Re y

τ

τ

τ
τ

= −
+





                   (36) 

Therefore, using Equation (36) it is possible to plot the Reynolds stress, the 
same four different values of Reynolds number. Starting with 180Reτ =  (a) and 

395Reτ =  (b), plotted in Figure 9, we see a very good agreement with DNS da-
ta of [12] and [13]. 

In Figure 10 the curves for 590Reτ =  (a) and 1000Reτ =  (b) are plotted, 
we see that the agreement is still better. 

For these case the euclidean norm is also calculated, as well as the infinity 
norm ( L∞ ), obtaining Table 3 for 2L  and Table 4 for L∞ . 

The same analysis performed for the mean velocity profile can be performed 
here, since it is possible to see that increasing the Reynolds number, the preci-
sion of the method is also increased. The closer to full turbulent flow, the closer 
is the results of the present work as compared with DNS data. 

For every Reynolds number, it was possible to notice that the Reynolds stress 
had the expected behavior. Increasing the Reynolds, more turbulent it became, 
and consequently higher turbulent stress are obtained. Therefore, as expected, 
the higher the Reynolds number, the higher the peak of τ. Also, as the flow gets 
more turbulent, the velocity profile flattens, due to the momentum exchange in 
the y direction. Thus, the viscous region near the wall decreases, and as shown 
on the plots, the turbulent Reynolds stress peak, moves closer to the wall, as ex-
pected. 
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(a)                                                             (b)                          

Figure 9. Comparison of the Reynolds Stress profile for 180Reτ =  (a) and 395Reτ =  (b). 

 

 
(a)                                                             (b)                          

Figure 10. Comparison of the Reynolds Stress profile for 590Reτ =  (a) and 1000Reτ =  (b). 

 
Table 3. Euclidean norm ( 2L ) for the velocity profile curves comparison with DNS. 

180Reτ =  395Reτ =  590Reτ =  1000Reτ =  

0.0146 0.0095 0.0096 0.0075 

 
Table 4. Infinity norm ( L∞ ) for the velocity profile curves comparison with DNS. 

180Reτ =  395Reτ =  590Reτ =  1000Reτ =  

0.0644 0.0415 0.0380 0.0398 

 
These results show how this theoretical method is reliable, since with only one 

simple numeric solution by Runge-Kutta for velocity and an exact solution for 
the shear stress, values and plots can be generated that compares very well to 
DNS (a method that can take days to run). But it is important to stress that the 
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presented method is limited to this isolated physical problem. 

5. Conclusions 

In the present work, one of the first proposals of turbulence closure modeling 
was used: the mixing length model of Prandtl to solve turbulent flows in a plane 
channel. The Nikuradse [6] model for Prandtl mixing length was used. Fur-
thermore, the proposals of Van Driest [8] and Cebeci and Bradshaw (1984) [14] 
were also used to model the required damping near the walls. 

A very simple model, composed of an ordinary differential equation, was 
proposed for the mean velocity of the flow as well as for the viscous stress on the 
channel walls. The differential equation for the mean velocity was solved using 
the Runge-Kutta’s integration method. However, the differential equation for 
viscous shear stress rate was solved exactly. The results obtained for four values 
of the Reynolds number were compared with the results of Direct Numerical 
Simulation, and excellent agreement was obtained. 

The proposed and solved flow does not have necessarily practical usage, since 
channel and duct flows are being studied experimentally for several years, with 
various well-defined tables and results, even for different roughnesses in the 
walls. However, the main objective of the current study, is for didactical reasons, 
to demonstrate a resolution of one of the most used models in teaching turbu-
lence courses. The present paper may help students, interested in this scientifical 
area, to visualize a complete solution of a turbulent flow, for which the laminar 
regime solution they know since the first contact with fluid dynamics courses. 

Another very important aspect is that the method presented in the current 
paper may be used for validation of numerical and computational methods. The 
presented model can be easily used with agility as validation reference. To date, 
the world scientific community has determined the rate of convergence of nu-
merical methods using synthesized solutions for problems of purely mathemati-
cal nature. With the model proposed in the present work, one can determine the 
convergence rate of numerical and computational methods for real turbulent 
flows in a flat channel. 
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