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Abstract 
Peri-urban forests are subject to different dynamics due to several factors. 
Nfifikh forest is a man-made space, located in suburban of Mohammedia 
City, belonging to Casablanca, Settat Region, and geographically between Ca-
sablanca, the economic and business Capital of Morocco and Rabat, the na-
tional political capital. Over the past three decades, it has experienced several 
significant degradations. The aim of this study is to evaluate and quantify the 
deforestation within the study area using a forest cover change detection of 
various vegetation indices and subpixel classification to pick out high density 
plots with Landsat images TM, ETM+ and OLI. Remote sensing is used to 
highlight the changes caused through Space-Time. This monitoring might 
help managers to generate forest management plans and to moderate the 
speed of deforestation and degradation. The results show a significant change 
in vegetation cover detected between 1987 and 2015. The Density increased in 
2001 while it decreased considerably in 2015. 
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1. Introduction 

According to the first Forest Inventory in Morocco conducted between 1990 and 
2005, forests cover an area of about 9 million hectares, or 12.7% of the national 
territory [1]. Moroccan poorly managed forest biodiversity is degrading because 
of the loss of natural resources. These green spaces are over frequented by 
eco-tourists who damage the landscape with waste that sometimes causes wild-
fires [2]. The forest is furthermore damaged by resident workers who are re-
sponsible for forest over-grazing as well as illegal logging [3]. 

The use of remote sensing and GIS in forestry is a major asset with high spa-
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tial resolution satellite data [4] [5] [6]. Several studies have been conducted 
about forest degradation and cover change detection [7] [8] [9] [10]. At Sumatra 
Island in Indonesia, mapping and monitoring deforestation and forest degrada-
tion were realized by Margono et al. [11]. Moreover, vegetation indices are very 
useful to evaluate the performance of the spatial coverage [12] [13] [14] [15]. 
Some of these studies were based on Normalized Difference Vegetation Index 
differencing Change Detection [16] [17], Soil-Adjusted Vegetation Index [18], 
Tasseled Cap [15] and Subpixel classification [19]. 

According to Ghebrezgabher et al. [20], the normalized difference vegetation 
index is the most used factor in vegetation studies. Kumar et al. [21] has used 
NDVI to monitor deforestation and forest degradation in India. NDVI gives an 
overview of the quality and density of vegetation [22]. Nori et al. [23] integrated 
NDVI and SAVI to evaluate the potential for monitoring forest change in Sudan. 
The soil-adjusted vegetation index is a modification of the normalized difference 
vegetation index in order to correct the influence of the soil brightness [24]. In 
some studies, Forest disturbances can be detected using Tasseled cap [25] [26] 
[27] [28]. Healey et al. [25] used tasseled cap for the detection of forest distur-
bances in the Unites States and Russia. Tasseled Cap Greenness, Wetness and 
Brightness are the three plans of the Tasseled cap index that give optimized re-
sults of soil moisture and vegetation [29] [30] [31]. Huguenin et al. [32] detected 
in mixed pixels using the subpixel classification, cypress and tupelo trees in hu-
mid areas in Georgia and South Carolina in the United States. Subpixel Classifi-
cation has stronger capabilities compared to alternative per pixel methods [33]. 
In literature, there are numerous techniques to calculate change detection: image 
differencing [34] [35], vegetation index differencing [36] [37], and others ad-
vanced methods [38] [39] [40] [41] [42] are developed to meet the real need for 
complex forest changes.  

The objectives of this study are the detection of forest cover changes, using 
Landsat images acquired during different years, and the quantification of the 
degradation without taking into consideration climatic influences. Compared to 
other approaches over regional or national areas, this study collects several re-
sults by integrating subpixel to vegetation indices. 

2. Materials and Methods 
2.1. Study Area 

The Nfifikh forest is a man-made area of 533 ha, close to the town of Moham-
media, It belongs of the province of Benslimane and the prefecture of Moham-
media, Chaouia Ourdigha, the Region of Casa-Settat [43] [44].  

It attended by Casablanca, Mohammedia and Benslimane inhabitants. It is vi-
sited by about 2000 people daily from February to April every year [43], accord-
ing to the High Commission for Water and Forests. After a field visit, the forest 
has experienced a significant deterioration. 

This forest was planted between 1921 and 1936 by a ministerial decree of June 
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20th, 1921 [43].  
The Forest is limited by the Lambert coordinates of North Morocco system as 

follows: North: {x: 321,000 y: 348,000}; South: {x: 321,000 y: 344,600}; East: {x: 
322,000 y: 346,500} and West: {x: 320,000 y: 346,700} (Figure 1). 

The forest is characterized by: 
1) Relief: Majority of flat land with a great diversity of landscapes, the altitude 

can reach one hundred meters in some places with the most dominant altitudin-
al classes of 25 - 40 m and those of 40 - 60 m altitude. There is a presence of 
slope ranging from 0 to more than 45%. Nfifikh forest is dominated by generally 
flat terrain with some uneven topography. 

2) Geology/Soil science: Presence of schists and quartzite of primary age with 
conglomerates and calcareous Pliocene-Quaternary. 

3) Climate: Semi-arid to temperate and hot variant 
4) Flora: Eucalyptus camaldulensis, Eucalyptus gomphocephala, Pinus hale-

pensis, Quercus suber (cork oak) with Thuja and Acacia on highly restricted 
ranges and a variety of shrubs [45]. 

5) Fauna: Wild boar is plentiful with hare, rabbit, partridge and common 
wood pigeon (Columba palumbus). 

6) Hydrology: The hydrographic system of Oued Nfifikh belongs to the wa-
tershed Atlantic coastal rivers and Chaouia, he feeds the water area and has low 
flows throughout the wet period and high flow rates during the period of floods. 

2.2. Data Collection 

Landsat satellite images were used during the period 1987 and 2015, downloaded  
 

 

Figure 1. Geographical location of Nfifikh forest (Source: World Imagery Map and 

New Moroccan territorial division Map). 
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from the US Geological National Center (USGC). Landsat 5 Thematic Mapper 
(TM) acquired on January 6th, 1987, Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) on January, 20th, 2001 and Landsat 8 Operational Land Imager (OLI) on 
January 3rd, 2015. 

The satellite images are georeferenced and orthorectified with 30 m Spatial 
Resolution in the UTM (zone 29N, datum WGS 84) [46]. 

The ground truth was obtained by a field visit and Topographic map of Mo-
hammedia 1:50,000 (NI-29-XI-4ac) and Map of Stand types 1:20,000 from Water 
and Forests Direction of Casablanca Center. 

2.3. Methodological Gait 
2.3.1. Vegetation Indices 
There is a multitude of vegetation indices in the literature used in various fields 
[34] [47] [48]. This study uses three of the most common indices treating dif-
ferent ecological applications and forest research.  

1) The normalized difference vegetation index (NDVI) (1) is used to generate 
relative biomass, it measures the relationship between spectral response and ve-
getation cover [49]. According to Zhang et al. [50] NDVI is a reliable marker for 
estimating ecosystem variation, they used it to assessed the temporal and spatial 
changes in alpine grassland in Northern Tibet, also Aguilar et al. [51] calculated 
NDVI to evaluate changes in the summer growing season in woody communi-
ties on Hog Island in the United States.  

2) The Soil-Adjusted Vegetation Index (SAVI) (2), shows underneath soil 
conditions and aims to attenuate its effects on the vegetation, using a constant 
soil adjustment factor “L” [52]. This factor varies with soil reflectivity and de-
pends on density and vegetation, usually L = 0.5.  

3) The Tasseled cap is designed to analyze and map any changes related to 
vegetation, urbanization, soil, or other developments [53]. The output file offers 
three information plans which focus solely on two levels in our study: Greenness 
(3) and Wetness (4). The algorithm for these levels of information is the 
weighted sum of the bands multiplied by their respective coefficients of the 
Landsat images. 

( ) ( )NDVI NIR Red NIR Red= − +                    (1) 

( ) ( ) ( )SAVI NIR Red NIR Red 1L L− +  = + ∗ +              (2) 

( ) ( ) ( )
( ) ( ) ( )

Greenness 0.2848 Blue 0.2435 Green 0.5436 Red

                   0.7243 NIR 0.0840 SWIR I 0.1800 SWIR II

=

+ +

− − −

−
      (3) 

( ) ( ) ( )
( ) ( ) ( )          

Wetness 0.1509 Blue 0.1973 Green 0.3279 Red

0.3406 NIR 0.7112 SWIR I 0.4572 II SWIR 

= + +

+ − −
       (4) 

2.3.2. Subpixel Classification 
Subpixel Classification was used to detect and identify within a pixel the mate-
rials of interest from others [32] where the pixel acquires various labels. The 
subpixel classification exploits the spectral information of the image. It improves 

 

DOI: 10.4236/jgis.2018.102011 222 Journal of Geographic Information System 
 

https://doi.org/10.4236/jgis.2018.102011


L. Khalile et al. 
 

the classification by identifying different classes in the single pixel spectrum [54]. 
It was applied using “ERDAS Imagine 2014”, the material of interest (MOI) 
chosen is dense plots.  

More than 20 samples were taken from the satellite images in the study area as 
training samples to generate a single signature of the dense plots. This signature 
is used in the classification process to identify all pixels in the study area with 
similar spectral properties to the training samples [55]. 

2.3.3. Change Detection and Weighted Overlay Analysis 
Change detection evaluates and identifies any difference changes between two 
images in the same study area at different dates [56]. In this study Image diffe-
rencing is used by subtracting the recent image from the old one to know the 
extent of the change [57]. The change detection [7] was calculated using the first 
and last outputs of the indices and classification. The results were combined 
with the Weighted Overlay [58] [59] all Change detection indices and classifica-
tion [60]. Each factor was classified into three classes: increase, decrease and 
unchanged; and was applied at the same percentage influence. The deforestation 
susceptibility map is obtained by overlaying all maps in terms of weighted over-
lay methods using the spatial analysis tool in ArcGIS 10.4 [61]. 

3. Results and Discussions 

The resulting maps of the vegetation indices show a considerable variable of for-
est density. Figure 2 shows the representation of the NDVI minimum value rec-
orded was −0.45 in 1987, SAVI and Wetness which is respectively: −0.67 and 
−0.46, whereas for the greenness, the minimum value of −0.38 is recorded in 
2001. The maximum value recorded is in 2001 for the four indices: NDVI = 
0.743; SAVI = 1.11; Greenness = 0.76 and Wetness = 0.502. 

Green areas in NDVI represent vegetation, and the SAVI and Tasseled Cap 
show fairly similar results. 

Between 1987 and 2001, the density of the vegetation increases according to 
the indices, however, there is a remarkable decrease between 2001 and 2015. The 
dense plots extracted by subpixel classification decreased slightly between 1987, 
2001 and 2015. 

The NDVI has regressed significantly between 1987 and 2015 with an area of 
449.01 hectares. The other indices confirm the regression, for SAVI there is a 
degradation of 442.8 hectares, and for TC Greenness and Wetness we have re-
spectively 322.2 hectares and 415.53 hectares (Table 1). 

For the subpixel classification Pixels representing dense areas in forest and 
were designated as the MOI (Figure 3) by identifying areas with high vegetation 
indices values. Subpixel classification produces four classes. Each one indicates 
the percentage of MOI in each pixel. The fourth class is the most interesting in 
this study, where the MOI is present between 80% to 100%, it represents 41.80% 
of the total forest area in 1987, 40.66% in 2001 and only 38.36% in 2015. There is 
a significant reduction of forest biomass. For accuracy assessment, the overall  
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(a)                                                (b) 

 
(c)                                                (d) 

 
(e)                                                (f) 

 
(g)                                                 (h) 
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(i)                                                       (j) 

 
(k)                                                      (l) 

 

(m)                                                      (n) 

 

(o)                                                        (p) 
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(q)                                            (r) 

 
(s)                                           (t) 

Figure 2. Indices Vegetation results (a) NDVI 1987; (b) NDVI 2001; (c) NDVI 2015; (d) NDVI 
Change Detection; (e) SAVI 1987; (f) SAVI 2001; (g) 2015; (h) SAVI C.D; (i) TC Greenness 
1987; (j) TC Greenness 2001; (k) TC Greenness 2015; (l) TC Greenness C.D; (m) TC Wetness 
1987; (n) TC Wetness 2001; (o) TC Wetness 2015. Subpixel Classification results; (p) TC 
Wetness C.D; (q) subpiwel C. 1987; (r) subpixel C. 2001; (s) subpixel C. 2015. Change 
Detection results; (t) Subpixel C.D. 

 

 
Figure 3. Histogram of change detection area for vegetation indices and subpixel 
classification (Hectares). 
 
Table 1. Change detection area for vegetation indices and subpixel classification. 

Change Detection NDVI SAVI Greenness Wetness Subpixel C. 

Deforestation 449.01 ha 442.8 322.2 415.53 125.64 

Reforestation 80.55 ha 83.79 208.26 116.82 132.84 

Unchanged 3.44 ha 6.41 2.54 0.65 274.52 

 

449.01 442.8

322.2

415.53

125.64

80.55 83.79

208.26

116.82

132.84

3.44 6.41 2.54 0.65

274.52

0

100

200

300

400

500

600

NDVI SAVI Greenness Wetness Subpixel C.
Deforestation Reforestation Unchanged

 

DOI: 10.4236/jgis.2018.102011 226 Journal of Geographic Information System 
 

https://doi.org/10.4236/jgis.2018.102011


L. Khalile et al. 
 

accuracy and Kappa accuracy were computed for measuring map accuracy. 
Overall accuracy was 81.06% and Kappa accuracy of 76.7%, which seemed to be 
acceptable. 

Different land uses endure different changes [61]. The Detection change was 
used to estimate and detect transformations and spatial density changes by 
quantifying the number of density pixels processed [62]. 

The results of detection Change of Forest Cover in Nfifikh Forest from 1987 
to 2015 of NDVI, SAVI, Tasseled Cape Greenness, and Wetness Indices showed 
a reasonably significant regression of vegetation, with only at most 6 hectares 
that have not undergone changes for the indices of vegetation and 274.52 hec-
tares for Subpixel classification. 

The change detection in Nfifikh forest between 1987 and 2001 has been calcu-
lated, and shows an increased vegetation dynamics of 324.38 hectares, which is 
60.86% of the forest area, and contrariwise the change detection between 2001 
and 2015 represents a regression of 464.04 hectares, 87.06% of the total forest 
area. 

All the change detection maps were overlaid for indices as well as the subpixel 
classification, and according to Figure 4 and Table 2, the deforested areas are 
52.09% of the total area and only 5.60% for the reforested areas. It ought to be 
noted that the forest Nfifikh has experienced a significant decline and particu-
larly by the river and also in the south while within the north there is a small 
parcels that have not been damaged. 

 

 
Figure 4. Nfifikh forest cover change detection sum overlay between 1987 and 2015. 

 
Table 2. Change detection area for Nfifikh forest. 

Change Area (Hectares) % 
Deforestation 277.65 52.09 
Reforestation 29.88 5.6 
Unchanged 225.47 42.31 
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Note that the forest Nfifikh experienced between 2003 and 2010, ten fires 
whose cause remains unknown, however the damage is negligible 6.13 hectares, 
also parasite attacks of Pine processionary and Phoracantha semipunctata, al-
though the forestry services reforested an area of 305 hectares during 2001 to 
2013, but remains insufficient [43]. 

Forest regression may be explained by the strong anthropogenic activity, the 
riparian population and tourists use the forest as a waste dump, especially by the 
riverside, likewise overgrazing and overexploitation of wood. There are also at-
mospheric pollution from roads, the highway and the railway that cross the for-
est. 

4. Conclusions 

The remote sensing is the best tool to detect and measure any changes. This 
study focused on the assessment and monitoring of Nfifikh forest cover between 
1987 and 2015. The combination of vegetation indices with the subpixel classifi-
cation was useful in estimating the degree of deforestation and assessing forest 
resources. 

The Landsat images allowed a forest state outlook and ability to extract a re-
forestation between 1987 and 2001 and a remarkable deforestation in 2015. Water 
and Forests Direction had to intervene and realized plantations to remedy it, but 
the density is still fairly low. 

In conclusion, satellite images are very helpful to measure forest cover. Non 
forest areas can be easily detected using several approaches and help us in an 
easy way to reveal the health and density of the forest. Subpixel classification 
showed us all the changes within the pixel. The forest monitoring is negative. 
We should necessarily increase density with plantations, foremost to remedy the 
parasites that attack the trees and more research must be conducted to find out 
the liable factors. 
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