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Abstract 
In this paper, by the classical method of Riordan arrays, establish several gen-
eral involving higher-order Changhee numbers and polynomials, which are 
related to special polynomials and numbers. From those numbers, we derive 
some interesting and new identities. 
 

Keywords 
Riordan Array, Changhee Number, Changhee Polynomial 

 

1. Introduction 

Recently, many works have been devoted to the study of Changhee number 
identities by various method [1] [2] [3] [4]. In [1], D.S.Kim and T.Kim give var-
ious identities of the higher-order Changhee numbers and polynomials which 
are derived from umbral calculas. In [3], J.Kwon consider Witt-type formula for 
the weighted Changhee numbers and polynomials. In [4], D.S.Kim and T.Kim 
also introduced the non-linear Changhee differential equations and these diffe-
rential equations turned out to be very useful for special polynomials and ma-
thematical physics and so on. In the present paper, we make use of the Riordan 
arrays method in a constructive way to establish some general summation for-
mulas, from which series of Changhee numbers and polynomials identities can 
be obtained. In particular, besides the Changhee numbers, some identities also 
involve the Stirling numbers of both kinds, Daehee numbers of both kinds, Lah 
numbers, Harmonic numbers, Genocchi numbers and polynomials and Euler 
polynomials. It can be found that no Changhee number identities presented in 
[1] [2] [3] [4] referred to above have other special combinatorial sequences, and 
actually, there are not many identities involving both Changhee numbers and 
other combinatorial numbers in the literature. From this point of view, our re-
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sults extend the range of Changhee number and polynomials identities. 
The study of this paper follows D.S.Kim and T.Kim, s result [1]. Let p be an 

odd prime number. Throughout this paper, p , p , p  will denote the ring 
of p-adic integers, the field of p-adic numbers and the completion of the alge-
braic closure of p . The p-adic norm 

p⋅  is normalized as 
pp . Let 

( )pf C∈ 
 be the space of continuous functions on p . 

For ( )Pf C∈  , the fermionic p-adic integral on P  is defined by Kim to be 

1

1 1 0 0
( ) ( ) lim ( )( 1)

N
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p
x

N x
I f x d x f xµ

−

− − → =

= = −∑∫
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.             (1) 

For 1( ) ( 1)f x f x= + , we have 

1 1 1( ) ( ) 2 (0)I f I f f− −+ = .                    (2) 

For pt∈  with 
1

1p
pt p

−
−< , the Changhee polynomials of the first kind are  

given by the fermionic p-adic integral on p : 

1
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In special case, when 0, (0)n nx Ch Ch= =  are called the Changhee numbers 
of the first kind. 

From Equation (1), we note that 

1( ) ( ) ( )
p

n nx y d y Ch xµ−+ =∫


,                  (4) 

where 0( ) ( 1) ( 1), ( 1), ( ) 1nx x x x n n x= − − + ≥ = . 
For r∈ , Changhee polynomials of the first kind with order r by defined by 

the generating function as follows: 
1
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where n is a nonnegative integer. In special case, when ( ) ( )0, (0)r r
n nx Ch Ch= =  

are called the Changhee numbers of the first kind with order r. 
It is not difficult to show that 

0

12 1( ) ( )
2 2

r n n

n

r n
t

nt

∞

=

+ − 
= −  +  
∑ .                  (6) 

From Equation (5) and Equation (6), we have 

( ) 1!
12

r
n n

n rnCh
r
+ − 

=  − 
.                      (7) 

For pt∈  and 
1

1p
pt p

−
−< , Changhee polynomials of the second kind with  

order ( )r ∈  are defined by the generating function to be 
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In special case, when ( ) ( )0, (0)r r
n nx Ch Ch

∧ ∧
= =  are called the Changhee numbers 

of the second kind with order r. 
Let ( )f t  be a formal power series in the indeterminate t; then ( )f t  has the 

form 

0
( ) k

k
k

f t f t
∞

=

= ∑ .                           (9) 

As usual, the coefficient of nt  in ( )f t  may be denoted by [ ] ( )nt f t . 
A Riordan array is a pair ( ( ), ( ))g t f t  of formal power series with 

0 (0) 0f f= = . It defines an infinite lower triangular array , ,( )n k n kd ∈  ac-
cording to the rule： 

, [ ] ( )( ( ))n k
n kd t g t f t= . [5] [6] [7] [8] [9]          (10) 

Hence we write ,( ) ( ( ), ( ))n kd g t f tℜ = . 
Lemma 1 If , ,( ( ), ( )) ( )n k n kD g t f t d ∈= =



 is an Riordan array and ( )h t  is the 
generating function of the sequence { }( )k kh ∈ , i.e.,. 

0
( ) k

k
k

f t f t
∞

=

= ∑  or 
( ) ( )kh t h=G . Then we have 

,
0

[ ] ( ) ( ( ))
n

n
n k k

k
d h t g t h f t

=

=∑ . [7]                 (11) 

For convenience, we recall some definitions in the paper. The generalized 
Stirling numbers of the second kind ( , ; )S n k r  have the following exponential 
generating function [6]: 

( 1)( , ; )
! !

n t k
rt

n k

t eS n k r e
n k≥

−
=∑ .                    (12) 

The higher-order Changhee polynomials ( ) ( )r
nCh x  may be related to the ge-

neralized Genocchi polynomials ( ) ( )nG xα  and the generalized Genocchi num-
bers ( )

nG α , which are defined by the generating function [7] to be: 
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Another two interesting numbers, associated with the higher-order Daehee 
numbers of both kinds are defined by the generating function [8] to be: 
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where ( )r
nD  are the higher-order Daehee numbers of the first kind and ( )r

nD
∧
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are the higher-order Daehee numbers of the second kind. 
The generating functions of generalized harmonic polynomials ( ) ( )r

nH x  are 
given by [5]: 

1
( )

1
0

( ln(1 ))( )
(1 )

r
r n

n z
n

tH z t
t t

+

−
≥

− −
=

−∑ .                    (17) 

The generating functions of higher-order Euler polynomials ( ) ( )r
nE x  are de-

fined by [3]: 

( )

0

2( )
! 1

n
r r xt

n z
n

tE e
n e≥

=
+∑ .                       (18) 

2. Identities of Changhee Numbers and Special  
Combinatorial Sequences 

Theorem 2.1 For 0n ≥ , the following relations hold: 

( ) ( )

0
( , ; ) ( )

n
r r

k n
k

L n k i Ch Ch i
∧

=

=∑ ,                   (19) 

( ) ( )

0
( , ; ) ( )

n
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k n
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L n k i Ch Ch i
∧

=

=∑ .                   (20) 

Proof An interesting Riordan arrays, associated with the Lah numbers
( , ; )L n k r  are defined by 

! ( , ; ) (1 ) ,
! 1

rk tL n k r t
n t

−   ℜ = +   +   
.                (21) 

Then applying the summation property (11) to the Riordan array (21) and the 
generating function (5) yields 

( )
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from which we can establish Equation (19). 
Similarly, from the Riordan array (21) and the generating function (8), we can 

get the Equation (20). Then the proof is complete. 
For ,r k∈ , when n r k> + , the combinatorial numbers ( , , )P r n k  defined 

by the following generating functions: 

1
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then Equation (22) is equivalent to 

1
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∑ ,             (23) 

Based on the generating function (22), we obtain the next Riordan arrays, to 
which we pay particular attention in the next Theorem: 
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[ ln(1 )]( , , ) ,
1 1

rn t tP r n k
k t t

     − − ℜ =     − −     
.             (24) 

Theorem 2.2 For 0n r> ≥ , we have 
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Proof Applying the summation property (11) to the Riordan array (24) and 
the generating function (5) yields 
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Which gives Equation (25). 
Theorem 2.3 For , , ,n i s r∈ , we have 
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Proof Based on the generating functions (5), (6) and (7), we obtain the next 
Riordan arrays: 
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To obtain Equation (26), apply the summation property (11) to the Riordan 
array (27) and the generating functions (23), we have 
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which gives Equation (26). 
Corollary 2.1 For , ,n r i∈ , the following relations hold: 
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Proof From the generating functions of unsigned Stirling numbers of the first 
kind 
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we obtain the next Riordan arrays 
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( )! ( , ) 1, ln(1 )
!

k s n k t
n

 ℜ = − − 
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From Equation (29), it can be verified that 
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Thus, comparing with Equation (22), we obtain the following connection be-
tween the numbers ( , , )P r n k  and the unsigned Stirling numbers of the first  
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Proof Setting 0, 1, 2i i i= = =  in Theorem 2.3 gives Equation (30), (31), (32), 
respectively. 

Let , ( )n kP z  are the generalized Stirling polynomials of the first kind defined 
by [2]: 
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Proof To obtain Equation (34), from the Riordan array (33) and the generat-
ing function (14), (17), we have 
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Similarly, from the Riordan array (33) and the generating function (14), then 
we can get the Equation (34),  
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Which completes the proof. 

3. Identities Involving the Changhee Polynomials 

Theorem 3.1 For 0n ≥ , we have 
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Proof From generating functions (5)，we have 
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Comparing the coefficients of 
!
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 on both sides, we obtain Equation (35).  

Which completes the proof. 
Theorem 3.2 For 0n ≥ , we have 
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Comparing the coefficients of 
!
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 on both sides, we obtain Equation (36).  

Which completes the proof. 
Corollary 3.1 The following relations hold: 
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Proof Setting 0s =  in Theorem 3.2, we can get Equation (37). 
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The generalized harmonic numbers ,n kH  have the following exponential ge-
nerating function: 
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Let us define , 0[ ]n r n rH ≥ ≥=h  to be an infinite lower triangular array, it is easy 
to show that h  does not constitute a Riordan array but 
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is a Riordan array. 
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Proof From the Riordan array (38) and the generating function (18), we have 
( )

,
0

1

( )

( ) 1 2!( 1) [ ] [ | ln(1 )]
! 1 1

2[ ]( ) (1 )
2
(

( )

1)
.

!
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n k n r xyk

n k y
k

n r x

r
n

Ek H t e y t
k t e

t t
t

Ch x

x

n

+

=

−

− = = +
+ +

= +
+
−

=

∑

 

Which completes the proof. 
Corollary 3.2 When 1r = , we have 

( )

,
0
( 1) (

( 1)
) .

!

rn
n k n

n k k
k

ChH E x
n

x+

=

−
− =∑  

Theorem 3.4 For 0n ≥ , the higher-order Euler polynomials ( ) ( )r
nE x  may 

be expressed by means of the Changhee polynomials of both kinds,  

( ) ( )

0
( ) ( ) ( , ; ),

n
r r

n k
k

E x r Ch x S n k r
=

+ =∑               (40) 

( ) (

0

)( 2 ) ( , ; ).
n

r
k

k

r
nE x r Ch S n k r

∧

=

+ =∑               (41) 

Proof From Equation (12), we note that the generalized Stirling numbers of 
second kind ,( , ;( )) n kS n k r ∈  may be expressed by the Riordan array: 

! ( , ; ) ( , 1).
!

rt tk S n k r e e
n

  = − 
 

R                (42) 

To obtain Equation (40), from the Riordan array (42) and the generating 
function (5), we have 

( )

0

( )
( )
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( )! 2( , ; ) [ ] | 1]

! ! 2

2[ ]( ) .
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t

Ch k S n k r t e y e
k n y

E
t e

n

x
y

x r
e

=

+
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+

+

= =
+

∑
 

Similarly, from the Riordan array (42) and the generating function (18), we 

https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****


Nanding, Wuyungaowa 
 

 

DOI: 10.4236/jamp.2018.64057 655 Journal of Applied Mathematics and Physics 
 

can get the Equation (41).Then the proof is complete. 
For a sequence nf  and ng , Using the inverse relation 

0 0
( , ; ) ( , ; )

n n

n k n k
k k

f S n k r g kg s n r f
= =

⇔= =∑ ∑ , we get 
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0
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+ =∑ ,  

( ) ( )

0
( 2 ) ( , ; ) ( )

n
r r

k n
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∧

=

+ =∑ . 

Theorem 2.5 Let 0n α≥ ≥ , we have 

( ) ( ) ( )

0 0
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Proof Firstly, from Equation (11), (38) and (13), we have 
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Secondly, from Equation (15) and (42), we have 

( )

( ) ( )

0 0

( ) ( )

0 0

1

( )
1

!( 1) ( , ; )
( )! !

![ ( 1) ] ( , ; )
( )! !

2[ ] [( ) (1 ) ln (1 ) | y 1]
2

( 1)2[ ]( )
1

n k

j k j
k j

n k

j k j
k j

n rt x t

t x rn n
t

k
j kCh x D S n k r

k n
k

j kCh x D S n k r
k n

t e y y e
y

E x rt e
e

α
α α

α

α
α α

α

α α

α
α α α

α

α

α

α

−

− −
= =

−

− −
= =

−

+ −− −

− 
 
  −
−

− 
 
 = −
−

= + + = −
+

+ −
= =

+

∑∑

∑ ∑

.
( )!n α−

 

Acknowledgements 

The research is supported by the Natural Science Foundation of China under 
Grant 11461050 and Natural Science Foundation of Inner Mongolia under 
Grant 2016MS0104. 

References 
[1] Kim, D.S., Kim, T. and Seo, J.J. (2013) A Note on Changhee Polynomials and 

Numbers. Advanced Studies in Theoretical Physics, 7, 993-1003.  
https://doi.org/10.12988/astp.2013.39117 

[2] Kwon, H.I., Kim, T. and Seo, J.J. (2015) A Note on Degenerate Changhee Numbers 
and Polynomials. Proceeding of the Jangjeon Mathematical Society, 18, 295-305. 

https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.12988/astp.2013.39117


Nanding, Wuyungaowa 
 

 

DOI: 10.4236/jamp.2018.64057 656 Journal of Applied Mathematics and Physics 
 

[3] Kwon, J., Noh, H.S., Jeong, S.H., Kim, A.J., Lee, J.H. and Rim, S.-H. (2015) A Note 
on Weighted Changhee Polynomials and Numbers. Advanced Studies in Theoreti-
cal Physics, 9, 191-198. https://doi.org/10.12988/astp.2015.410137 

[4] Kim, T. and Kim, D.S. (2016) A Note on Non-Linear Changhee Differential Equa-
tions. Russian Journal of Mathematical Physics, 23, 88-92.  
https://doi.org/10.1134/S1061920816010064 

[5] Wang, W.S. (2015) Sum of Involving the Harmonic Numbers and the Binomial 
Coefficients. American Journal of Computational Mathematics, 5, 96-105.  
https://doi.org/10.4236/ajcm.2015.52008 

[6] Cheon, G.S. and EI-Mikkawy, M.E.A. (2008) Generalized Harmonic Numbers with 
Riordan Array. Journal of Number Theory, 128, 413-425.  
https://doi.org/10.1016/j.jnt.2007.08.011 

[7] Comtet, L. (1974) Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht. 

[8] Kim, D.S., Kim, T., Lee, S.-H. and Seo, J.J. (2014) Higher-Order Daehee Numbers 
and Polynomials. International Journal of Mathematical Analysis, 8, 273-283.  
https://doi.org/10.12988/ijma.2014.4118 

[9] Wang, W.P. and Wang, T.M. (2008) Generalized Riordan Arrays. Discrete Math, 
65, 1-35. https://doi.org/10.1016/j.disc.2007.12.037 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.12988/astp.2015.410137
https://doi.org/10.1134/S1061920816010064
https://doi.org/10.4236/ajcm.2015.52008
https://doi.org/10.1016/j.jnt.2007.08.011
https://doi.org/10.12988/ijma.2014.4118
https://doi.org/10.1016/j.disc.2007.12.037

	Some Identities Involving the Higher-Order Changhee Numbers and Polynomials
	Abstract
	Keywords
	1. Introduction
	2. Identities of Changhee Numbers and Special Combinatorial Sequences
	3. Identities Involving the Changhee Polynomials
	Acknowledgements
	References

