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Abstract 
Gradually developing climatic and weather anomalies due to increasing con-
centration of atmospheric greenhouse gases can pose threat to farmers and 
resource managers. There is a growing need to quantify the effects of rising 
temperature and changing climates on crop yield and assess impact at a finer 
scale so that specific adaptation strategies pertinent to that location can be 
developed. Our work aims to quantify and evaluate the influence of future 
climate anomalies on winter wheat (Triticum aestivum L.) yield under the 
Representative Concentration Pathways 6.0 and 8.5 using downscaled climate 
projections from different General Circulation Models (GCMs) and their en-
semble. Marksim downscaled daily data of maximum (TMax) and minimum 
(TMin) air temperature, rainfall, and solar radiation (SRAD) from different 
Coupled Model Intercomparison Project GCMs (CMIP5 GCMs) were used to 
simulate the wheat yield in water and nitrogen limiting and non-limiting con-
ditions for the future period of 2040-2060. The potential impact of climate 
changes on winter wheat production across Oklahoma was investigated. Cli-
mate change predictions by the downscaled GCMs suggested increase in air 
temperature and decrease in total annual rainfall. This will be really critical in 
a rainfed and semi-arid agro-ecological region of Oklahoma. Predicted aver-
age wheat yield during 2040-2060 increased under projected climate change, 
compared with the baseline years 1980-2014. Our results indicate that down-
scaled GCMs can be applied for climate projection scenarios for future re-
gional crop yield assessment. 
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1. Introduction 

Wheat (Triticum aestivum L.) is a primary staple crop worldwide, with a pro-
jected global production of ~740 million metric tons in 2017 [1]. According to 
the 2017 estimates of the United States Department of Agriculture (USDA), the 
U.S. ranks fourth in wheat production by country with a projected production of 
49.64 million metric tons. The southern Great Plains of the U.S. (Kansas, Okla-
homa, and Texas) accounts for ~30% of the U.S. wheat production, producing 
18.8 million metric tons of winter wheat per year from an area of 7.5 million 
hectares [2]. Achieving sustainable and equitable food security and profitability 
of crop production in future relies on better understanding of climate and 
changes in greenhouse gas concentration [3]. In North America, wheat produc-
tion is expected to decrease or cease in the southern latitudes and geographic 
shifts in production in the northern latitudes are more likely to occur [4]. 

Atmospheric CO2 concentrations recorded at Mauna Loa, Hawaii show an in-
creasing trend for CO2. Initially measured at 313 ppm, now at the time of writing 
this paper the atmospheric concentration has crossed 408 ppm  
(https://www.esrl.noaa.gov/gmd/ccgg/trends/). Increased emissions of anthro-
pogenic greenhouse gases over the last few decades have exacerbated the situa-
tion causing increase in temperature and more frequent and severe weather 
events over larger spatial domain [5]. Climate variability and extremes have 
multifold consequences and damage the economy as well as natural systems, and 
could result in pronounced deleterious impacts on food security in less devel-
oped regions of the world. 

General Circulation Models (GCMs) encompass state of the art knowledge 
and utilize the most advanced mathematical models currently available 
representing physical processes of the planet. They are used to understand how 
the global climate dynamics responds to increasing greenhouse gas concentra-
tions. The GCMs describe the climate on a three-dimensional grid, with a reso-
lution anywhere from 250 - 600 km. However, there is a mismatch between the 
temporal and spatial footprint of the GCM data and data required to run 
process-based crop models [6]. Therefore, in order to reliably assess climate 
change impact at finer resolution, downscaling is required on relevant meteoro-
logical variables. Several downscaling approaches are available, which can be 
broadly classified into statistical downscaling and dynamic downscaling. Dy-
namic downscaling method nests regional climate model (RCM) into the GCM 
to represent a given boundary forcing but are computationally very expensive. 
Statistical downscaling methods are seen as alternative to dynamic downscaling 
methods for they use empirical relationships established between large-scale and 
fine-scale variables using historical data [7]. 

Several uncertainties limit the predictability of future climate. Therefore, for a 
better understanding of climate trajectory in future, different sets of Global Cir-
culation Models and Representative Concentration Pathways are explored to 
obtain a wider range of conditions while assessing the climatic conditions. Inter 
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model differences of GCMs are due to the way certain physical processes, res-
ponses, and feedbacks are modelled. The Representative Concentration Path-
ways (RCPs) are four different emission scenarios that provide time-dependent 
projections of atmospheric greenhouse gas concentrations. Each pathway 
represents a range of radiative forcing and emission characteristics, for e.g., 
RCP2.6 comprises a stringent mitigation scenario, RCP4.5 and RCP6.0 comprise 
intermediate scenarios, and RCP 8.5 represents a very high greenhouse gas 
emission scenario (Figure 1). Current and past anthropogenic greenhouse gas 
emissions along with natural climatic variability are likely to cause an increase in 
global surface temperature by 3˚C - 6˚C for RCP6.0 and RCP8.5 by 2100 [8]. 

Several studies have shown that rising temperatures affect crop production 
negatively, due to shortened growing season and decreased photosynthate ac-
cumulation in plants [9] [10]. In addition, a meta-analytic summary [11] indi-
cated CO2 fertilization effect to be lower than expected on C3 crops and little to 
no effect on C4 crops. In case of wheat, exposure to higher temperature extremes 
has been linked to accelerated growth, shorter growing season, and reduced yield 
[12]. Increase in ambient temperature singly or in combination of drought dur-
ing reproductive and grain-filling phase in wheat, decrease grain yield and the 
protein content [13] [14]. Since 1980, warming in Bangladesh and India is con-
sidered to have reduced wheat yields by approximately 20% of their average 
trend [15]. In the Southern Great Plains of the U.S., Oklahoma and Texas have 
lower and more variable wheat yields than in the rest of the U.S. [16]. Agricul-
tural production in this region has always been challenged by climate. The situa-
tion gets exacerbated due to frequent drought as evapotranspiration exceeds the 
amount of rainfall. In addition, over the years the ratio of harvest-to-planted ra-
tios in this region is also declining as the wheat fields get abandoned after being 
used as pasture because part of the crop used as pasture turn out to be more 
profitable than growing the crop for grain [16]. Since wheat is vital for the 
southern Great Plains of the U.S. for its impact on the local economy and food  

 

 
Figure 1. Atmospheric CO2 concentration for RCP6.0 and RCP8.5, source: (Meinshausen 
et al., 2011). 
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security, it is imperative that we understand the effect of changing climate on 
wheat yield. 

Crop simulation models may prove to be a better tool in linking bio-physical 
drivers of crop production with climate variability. Crop modeling offers a big 
advantage as various treatments can be investigated in greater detail without ac-
tually having to run the experiment on the field, which can be both time and cost 
prohibitive. Process-based crop simulation models, e.g. [17] [18] [19] [20] are 
the suitable tools to examine impacts of climate change because of their ability to 
simulate and mechanistically describe the detailed influences of a wide array of 
weather variables, plant genotypes, environmental and edaphic factors, man-
agement practices, etc. on crop physiological and growth processes. Therefore, 
these crop simulation models can be very useful in understanding complex and 
non-linear effects of climate change on crop growth and physiological response.  

Previous studies on climate change impacts on wheat production in Oklaho-
ma [21] [22] have been carried out using the IPCC Third Assessment Report 
Special Report on Emissions Scenarios data of 2000. No literature has been pub-
lished yet for climate change impact assessment on wheat yield performance us-
ing the downscaled AR5 data for this region. Therefore, the objectives of this 
study were i) to simulate wheat yield under different future climate anomalies at 
a finer scale over wheat growing areas in Oklahoma using the latest CMIP5 
GCM climate projection, and ii) to investigate how wheat yield responds to dif-
ferent climate scenarios for different emission pathways across landscapes of 
Oklahoma. 

2. Materials and Methods 
2.1. Study Area 

The study area is Mesonet locations in Oklahoma (Figure 2). Wheat yield was 
simulated with Decision Support System for Agrotechnology Transfer (DSSAT)- 
Crop Environment Resource Synthesis (CERES)-Wheat v4.6 [23] water and ni-
trogen limitations (Ywf), water limitation (Ya), and no limitations (Yp). The sow-
ing date of October 16 (DOY 289) was used for entire simulation. A very popu-
lar hard red winter wheat cultivar Duster, developed by the Oklahoma State 
University Wheat Improvement Team [24] was used in the simulations. Duster 
performs well in both grain-only and dual-purpose (grazing and grain or hay 
production). A total of 77 active Mesonet sites were chosen with least missing 
weather data. The time slices of 1980-2014 and 2040-2060 were selected to 
represent the baseline and future climate respectively. 

2.2. Crop Simulation Model 

For wheat yield simulation, we used the well-established DSSAT-CERES-Wheat 
model [18] [25] [26]. DSSAT is a mechanistic simulation model that uses daily 
weather data, geographical coordinates, sowing date, fertilizer applications and 
soil properties to predict the growth, development, physiology and yield of crop  
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Figure 2. Map of study area and geographical locations of the Mesonet sites within Oklahoma used in winter wheat yield 
simulation.  
 

of our interest. The DSSAT CERES-Wheat is a preferred crop model in simulat-
ing winter wheat growth at field scale in semi-arid condition [27]. This process- 
based model is able to account for the effects of climate, crop genetics, soil, and 
agronomic practices on crop phenology and growth. 

Same management options and inputs used for baseline simulations were used 
for future yield projections. Simulations for winter wheat were carried out using 
the sequential simulation option and adopting the continuous winter wheat- 
summer fallow field management option. Wheat was planted in October and 
harvested at physiological maturity, and was immediately followed by summer 
fallow. The fallow period was ended a day before the planting of the crop. 

2.3. Soil Data 

The DSSAT CERES-Wheat requires data on soil physical and chemical proper-
ties such as soil color, horizon depth, wilting point, field capacity, bulk density, 
organic carbon content etc. Information on soil properties for the 77 locations 
was acquired from the gridded Soil Survey Geographic Database (gSSURGO). 
For each Mesonet station location, dominant soil type for the county was chosen 
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as representative of the soil type. Information on several soil physical and chem-
ical properties that serve as inputs for CERES-wheat were extracted from the 
gSSURGO data. The data included upper and lower depths for each horizon 
(cm); sand, silt, and clay percentage; bulk density (0.33 bar); pH in water. Soil 
profile data for each horizon was created. The Quad UI tool  
(http://tools.agmip.org/quadui.php) from the Agricultural Model Intercompari-
son and Improvement Project (AgMIP), a desktop application for windows sys-
tem, was used to convert gSSURGO soil database for each site to DSSAT-ready 
soil data format.  

2.4. Climate Data 
2.4.1. Baseline Climate Data 
Robust crop yield prediction can be performed when the crop simulation is dri-
ven by long term (>30 years) daily weather data. Crop modeling system to ana-
lyze crop yields and examine future climatic impacts on a regional level requires 
detailed weather data on a daily basis on a higher temporal and/or spatial resolu-
tion. For baseline weather data, two data sources were used, Daymet [28] and the 
Oklahoma Mesonet [29]. The Daymet weather data were downloaded in the 
form of tarred netCDF tiles for the state of Oklahoma. Values for weather va-
riables, minimum and maximum temperature, rainfall, and incident solar radia-
tion, and day-length from 1980-2014 were extracted at the Mesonet site loca-
tions. Information on day length was acquired to convert the incident shortwave 
radiation flux density (Wm−2). Since the establishment of the Oklahoma Meso-
net was initiated during the mid-90s, the Mesonet does not meet the require-
ments for creating a complete baseline data (>30 years). Therefore, the missing 
data for each of the Mesonet sites was acquired from its closest National Weath-
er Service (NWS) Cooperative Observer Program (Coop) weather station. As the 
NWS Coop stations do not measure solar radiation, solar radiation was esti-
mated using RadEst 3.0 [30]. Climate summary files were generated using a py-
thon script that produces climate summaries for the 77 sites for both Daymet 
and Mesonet data. Weather data were processed and adapted to the require-
ments of the weather input files (*.WTH) for the DSSAT model. 

2.4.2. Generating Future Daily Weather Data 
Regional Climate models have limited applicability because of the computational 
time involved for properly assigning boundary conditions to a finer-scale 
weather phenomena [31]. One way to address the issue of inherent uncertainties 
within the GCMs is to create multi-model ensembles as they overcome the limi-
tations of any single model [32]. Multi-model ensemble averages are found to 
outperform individual models when tested for the historical period [33]. In ad-
dition, they also help distinguish the variability between the models and the un-
certainties of future climate [34]. Outputs of 4 GCMs, their ensemble, and en-
semble of 17 GCMs were linked to DSSAT to account for the uncertainty of cli-
mate projections. Detailed information on forcing data can be found on the 
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CMIP5 website (http://cmip-pcmdi.llnl.gov/cmip5/availability.html). 
For future climate data, we used data from four state-of-the-art GCMs, Had-

GEM2-ES, MRI-CGCM3, MRIOC5, and CSIRO-Mk3.6.0 that were included in 
the Coupled Model Intercomparison Project Phase 5 (CMIP5) [35] (Table 1). 
The four models were specifically chosen as they had the finest spatial resolu-
tion. In addition to the four different GCMs, an ensemble of the four GCMs 
along with an ensemble of 17 different GCMs were also included to generate 
climate trajectories from the 5th Assessment Report [8]. Two emission scenarios 
reported in the Special Report on Emissions scenarios by IPCC were used for 
downscaling the data for the Mesonet locations. A moderately high (RCP6.0) 
and high emission scenarios (RCP8.5) were chosen to create weather outputs for 
2040 to 2060 for each of the target 77 sites. Choosing multiple RCPs and GCMs 
allows us to account for uncertainties related to future emissions trajectory as 
well as the simulated atmospheric response [36]. Unlike current weather data, 
the projected data should be able to represent a range of future possible scena-
rios complying with a range of observed and projected statistical characteristics 
of variable of interest. 

Future daily weather data was generated with Marksim v.2 [37]. The Marksim 
v.2 is a weather generator that produces daily weather variables by mimicking 
the observed weather variables and their statistical properties. It is a third-order 
Markov rainfall generator and the program has been calibrated with more than 
10,000 stations worldwide, clustered into 702 climate clusters. Current version of 
Marksim requires the input data from the most recent IPCC AR5 models. Addi-
tional parameters such as latitude, longitude, and elevation are required for ge-
nerating daily-time-step weather data for a given location. MarkSim has been 
applied to various climate impact studies in agriculture field. Marksim generated 
future weather data was to estimate the number of Helicoverpa armigera Hub 
for eight pigeon pea (Cajanus cajan L.) growing locations in India for 2020, 
2050, and 2080 [38]. Marksim generated data were also used in studying future  

 
Table 1. Four state-of-the-art general circulation models (GCMs) included in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) [13] used in our study. 

Model Name 
Resolution,  
Lat × Lon˚ 

Institution Reference 

CSIRO-Mk3.6.0 1.875 × 1.875 
Commonwealth Scientific and Industrial 
Research Organization and the Queensland 
Climate Change Center of Excellence 

(Collier et al., 
2011) 

HadGEM2-ES 1.2414 × 1.875 Met Office Hadley Centre 
(Collins et al., 

2011) 

MIROC5 1.4063 × 1.4063 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies 

(Watanabe et al., 
2010) 

MRI-CGCM3 1.125 × 1.125 Meteorological Research Institute 
(Yukimoto et al., 

2012) 
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availability of recreational cultural ecosystem services with changing climate 
[39]. Marksim was used to generate 21 independent climate years with 30 repli-
cations to achieve a maximum inter-annual weather variability and gain better 
insight into future weather patterns. Creation of DSSAT weather data file format 
“*.WTG” using Marksim was automated and the program was executed with 
different seed values (starting value used by a random number generation rou-
tine to crease random numbers) for each of the 30 replications of weather file. 
No bias correction with respect to the baseline climatology were applied to the 
downscaled GCM data. 

2.5. Model Inputs 

A total of six future climate scenarios (four GCMs, their ensemble, and the en-
semble of all available GCMs in the CMIP5 projection data) were used for 
RCP6.0 and RCP8.5. Future atmospheric CO2 concentration used in the simula-
tions were obtained from the freely available RCP Database v2.0.5  
(http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=download). 

Time for emergence, anthesis, physiological maturity and wheat yield were 
calculated for each year of the baseline and future scenarios. Cropping system in 
Oklahoma and most part of the Southern Plains is done under water limited 
conditions. The region has faced several severe droughts, including the recent 
drought of 2012. Therefore, simulations were designed by considering both 
non-limiting and limiting growing conditions. Three scenarios of wheat growing 
conditions were simulated, i) Actual (Ywf)—with water and nitrogen limiting 
conditions, ii) Attainable (Ya)—nitrogen limiting condition, and iii) Potential 
(Yp)—non-limiting conditions. 

2.6. Computational Requirements 

There were total of 1080 individual runs for 1617 locations-years, which in-
cluded 30 replications. Running simulation on a personal computer would re-
quire a significant amount of time. Therefore, the simulations were executed on 
Linux cluster at the High Performance Computing Center, Oklahoma State 
University. Replicates were averaged for each year for a location. Performing 
such a large simulation required 72 nodes and a total of 96-hour wall-clock time 
was needed to complete the simulations. 

2.7. Model Evaluation 

Model performance was evaluated by comparing simulated and the USDA- 
NASS reported winter wheat yields for the entire 35-year period. Wheat yield 
was investigated across the state at a fine resolution using the DSSAT-CERES 
Wheat model and the outputs of 4 GCMs, their ensemble, and ensemble of 17 
GCMs under RCP6.0 and RCP8.5 scenarios. We used two different baseline da-
tasets, one derived from the Oklahoma Mesonet and the other from DAYMET 
dataset. Considering data source, GCMs, forcing scenarios, and yield scenarios, 
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simulation were carried out for 72 factors for 77 sites for 20 years. Simulation 
were replicated 30 times with the weather data generated using different seed 
number for each location. For analysis purpose, simulation output for the repli-
cations were averaged and yield across the sites were averaged for each year and 
plotted. 

3. Results and Discussion 

The crux of this manuscript is to assess how the DSSAT-CERES-Wheat crop 
model predicts wheat yield and yield changes when the model is driven by dif-
ferent downscaled GCMs and their ensembles across two different RCPs. Fewer 
studies have assessed wheat yield performance on such a finer scale. Hence, the 
result and discussion section will mostly focus on the differences between the 
projected yield changes compared with the baseline scenario yield rather than 
crop phenology and physiology. 

3.1. Projected Climate Change 

Both baseline data looked similar in distribution (Table 2). However, the distri-
bution of Daymet recorded SRAD for baseline show higher values compared to 
Mesonet. Distribution of downscaled annual average data show higher variabili-
ty in terms of data distribution compared to the observed baseline (Figure 3). In  

 
Table 2. Baseline (1980-2014) average annual summary for rainfall, solar radiation, maximum and minimum temperature for 
Daymet and Mesonet Data at 77 Mesonet sites in Oklahoma. 

Source Rainfall (mm) Solar Radiation (MJ m−2d−1) Maximum Temp (˚C) Minimum Temp (˚C) 

Daymet 1240.5 ± 247 17.49 ± 0.67 22.15 ± 0.72 8.56 ± 0.53 

Mesonet 1291.23 ± 286.35 16.54 ± 0.52 22.00 ± 0.70 8.9 ± 0.5 

 

 
Figure 3. Distribution of annual averages of maximum temperature, minimum temperature, solar radiation, and total rainfall downscaled using 
Marksim for the period 2040-2060 under two RCP forcings of 6.0 and 8.5 along with baseline (1980-2014) weather data for two different weather 
data sources: Mesonet and Daymet. Data are averaged across select 77 Mesonet locations.  
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addition, median values of Daymet data appear higher than Mesonet data for 
most of the time. Projected average annual weather data for RCP6.0 and RCP8.5 
show increase in temperature (maximum and minimum), and decrease in solar 
radiation and total rainfall amount (Figure 3). Percent increase or decrease of 
projected four weather variables for their corresponding GCMs and RCPs com-
pared to the baseline data of Mesonet and Daymet are summarized in Table 3. 
Percent changes of average annual rainfall, solar radiation, maximum tempera-
ture, and minimum temperature relative to the baseline climate. On average, for 
RCP6.0 forcing, across the different GCMs, Daymet generated projection show 
17.72% ± 1.24% decline in average total rainfall amount while Mesonet generat-
ed projection show 26.7% ± 1.24% decline in average total rainfall amount rela-
tive to their baseline values. Likewise, for RCP8.5 forcing, average total rainfall is 
expected to decline by 16.84% ± 1.77% and 25.70 ± 1.42 using Daymet and Me-
sonet data respectively.  

In case of SRAD, the values are projected to decline at a range of 3.15% - 
7.15% in relation to the baseline data, with a higher reduction for RCP6.0 forc-
ing. Maximum temperature is projected to increase up to 10.13% for RCP 6.0 
and 14.44% for RCP8.5. On an average, rise in maximum temperature was pro-
jected to be approximately 2.11˚C RCP6.0 and 3.04˚C for RCP8.5. However, a 
greater increase in minimum temperature is projected, ranging from 19.59% - 
36.61%. Increase of an average of 2.0˚C was computed for the RCP6.0 forcing 
and 2.88˚C forRCP8.5 forcing. Higher percentages are observed for RCP8.5 
forcing. Coefficient of variation (CV, %) for all the estimates average ranged 
somewhere between 0.82 - 5.34. CV were lowest for SRAD, followed by RAIN, 
TMAX, and TMIN. In addition, CV were lower for RCP6.0 compared to RCP8.5 
for the four weather variables. 

3.2. Future Wheat Yield Simulation 

For each site, historical yield was averaged across the 1984-2014 (Figure 4) and 
future yields were averaged across 30 different replications for each site for each 
year and plotted (Figure 5). Compared to the baseline yield, downscaled GCMs 
using Daymet data, under RCP6.0 forcing showed average increase in wheat 
yield by 9.65%, 2.46%, for Ywf and Ya scenario respectively. However, average 
decrease of 7.45% in yield was projected for Yp scenarios. Under RCP8.5 forcing, 
increase in yield was observed across three yield scenarios, ranging between 
4.26% - 19.68% (Table 4).  

There is a consistency in the projected winter wheat yield between the GCMs. 
Across all the yield scenarios and under the forcing scenarios of RCP6.0 and 
RCP8.5, MRIOC5 consistently has the lowest yield. The yields converge for Ywf 
scenario, however, the difference between the GCMs and between the data 
sources increase for Ya and Yp scenarios under both RCP forcings. However, we 
can’t identify which downscaled GCM is performing better. One way to further 
improve the credibility of this study is to generate downscaled data for each of  
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Table 3. Percent changes of average annual rainfall, solar radiation, maximum tempera-
ture, and minimum temperature relative to the baseline climate. 

Variables RCP6.0 RCP8.5 

 
Daymet Mesonet Daymet Mesonet 

Rainfall (mm) 
    

CSIRO-Mk3.6.0 −18.24 −27.10 −19.18 −27.91 

Ensemble of Four Models −17.59 −26.51 −16.94 −25.79 

Ensemble of Seventeen Models −18.57 −27.45 −17.20 −26.09 

HadGEM2-ES −16.85 −25.78 −17.09 −25.91 

MRI-CGCM3 −19.23 −28.09 −15.90 −24.95 

MRIOC5 −15.82 −24.65 −14.77 −23.57 

Average 
Coefficient of variation (%) 

−17.72 ± 1.24 
1.51 

−26.60 ± 1.24 
1.69 

−16.84 ± 1.47 
1.77 

−25.70 ± 1.42 
1.92 

Solar Radiation (MJ m−2 d−1) 
    

CSIRO-Mk3.6.0 −6.20 −2.70 −5.32 −1.73 

Ensemble of Four Models −7.12 −3.67 −6.69 −3.13 

Ensemble of Seventeen Models −7.04 −3.51 −6.50 −2.92 

HadGEM2-ES −7.54 −4.12 −7.41 −3.81 

MRI-CGCM3 −8.39 −5.18 −7.77 −4.49 

MRIOC5 −6.62 −2.94 −6.62 −2.84 

Average 
Coefficient of variation (%) 

−7.15 ± 0.76 
0.82 

−3.69 ± 0.89 
0.93 

−6.72 ± 0.85 
0.91 

−3.15 ± 0.94 
0.97 

Maximum Temperature (˚C) 
    

CSIRO-Mk3.6.0 10.18 9.07 15.13 13.94 

Ensemble of Four Models 10.18 9.06 14.56 13.38 

Ensemble of Seventeen Models 9.89 8.77 13.81 12.62 

HadGEM2-ES 12.34 11.24 17.16 15.98 

MRI-CGCM3 4.64 3.49 7.69 6.51 

MRIOC5 13.54 12.44 18.27 17.07 

Average 
Coefficient of variation (%) 

10.13 ± 3.06 
2.78 

9.01 ± 3.07 
2.82 

14.44 ± 3.70 
3.22 

13.25 ± 3.70 
3.27 

Minimum Temperature (˚C) 
    

CSIRO-Mk3.6.0 24.45 17.92 35.32 28.37 

Ensemble of Four Models 26.59 19.98 37.14 30.12 

Ensemble of Seventeen Models 24.18 17.66 33.95 27.06 

HadGEM2-ES 30.73 23.96 42.11 34.90 

MRI-CGCM3 17.34 11.07 25.14 18.58 

MRIOC5 33.83 26.94 45.97 38.62 

Average 
Coefficient of variation (%) 

26.19 ± 5.74 
4.55 

19.59 ± 5.52 
4.62 

36.61 ± 7.19 
5.26 

29.61 ± 6.92 
5.34 
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Figure 4. Box-and-whisker plots of DSSAT simulated winter wheat yield during the 30-year (1984-2014) at 77 different Mesonet 
locations in Oklahoma for three yield scenarios, i) Actual (Ywf)—water and nitrogen limiting, ii) Attainable (Ya)—nitrogen 
limiting, and iii) Potential (Yp)—non-limiting conditions using two different weather data sources, Daymet (shaded blue) and 
Mesonet. From top to bottom the horizontal lines in the box plots show the 95th, 75th, 50th, 25th, and 5th percentiles.  
 

 
Figure 5. Projected winter wheat yield of 2040-2060 relative to 1980-2014, averaged from 77 locations across the Oklahoma Meso-
net locations using different GCMs, their ensembles under the forcing scenarios of RCP6.0 and RCP8.5. 
 

the RCPs for baseline time period, compute the annual mean and compare 
against the known baseline mean weather data [38]. In addition, yield can be al-
so compared across different downscaled GCMs in order to identify model that  
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Table 4. Percent change of simulated winter grain yield for the period 2040-2060 relative 
to the baseline climate (1980-2014) using different General Circulation Models (GCMs) 
and Representative Concentration Pathways (RCPs) 6.0 and 8.5 for three different grow-
ing scenarios: actual (Ywf), attainable (Ya), and potential (Yp). 

Source GCMs 
RCP6.0 RCP8.5 

Ywf Ya Yp Ywf Ya Yp 

Daymet 

CSIRO-Mk3.6.0 11.01 1.00 −6.63 21.75 15.33 6.76 

Ensemble of four models 10.18 2.98 −7.21 20.96 18.53 4.71 

Ensemble of seventeen models 11.37 2.54 −7.08 21.89 18.09 5.07 

HadGEM2-ES 8.72 6.77 −3.86 20.47 21.93 5.85 

MRI-CGCM3 10.20 −0.18 −11.13 19.18 15.49 2.24 

MRIOC5 6.39 1.62 −8.76 13.83 14.82 0.95 

 Average 9.65 2.46 −7.45 19.68 17.37 4.26 

 CSIRO-Mk3.6.0 −0.85 3.34 −15.13 7.72 15.78 −4.14 

Mesonet 

Ensemble of four models −1.17 5.24 −15.96 8.08 19.32 −6.29 

Ensemble of seventeen models −0.54 4.77 −15.53 8.57 19.17 −5.62 

HadGEM2-ES −2.68 7.27 −13.59 8.23 21.81 −5.63 

MRI-CGCM3 0.17 4.29 −18.81 6.25 18.38 −7.68 

MRIOC5 −3.71 3.91 −17.45 4.47 17.30 −9.84 

Average −1.47 4.80 −16.08 7.22 18.63 −6.53 

 
explains the weather pattern better in this region.  

Comparison of seasonal cumulative rainfall and crop evapotranspiration av-
erages across all the site, years showed that most of the instances, evapotranspi-
ration values were always less than rainfall across all the downscaled GCM 
weather data, radiative forcings, and baseline data sources (Table 5). Average 
seasonal rainfall for simulations performed with Daymet baseline weather data 
for Ywf yield scenario and RCP6.0 was 569.39 ± 16.75 mm for which the esti-
mated evapotranspiration value was 375.98 ± 2.34 mm. For the same simulation 
scenario under RCP8.5 forcing, the seasonal average rainfall value was 566.98 ± 
22.98 mm with an estimated crop evapotranspiration value of 373.66 ± 4.36 mm. 
These values are similar to the baseline seasonal rainfall (561 ± 137 mm) and 
evapotranspiration (375 ± 46.58 mm) for both Daymet and Mesonet data (values 
not shown). Comparison of number of days from planting to harvest showed 
that the duration decreased under projected climate data (Table 6). This could 
result from increase in temperature stress. As the crop senses stress, it is more 
likely to shorten its life cycle, causing an undesirable increase in wheat grain 
protein content [13] [14]. 

Results from our simulation are similar to those reported by [40]. Using the 
downscaled data from the Regional Climate Models CanESM2 and CANRCM4 
and DSSAT-CERES-Wheat model, they report an increase in spring wheat yield 
between 10% and 20% averaged across the Canadian Prairies. However, yield in  
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Table 5. Average growing season rainfall and average crop evapotranspiration generated from DSSAT-CERES-Wheat simulation 
performed by using six different Global Circulation Models (GCMs) under two different forcings of RCP using two different base-
line data sources for actual (Yp) and attainable (Yp) growing scenarios. Values are averaged across 77 different Mesonet locations. 

Source GCMS 

RCP6.0 RCP8.5 

Avg. Rain (mm) 
Ywf Ya 

Avg. Rain (mm) 
Ywf Ya 

Avg. ET (mm) Avg. ET (mm) Avg. ET (mm) Avg. ET (mm) 

Daymet 

MRI-CGCM3 604.36 376.39 402.61 596.70 377.07 404.55 

MRIOC5 553.68 371.32 397.42 565.09 364.62 390.91 

HadGEM2-ES 568.08 375.25 401.09 586.71 376.76 400.69 

CSIRO-Mk3.6.0 555.24 378.50 403.15 524.21 372.06 395.98 

Ensemble of four models 568.95 376.50 402.04 567.18 375.47 400.65 

Ensemble of seventeen models 566.01 377.94 402.97 559.06 375.96 401.01 

Mesonet 

MRI-CGCM3 559.13 378.01 408.25 557.68 376.89 408.36 

MRIOC5 520.33 369.67 401.87 534.30 368.36 399.80 

HadGEM2-ES 528.41 373.79 404.55 548.61 376.85 405.49 

CSIRO-Mk3.6.0 514.92 374.88 404.61 488.57 369.85 397.56 

Ensemble of four models 529.24 375.00 405.41 529.76 373.75 403.48 

Ensemble of seventeen models 525.55 375.09 405.06 521.98 374.47 404.08 

 
Table 6. Median number of days between sowing and harvest for winter wheat, over the baseline period 1980-2014 and future 
climate projections 2040-2060 under three different growing scenarios, actual (Ywf), attainable (Ya), and potential (Yp). 

Yield Scenario Climate Scenario 
RCP6.0 RCP8.5 

Daymet Mesonet Daymet Mesonet 

Ywf 

Baseline 225 225 225 225 

MRI-CGCM3 223 225 221 223 

MRIOC5 214 216 211 212 

HadGEM2-ES 217 219 214 215 

CSIRO-Mk3.6.0 218 220 214 216 

Ensemble of four models 218 220 215 217 

Ensemble of seventeen models 219 221 215 217 

Ya 

Baseline 225 225 225 225 

MRI-CGCM3 223 225 221 223 

MRIOC5 214 216 211 212 

HadGEM2-ES 217 219 214 215 

CSIRO-Mk3.6.0 218 220 214 216 

Ensemble of four models 218 220 215 217 

Ensemble of seventeen models 219 221 215 217 

Yp 

Baseline 226 233 225 225 

MRI-CGCM3 224 226 221 224 

MRIOC5 214 216 211 212 

HadGEM2-ES 218 219 214 215 

CSIRO-Mk3.6.0 218 220 214 216 

Ensemble of four models 218 220 215 217 

Ensemble of seventeen models 219 221 216 217 

https://doi.org/10.4236/acs.2018.82011


K. Dhakal et al. 
 

 

DOI: 10.4236/acs.2018.82011 157 Atmospheric and Climate Sciences 
 

the northern latitudes are projected to increase. DeNitrofication-DeComposition 
(DNDC) model used to simulate spring wheat yield under projected climatic 
conditions found that yield increased across IPCC SRES climate change scena-
rios [41]. Previous study in wheat productivity in Central Oklahoma also re-
ported some small changes in wheat yield ±5%, with a 5% decrease in B2a scena-
rio and 5% increase in GGal scenarios. Increase in yield could be due to the di-
rect physiological effects of the increased atmospheric conditions. 

The significance of this study is that it helps to evaluate the potential impacts 
of future climate change on wheat enterprise on a local scale on different tem-
poral scales. There are no tools currently available for preparing future weather 
input files from observed weather data on a local level. We undertook a spatially 
explicit simulation to assess how winter wheat productivity might be impacted 
by mid-21st century climate change. Simulations were carried out for 77 target 
Mesonet location across the State of Oklahoma. Some of the existing limitations 
in the model is that the crop model currently does not simulate the effect of high 
temperatures on pollen viability; the effect of CO2 on other processes besides 
photosynthesis and transpiration; and the interaction between temperature, 
drought, and increased CO2 concentration [42]. Likewise, uncertainties in our 
study reside in the prediction of the climate models used, location of site used 
for simulation, and simulation output of the DSSAT model. Management prac-
tices, fertilizer inputs, and cultivar were set constant and were not changed from 
our baseline simulations. Therefore, the results may not hold under similar cli-
matic conditions. We also need to stress that these simulations do not take into 
account of pests and disease potentials, and loss due to natural calamities such as 
flooding. The idea of using scenarios is not to predict future but to better under-
stand the uncertainties for judicious decision making for a range of future con-
ditions. In our study, we chose only two scenarios to work with because of 
computational and storage resources and time limitations. However, we should 
also keep in mind that the greater proportion of uncertainty in climate change 
impact assessment has been credited to variations among crop models rather 
than variations among the downscaled GCMs [43]. Our objective was not to 
compare the differences between the crop models, but to examine the yield dif-
ferences across future climate projection based on the downscaled GCMs and 
their ensembles. 

Although simulations suggest yield increase, further study is required to ex-
amine how soil quality and additional challenges of pest, irrigation, soil degrada-
tion, etc. may impact sustained crop production on a regional level. Also, study 
must verify if lodging may become issue for Ya and Yp scenarios. We only ex-
amined the annual mean data across the sites, however, the crop is sensitive to 
fluctuation in weather variation depending on the growth stage. Water availabil-
ity for crop production in future is also uncertain, therefore, crop production 
with less water can be problematic if the temperature is also hotter. Since Mark-
sim is an example of a stochastic, statistical downscaling method, with low input 
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data requirement to quantify the relationship between crop growth and weather, 
it may be less adaptable to different climatic conditions both spatially and tem-
porally [44]. And process-based models such as the DSSAT CERES-Wheat in-
clude more non-linear processes, so that the spatial aggregation of inputs over 
heterogeneous landscape is less recommended [18] [25]. 

3. Conclusion 

This paper describes a methodology for rapid synthesis of GCM-based, spatially 
explicit, high resolution future weather data inputs for the DSSAT crop model, 
for cropland area across wheat growing regions of Oklahoma on a seamless 
temporal scale. We examined how climate change may impact regional food se-
curity using a “bottom-up” approach. Most previous studies have focused on 
how climate change influence crop yield at regional and/or national levels. This 
study is a marked advance in the compilation of high resolution dataset, as such 
data offers tremendous opportunity to quantify future yield status for other 
crops within the region. With advancement in climate models in term of their 
fidelity in simulating natural processes and generating reliable output at higher 
spatio-temporal scales, we would be able to better assess the magnitude of the 
impact of climate changes on crop production and its societal impact. Based on 
our experience in implementing simulations for multi decadal, fine-scale study, 
we argue that a good understanding of scientific computing along with crop 
science and physiology is extremely helpful from crop modeling perspective. 
Focus on replicability, transparency, and code efficiency are seldom discussed in 
the literature. We believe that addressing these aspects is also of significance 
importance for advancement in crop modeling. Therefore, we conclude that by 
minimizing the yield gap with improved crop husbandry, increased input effi-
ciency for water, nutrients, and pesticides, along with improved wheat cultivars, 
and sustainable production practice, wheat production in this region can be sus-
tained for changing climate to meet the nutritional demand of people in years to 
come. 
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