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Abstract 
We present a set of equations describing the nonlinear dynamics of flows 
constrained by environmental rotation and stratification (Rossby numbers 

[ ]0.1,0.5Ro∈  and Burger numbers of order unity). The fluid is assumed 
incompressible, adiabatic, inviscid and in hydrostatic balance. This set of 
equations is derived from the Navier Stokes equations (with the above 
properties), using a Rossby number expansion with second order truncation. 
The resulting model has the following properties: 1) it can represent motions 
with moderate Rossby numbers and a Burger number of order unity; 2) it 
filters inertia-gravity waves by assuming that the divergence of horizontal 
velocity remains small; 3) it is written in terms of a single function of space 
and time (pressure, generalized streamfunction or Bernoulli function); 4) it 
conserves total (Ertel) vorticity in a Lagrangian form, and its quadratic norm 
(potential enstrophy) at the model order in Rossby number; 5) it also 
conserves total energy at the same order if the work of pressure forces 
vanishes when integrated over the fluid domain. The layerwise version of the 
model is finally presented, written in terms of pressure. Integral properties 
(energy, enstrophy) are conserved by these layerwise equations. The model 
equations agree with the generalized geostrophy equations in the appropriate 
parameter regime. Application to vortex dynamics are mentioned. 
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1. Introduction 

Flows of incompressible fluids, strongly constrained in the horizontal plane by 
stratification and by background rotation, are often found in geophysical 
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environments and in laboratory experiments (see [1] and references therein). In 
particular, motions at mesoscale and large scale in the Earth oceans and 
atmosphere are mostly horizontal due to the combined action of the Coriolis 
and buoyancy forces. Under these conditions, intense flow structures, such as 
jets and vortices, can be long-lived and ensure a significant part of the mass, 
momentum and heat transfers within the fluid (see [2] [3]; and their references). 
In the ocean, the intense western boundary currents (e.g. the Gulf Stream), but 
also the numerous and less intense eastern boundary currents (e.g. the 
Mediterranean Water Undercurrents along the Iberian continental slope), are 
unstable at various locations, and shed such long-lived vortices (the Gulf-Stream 
Cold-Core and Warm-Core rings, or the Meddies, Mediterranean Water Eddies). 
Such eddies have therefore small, but finite Rossby numbers ( [ ]0.1,0.5Ro∈ ) 
and Burger numbers most often on the order of unity ( [ ]0.5,5.0Bu∈ ).  

Modeling these flows has therefore been the subject of many studies, using the 
“primitive equations”, i.e. the three-dimensional Navier-Stokes equations with 
hydrostatic balance, Boussinesq approximation and incompressibility. These 
primitive equations, describe both fast (wave-like) and slow (vortex-like) 
motions. These two subspaces of solutions of the primitive equations are 
independent only for linear dynamics. In nonlinear dynamics, fast and slow 
motions can interact : initially slow motions, free of fast waves, remain in the 
slow subspace, but nonlinear interaction of fast waves can contribute to slow 
motions. Therefore the slow motions subspace is called a quasi manifold.  

The importance of quasi-2D jets and vortices in geophysical flows and 
laboratory experiments has motivated the search for asymptotic limits of the 
primitive equations on the slow quasimanifold (see for instance [4]). This 
regime is governed by the time evolution of potential vorticity (also called Ertel 
vorticity, a combination of vertical vorticity with vertical density gradient). For 
incompressible and inviscid fluids, potential vorticity is conserved by each fluid 
element (see [5]). To filter out fast (inertia-gravity) waves, zero or weak 
divergence of horizontal velocity is usually imposed. The most prominent 
example of slow regime is the horizontal balance between the Coriolis 
acceleration and the pressure gradient (for parallel flows). This equilibrium is 
known as geostrophic balance, for which horizontal velocity has zero divergence. 
The following model in complexity, with small horizontal velocity divergence, is 
the quasi-geostrophic model [6]. This model is derived from the primitive 
equations, by assuming dominant Coriolis acceleration compared with relative 
acceleration (i.e. small Rossby number Ro) and comparable influence of 
buoyancy and Coriolis effects (i.e. Burger number Bu of order unity). The 
quasi-geostrophic model conserves energy and potential vorticity up to ( 2Ro ).  

At the following order in Rossby number, expansions of the primitive 
equations yield so-called “intermediate models” which fall into two general 
classes: the balance equations with horizontal velocity splitting into rotational 
and divergent parts ([7] [8] [9]) and the generalized geostrophic equations with 
expansion of horizontal velocity in horizontal derivatives of pressure ([10] [11]).  
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The first model has a wide range of applicability (in Rossby and Burger 
numbers) but relies numerically on a complex and time-consuming iterative 
method [12]. The second model is much easier to implement but presents an 
excessive bias between cyclones and anticyclones ([13] [14]).  

The purpose of the present work is to propose a set of equations, derived 
along the same principle as the generalized geostrophic equations, but assuring 
the conservation of energy and of potential (Ertel) vorticity (and therefore of its 
L2-norm, total enstrophy) in the derivation. The derivation is also carried out 
directly from the primitive equations for continuously stratified flows, contrary 
to the generalized geostrophic model, derived from the shallow-water equations 
(layerwise primitive equations). Then, the projection of these equations onto a 
set of homogeneous layers is shown to be in agreement with equations directly 
derived from the shallow-water equations. Such a model is important for the 
study of mesoscale vortex dynamics in the ocean; for these vortices, Ro is not 
very small but often remains smaller than 1. When modeling the stability or the 
interaction of such vortices, it is essential that the model preserves their potential 
vorticity, and their energy when both are physically conserved ([15] [16] [17]). 

Here, we present the primitive equations and the physical scaling (Section 2). 
In Section 3, the intermediate model is derived and its conservation properties at 
( )3O Ro  are presented: Lagrangian invariance of Ertel vorticity, energy 

conservation in any volume for which the integral flux of the Bernoulli function 
across the boundary vanishes (as for primitive equations). The model equations 
are written in terms of a generalized streamfunction or of Bernoulli function. In 
Section 4, the layerwise model is presented and compared with previously 
derived models (frontal geostrophic equations, generalized geostrophic equations). 
Finally, conclusions are drawn. 

2. Mathematical Framework 
2.1. Dimensional Primitive Equations 

The fundamental equations for fluid motions strongly constrained by rotation 
and stratification are the primitive equations, derived from the three-dimensional 
Navier-Stokes equations with background rotation, under the following 
assumptions:  
• incompressibility (moderate particle velocities with respect to the speed of 

sound);  
• Boussinesq approximation (invariance of density in the horizontal momentum 

equations);  
• negligible vertical accelerations leading to hydrostatic balance;  
• moderate vertical velocities, implying that the Coriolis force mostly acts on 

the horizontal velocity; 
• background rotation a linear function of the y coordinate 0f f yβ= +  

(beta-plane approximation). On Earth, this corresponds to a projection of the 
motion on the tangential plane to Earth at a given latitude:  

( ) ( ) ( ) ( )0 0 02 sin 2 sin cosf θ θ θ θ θ = Ω = Ω + −  .  
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Under these hypotheses, assuming adiabatic and inviscid evolutions, the 
primitive equations are written in dimensional form ([5]):  

( )* * * * * *
*

1:   x t x y z x T
s

QM u v w u f v p
ρ

∂ + ∂ + ∂ + ∂ − = − ∂            (1) 

( )* * * * * *
*

1:   y t x y z y T
s

QM u v w v f u p
ρ

∂ + ∂ + ∂ + ∂ + = − ∂            (2) 

* *:   z z T TQM p gρ∂ = −                          (3) 
* * *:   0x y zC u v w∂ + ∂ + ∂ =                       (4) 

( )* * * *:     0t x y z TH u v w ρ∂ + ∂ + ∂ + ∂ =                   (5) 

where * * *, ,u v w  are the velocity components (functions of , , ,x y z t ), g is the 
local gravity intensity; *

Tp  and *
Tρ  are the total pressure and density; pressure 

is split into static and dynamic parts and density into mean and anomaly:  

( ) ( ) ( ) ( ) ( )* * * * * * *1 , , , , , , , ,T s T s sz x y z t p p z z p x y z tρ ρ ρ ρ = + = +   

assuming that the vertical variations dominate the horizontal ones. Viscous 
dissipation of momentum, forces, and diabatic terms can be added to the model 
if necessary. 

Stars distinguish these dimensional variables (and their relations) from their 
dimensionless counterparts in Section 2.3 and after. The hydrostatic relation 
holds for both parts:  

( )* * * * * *,    .z s s z s sp g p gρ ρ ρ ρ∂ = − ∂ = −  

Note that Equation (H) can also be written  

( )
*

* * * *
*

d 1 1 0
d z s z

s

w
t
ρ ρ ρ ρ

ρ
 

+ ∂ + + ∂ = 
 

               (6) 

with * *d d t x yt u v= ∂ + ∂ + ∂ . The original five equations relate the five 
unknowns * * * * *, , , ,u v w p ρ . Note that * *,s spρ  are known when the state of the 
fluid at rest is given. 

2.2. Scale Analysis 

The horizontal velocity * *,u v  is now scaled by U, the vertical velocity *w  by 
W, horizontal lengths ,x y  by L, heights by H, time by T, dynamical pressure 
( *p ) by P and mean density ( *

sρ ) by 0ρ .  
As density mainly varies along the vertical axis, the Brunt-Vaisala frequency is 

defined as 2 * *
z s sN g ρ ρ= − ∂  on average on the horizontal domain; it represents 

the oscillation frequency of fluid particles around a static equilibrium in a stable 
configuration. 2

0N  is the vertical average of ( )2N z  and ( ) ( )2 2
0S z N z N= .  

From these scales, several dimensionless parameters are defined: 
• the spatial Rossby number 0Ro U f L= ,  
• the temporal Rossby number 01TRo f T= ,  
• the beta-effect intensity *

0L fβ β= ,  
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• the Burger number ( )2
0 0Bu N H f L= ,  

• the aspect ratio H Lδ = .  
From these numbers and dynamical relations, we scale: 

• pressure via geostrophy, 0P fLUρ= ;  
• mean density and anomaly from the the pressure scaling and via hydrostatics 

(QMz):  

( ) ( )( ) ( )* 2
0 01 , , , ;T s z Ro Bu N H g x y z tρ ρ ρ ρ = +   

• the vertical velocity from the previous scalings and with equation (H), 
W U Ro Buδ= .  

To illustrate this scaling, consider vortices in the ocean (at mid latitudes), for 
which 50 kmL = , 1 kmH = , 1.0 m sU = , 510 sT = , 4 1

0 10 sf − −= ,  
* 11 1 12 10 m sβ − − −= × ⋅ , 2 5 2

0 10 sN − −= , leading to 2.5Bu = , 0.2Ro = ,  
0.1TRo = , 0.01β = . The following model is designed to study such intense 

flows (jets or vortices), with 0.1Ro ≥ , beyond the quasi-geostrophic 
approximation. The upper limit of validity of the following model is determined 
a posteriori from estimates of the first truncated terms in the equations, as well 
as with numerical tests: the model loses accuracy near 0.5Ro = , for ( )~ 1Bu O . 
For ~ 1Ro , the primitive equations should be used. Moreover, as β  is much 
smaller than Ro , the beta-plane approximation is justified. 

2.3. Dimensionless Primitive Equations 

With this scaling and dropping stars for dimensional variables, equation (QMx) 
is:  

( )1  ,x
DuRo y v p
Dt

β− + = − ∂                      (7) 

Equation QMy is:  

( )1 ,y
DvRo y u p
Dt

β+ + = −∂                     (8) 

Equation QMz is:  

,z p ρ∂ = −                            (9) 

Equation C is:  

0,x y z
Rou v w
Bu

∂ + ∂ + ∂ =                      (10) 

and Equation H is  

( ) ,D wS z
Dt
ρ
=                         (11) 

where the total (three-dimensional) derivative is written in scaled form:  

,T
t x y z

RoD Rou v w
Dt Ro Bu

= ∂ + ∂ + ∂ + ∂                 (12) 

for which no truncation of , ,u v w  in Ro  has yet been made.  
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Following [5], it is straightforward to show that these equations conserve total 
(potential) vorticity  

( )( ) ( )( )  0,     1 z z
D y Ro S z RoBu
Dt

β ρ
Π
= Π = + + × ⋅ − +n u n∇ ∇  

where zn  is the unit vertical vector. 

3. Derivation of the Model Equations 
3.1. Generalized Vorticity Equation 

We first rewrite equation H to extract w as an exact derivative:  

( ) ( )
2

3 31  .
2 z

Ro Ro D Ro Ro DXw O Ro O Ro
Bu Bu Dt S Bu S S Bu Dt

ρ ρ 
= − ∂ + = + 

 
    (13) 

This defines X, a quantity physically related to the static and dynamic 
densities. This expression of the vertical velocity w is central to the subsequent 
algebra. We note that this expression is similar in form to the quasi-geostrophic 
expression of w, for which the Lagrangian derivative is simply two-dimensional:  

( )d dw S tρ= .  

We also introduce the absolute vorticity Y, the sum of the relative vorticity 
and of the Coriolis parameter:  

( ).x yRoY y Ro v uβ= + ∂ − ∂                   (14) 

The generalized vorticity equation (GV), that we derive hereafter, can be 
obtained by successive steps:  
• first by taking the curl of (QMx, QMy),  
• then by substituting ,u v  via (QMx, QMy), z p∂  via (QMz) and w via (H),  
• and by canceling the three-dimensional velocity divergence via equation (C) 

(without any approximation).  
• Consistent ( )3O Ro  eliminations finally lead to the generalized vorticity 

equation (Equation (15) hereafter).  
This rather tedious algebra can be more elegantly replaced by the following 

symbolic combination leading to (GV):  

( ) ( )( ) ( ) ( )( )

( ) [ ] ( )

( ) ( ) ( )

2

  1

1

1 1 ,

z z z z z

z z

z z z

Ro RoGV X X QM
Bu Bu

RoRoY X C
Bu

Ro Ro X RoY Ro H
Bu Bu

   = × ⋅ + + ∂ × ∂ − ⋅    
 

− + + ×∂ ⋅ 
 

   + + ∂ + + ∂ × ⋅      

QM n QM n

u n

u n

∇ ∇ ∇

∇

∇

 

where ( ), ,x y zQM QM QM=QM  is a symbolic writing of Equations (7)-(9).  
Physically, in this expression:  

• the first term on the first line is the absolute vorticity;  
• the rest of the first line represents the coupling of the baroclinicity vector 

with the vortex stretching;  
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• the first term on the second line is the coupling of the velocity divergence 
with the absolute vorticity;  

• the second part of the second line is the coupling of that velocity divergence 
with baroclinicity;  

• finally, the third line contains the vortex stretching, its coupling with the 
absolute vorticity and with the baroclinicity vector.  

At first order in Ro, the total vorticity is that of the quasi-geostrophic (QG) 
model, and at the following order in Ro all terms are nonlinear and represent 
couplings between the QG terms.  

Following the formal calculation, the (GV) equation is obtained:  

( ) ( ) ( )
2

31 1 1  .z z z z
Ro D Ro RoX RoY X X O Ro
Bu Dt Bu Bu

    + ∂ + − ∂ + ×∂ ⋅ =    
    

u n∇  

Equation (GV) simply expresses the three-dimensional Lagrangian conservation 
of the generalized vorticity Q up to order 3Ro :  

( )3 DQ O Ro
Dt

=                           (15) 

where D Dt  must be expanded up to ( )2O Ro  (see subsection 3.4), and with 
the explicit form of Q:  

( )( )

( ) ( )

2

2
3

1  1 1
2

.

x y z z

z x z y

Ro RoQ Ro v u y
Bu S Bu S S

Ro v u O Ro
Bu S

ρ ρ
β

ρ

  
= + ∂ − ∂ + − ∂ − ∂     

 + ∂ ∂ − ∂ ∂ + 
 

       (16) 

We remark that Q has the form A B C∗ + , where A is the absolute vorticity, B 
is the “baroclinic” part and C is related to the baroclinicity vector. Neglecting the 
horizontal variations of vertical velocity, Q can be expressed as the product of 
the horizontal vorticity by a scalar gradient. 

For very large Bu, the barotropic vorticity is retrieved and we note 

x yv uζ = ∂ − ∂ .  
From here on, equation (C) is replaced by equation (GV). For consistency, 

remark that the 5 unknowns are still described by 5 equations. The following 
step relates the generalized vorticity Q and the Ertel vorticity. 

3.2. Conservation of the Ertel Vorticity 

In dimensionless variables, the Ertel vorticity is written  

( ) ( ) ( )
2

3  1 1 .z z x z y
Ro RoS Ro y v u O Ro

SBu Bu S
ρζ β ρ

    Π = − + + − ∂ + ∂ ∂ − ∂ ∂ +    
    

  

(17) 

Note that:  

( ) ( )31  1 .z z
Ro RoX Q O Ro
Bu S z SBu

ρ
Π   − ∂ = − − ∂ +   

   
 

or  
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( )3  Q A O Ro= Π +  

with  
2 2

2
2

1 1 1  .
2z z

Ro RoA X
S Bu S Bu SS

ρ  = − − ∂ + ∂  
   

 

We remark that A is a function of density only. The conservation of the 
generalized vorticity, Equation (15), implies that  

( )3  ;D DAA O Ro
Dt Dt
Π
= −Π +  

some straightforward algebra, with the use of relation (13), leads to:  

( )3 ;DA O Ro
Dt

=  

which is mass conservation, and thus immediately to:  

( )3 .
 

D O Ro
Dt
Π

=                        (18) 

with the form of Π  given by Equation (17). The Ertel vorticity is thus 
conserved as for the primitive equations, but here only up to ( )3O Ro . We 
remark that, contrary to quasi-geostrophic motions where total vorticity is 
advected by a two-dimensional geostrophic velocity, here the Ertel vorticity is 
advected by the three-dimensional velocity.  

With less complex algebra, the equivalent relation between Q and Π  for 
quasi-geostrophic dynamics is:  

qg qg qgQ A= Π , with  

( ) ( )2  1 ,qg x y z
RoQ Ro v u y O Ro
Bu S

ρ
β

  = + ∂ − ∂ + − ∂ +  
  

 

( ) ( )2  1 ,qg x y z
RoS Ro v u y O Ro

SBu
β ρ Π = − + ∂ − ∂ + − ∂ + 

 
 

1 1  1qg z
RoA

S Bu S
ρ−  = − ∂ 

 
 

Both in the QG and GV models, Π  contains both the static and dynamic 
parts of potential vorticity, while Q expresses the dynamic anomaly, relevant to 
the description of motions (Y. Morel, priv. comm.). A represents the new 
distribution of fluid masses induced by these motions. 

3.3. Integral Invariant Properties 
3.3.1. Potential Enstrophy  
Equation (18) immediately leads to the conservation of potential enstrophy  

2

  d d d
2

Z x y zΠ
= ∫∫∫  

as for the primitive equations, but here up to ( )3O Ro  only.  
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3.3.2. Total Energy  
Kinetic energy density is expressed in full form as:  

( )2 2 2 2

  
2 2s s

u v Ro wK
Bu

ρ ρ
+  = +  

 
 

At the model order, the kinetic energy density is multiplied by Ro and the 
following form is kept:  

( ) ( )
2 2

3  ,
2s

u v
RoK Ro O Roρ

+
= +                  (19) 

where the horizontal velocity expansion in Ro is kept up to second order for 
consistency.  

Potential energy density is expressed as (see Appendix A):  

( )
2

311 .
2 3s z

RoRoP Ro O Ro
BuS Bu S
ρ ρρ

 
= − ∂ + 

 
          (20) 

The energy conservation equation (E) is obtained via:  

( )  sE ρ= ⋅u QM  

in three-dimensional form. The main steps of the calculation are:  

( ) ( )3  ;s s
DK RoRo w p O Ro
Dt Bu

ρ ρ ρ  + = − ⋅ +  
u ∇  

the product of density by vertical velocity is then expanded into  

( )3  ,s s
Ro Ro DXw O Ro
Bu Bu Dt

ρ ρ ρ ρ= +  

or, with a few algebraic manipulations,  

( )3 .s
Ro DPw Ro O Ro
Bu Dt

ρ ρ = +  

The final result is, in Lagrangian form:  

( ) ( ) ( )3  s
D K P

Ro p O Ro
Dt

ρ
+

= − ⋅ +u ∇              (21) 

which expresses the conventional result that the variation of energy with time is 
due to the work of pressure forces, or in Eulerian form  

( ) ( ) ( )3  tRo K P B O Ro∂ + + ⋅ =u∇                 (22) 

where B is the total Bernoulli function ( )sB p Ro K Pρ= + + . This property is 
analogous to that for primitive equations. Energy is conserved here up to 

( )3O Ro  in any volume for which the integrated flux of the Bernoulli function 
across the boundary vanishes. In the QG approximation, the right-hand side of 
Equation (22) vanishes as the velocity is horizontal and geostrophic at first order. 
The total energy is then exactly conserved. 

3.4. Model Equations in Generalized Streamfunction 

Here the three-dimensional Lagrangian derivative is expanded in terms of 
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pressure, while conserving the model consistency at order ( )3O Ro , and thus 
preserving integral invariants at this order. The derivative is split into two parts: 
a horizontal Lagrangian derivative and a vertical advection term.  

d .
d z

D Ro w
Dt t Bu

= + ∂  

The horizontal derivative is applied to terms of order ( )O Ro  at least, in 
equations (GV), (H) and (QM) and thus needs to be expanded to ( )2O Ro  to 
ensure global consistency at ( )3O Ro . The vertical advection term is multiplied 
by a Ro Bu  factor and is thus expanded to ( )2O Ro  to ensure the same 
consistency at ( )3O Ro . For both the horizontal and vertical components of the 
3D derivative, specific operators, hL  and zL , are defined from the original 
Equation (8)-(13). The product L of these operators will permute with the time 
derivative and the Jacobian. This specific property will help transform Equation 
(16) into a QG-like equation with a generalized streamfunction, acting on LQ. 
This form of the conservation of generalized vorticity is called the internal form. 
With the Bernoulli function, this operator does not completely permute, and the 
equation obtained is called the external form. For legibility, part of the algebra is 
given in Appendix B.  

3.4.1. Vertical Derivative  
The expression of the vertical velocity is given by equation (H), that is, the 
quantity is substracted from the total derivative:  

( ) ( )2d  
dz z

D Ro DXH O Ro
Dt t Bu Dt

− ∂ = + ∂ +  

Part integration, permutation and summation (see Appendix B1) yield:  

( ) ( )2d ,
dz z z

D RoL L XJ p O Ro
Dt t Bu

= + ∂ ⋅ +              (23) 

where we define the vertical operator zL  as  

 1z z
RoL X
Bu

 = + ∂ 
 

 

and the Jacobian ( ) ( ), x y x y zJ a b a b b a a b= ∂ ∂ − ∂ ∂ = × ⋅n∇ ∇ . Using Equation (9) 
and (13) for ρ  and X, we obtain an expression for zL  in terms of pressure 
only:  

( )2  1 .z
z z

pRoL O Ro
Bu S

∂
= − ∂ +  

3.4.2. Horizontal Lagrangian Operator  
The horizontal derivative is explicited as:  

d  
d

T
t x y

Ro u v
t Ro
= ∂ + ∂ + ∂  

and the following combination is performed:  

( ) ( )d1 .
d zy
t

β+ − ⋅ ×n QM ∇  
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We define the horizontal operator hL  as  

( )( )1 ,h zL Ro= + ⋅ ×n u ∇  

or, in an expansion in pressure,  

( )2  1 ,h h hL Ro p O Ro= − ⋅ +∇ ∇  

where the subscript h refers to the sole horizontal components. This definition 
and some algebra (see Appendix B2) lead to  

( ) ( ) ( )
2 2

1 2d1 1 , .
d 2

T
h h t

Ro u vy L L y J p Ro O Ro
t Ro

β β−  +
+ = + ∂ + − ⋅ + 

 
   (24) 

Noting ( )2 2 2p Ro u vΦ = − +  and using the straightforward relation 
1

h hL L−=I  for the exact form of hL  leads to  

( ) ( ) ( ) ( )2d1  1 ,
d

T
h t h h

Roy L y L J L O Ro
t Ro

β β+ = + ∂ + Φ +         (25) 

as a second intermediate step.  

3.4.3. Final Result for the Total Lagrangian Derivative  
Defining h zL L L=  and applying it to the total derivative yields (see the algebra 
in Appendix B3):  

( ) ( )

( ) ( )

2 2

2

1 1 ,
2

, ,

T
t

z

RoD u vy L y L J p Ro L
Dt Ro

Ro XJ p L O Ro
Bu

β β
 +

+ = + ∂ + − 
 

+ ∂ +

 

or, in terms of energy density,  

( ) ( ) ( )21 1 , .T
t

s

RoD K Py L y L J p Ro L O Ro
Dt Ro

β β
ρ

 +
+ = + ∂ + − + 

 
    (26) 

The generalized streamfunction can now be defined as  

( ) ( )( )   ,
s

K Pp Ro p Ro K p P pψ
ρ
+

= − = − +             (27) 

with  

( ) [ ] ( )2 2 ,
2

RoRoK p p O Ro= + ∇  

( ) [ ] ( )2 2 ,
2 z

RoRoP p p O Ro
BuS

= ∂ +  

which is the symmetric of the Bernoulli function with respect to p. Operator L is 
written in terms of ψ   

( ) ( )2  1 .h h z z
RoL Ro O Ro

SBu
ψ ψ= − ⋅ − ∂ ∂ +∇ ∇             (28) 

The final form for the Lagrangian derivative, along with Equations (28)-(29), 
is:  

( ) ( ) ( ) ( )21 1 , ,T
t

RoDy L y L J L O Ro
Dt Ro

β β ψ+ = + ∂ + +         (29) 
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which applies to any conserved Lagrangian quantity (such as Q or Π ), 
expanded up to ( )3O Ro , having a zeroth-order term depending only on z. Note 
that, if we choose ( )O Roβ <  as in subsection 2.2, Equation (29) can also be 
expressed as:  

( ) ( ) ( )21 , ,T
t

RoDL L y J L O Ro
Dt Ro

β ψ= ∂ + − +  

an equation of interest for the dynamics of intense vortices.  

3.4.4. Explicit Form of the Generalized Vorticity in Generalized  
Streamfunction  

With the 3D Lagrangian derivative written in terms of ψ  (or p) hereabove, the 
generalized vorticity Q can also be expressed in terms of ψ . This expression is 
obtained in two steps: first, the generalized vorticity ( ),Q ζ ρ  (Equation (16)) 
is given as a function of pressure p, using the expressions ( ) ( ),p pζ ρ . Then 
the pressure is given as a function of the generalized streamfunction ψ  by 
Equation (27) to yield ( )Q ψ . The same calculations could also be performed on 
the Ertel vorticity Π , but these are not given here since Q directly derives from 
the original equations. Also note that from here on the ∇  operator is 
considered horizontal and the subscript h is dropped.  

Using  

( ) ( ) ( )2 2 1 2 , ,x y yy p RoJ p p p O Roζ β β= − ∇ − ∂ ∂ − ∂ +  

and  

  ,z pρ = − ∂  

we get:  

( ) ( ) ( )

( )

[ ] ( )

2 2

2

2
2 3

1 1 2 ,

1 1 11
2

1 .

x y y

z z z z

z

Q p Ro y p Ro J p p Ro p y

Ro Rop p
Bu S Bu S S

Ro p O Ro
Bu S

β β β = + − ∇ − ∂ ∂ − ∂ + 
  ∗ + ∂ ∂ + ∂ ∂    

− ∂ +∇

 

The quasi-geostrophic form of the total vorticity Q is:  

( ) ( )2 211 .qg z z
RoQ p Ro p y p O Ro
Bu S

β  = + ∇ + + ∂ ∂ + 
 

 

As all terms containing ψ  in Q will be factor of Ro , the expression of 
( )pψ  given in Equation (27) is sufficient to maintain consistency at ( )3O Ro . 

It can easily be inverted to ( )p ψ  and substituted into the previous expression 
for Q to reach  

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) [ ] ( )

2 2

22 2

2
2 3

1 1 2 ,

1 1 11
2

1 1 .

x y y

z z z z

z z

Q Ro y Ro J Ro y

Ro RoRo K P
Bu S Bu S S

RoRo K P O Ro
S Bu S

ψ β ψ ψ ψ β ψ β

ψ ψ ψ ψ

ψ ψ ψ

= + − ∇ − ∂ ∂ − ∂ +
 + ∇ + ∗ + ∂ ∂ + ∂ ∂ 
+ ∂ + − ∂ +

 

  ∇
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We can now apply the operator L to ( )Q ψ  to obtain the expression which 
will be conserved in the evolution equation hereafter:  

( ) ( )

( )

( ) ( )

22 2 2

2 2 2 2 2 2 2

22 2
2 3

2

11 1

2 2 2

1 1 .

z z

y

z z z

RoLQ Ro y Ro
Bu S

Ro Ro K Ro y Ro

Ro Ro O Ro
Bu S SBu

ψ ψ β ψ ψ

ψ ψ β ψ β ψ

ψ ψ

   = + ∇ + ∗ + ∂ ∂ − ∇      

− ⋅ ∇ + ∇ − ∇ − ∂

  + ∂ + ∂ ∂ +        

∇ ∇

∇

  (30) 

We recognize in this expression the quasi-geostrophic terms at ( )O Ro  and 
the nonlinear coupling terms at ( )2O Ro .  

In generalized streamfunction, the conservation of generalized vorticity is 
thus:  

( ) ( ) ( )( ) ( )31 , ,T
t

Ro LQ y J LQ O Ro
Ro

ψ β ψ ψ∂ + − =           (31) 

which, with expressions (27) and (30), is the final result for Section 3.4. 
Obviously energy conservation could be derived directly from Equation (33) by 
multiplying it by the generalized streamfunction, as it is done in QG. It is less 
tedious and more straightforward to derive it as in Subsection 3.3.2, though the 
result is the same at ( )3O Ro .  

This problem is similar in its mathematical form to the QG equations, i.e. it 
can be initialized either in streamfunction or in vorticity, though the relation 
between both is a nonlinear elliptic equation. If the streamfunction is given 
initially, the generalized vorticity is computed via the relation above Equation 
(30); conversely, if Q is given, ψ  is found by inverting the same formula 
iteratively. For the boundary conditions, ψ  and 2ζ ψ= ∇  must be given at the 
lateral boundaries of the domain, and the density anomaly ~ zρ ψ∂  must be 
specified at the surface and at the bottom of the domain. These latter conditions 
are usually a rigid lid at the surface and a given bottom topography. In the layer 
model, the asymptotic form of an infinitely deep lower layer at rest 
(reduced-gravity case) can also be used (see part 2). 

3.5. An Alternative Form of the Dynamics in Bernoulli Function 

We recall here that all tilded quantities are massless (i.e. are divided by sρ ), as 
it was already defined in Equation (27). We also use the subscript h for the 
horizontal quantities, which are relevant for the layer model. Horizontal 
velocities can also be written with respect to the horizontal Bernoulli function 

( )hB p RoK p= +   as:  

( )2
2

1  ,
1 y h t x h

h

u B Ro B O Ro
Ro B yβ

−
= ∂ − ∂ ∂ +

+ ∇ +
 



 

( )2
2

1  .
1 x h t y h

h

v B Ro B O Ro
Ro B yβ

= ∂ − ∂ ∂ +
+ ∇ +

 



 

The derivation of the model equations is similar to that in Sections 3.4.1 and 
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3.4.2. The Lagrangian derivative is written with hB  replacing ( )p RoK pΦ = −   
in the Jacobian, and using the hL  operator with hB  substituted to p:  

( ) ( ) ( ) ( )1 2
2

d 1  , .
d 1

T
h h t h h h

h

RoL B L B J B O Ro
t Ro Ro B yβ

−= ∂ + +
+ ∇ +

  



 

The two forms in hB  and Φ  are equivalent (see Appendix B4).  
As for the horizontal Lagrangian operator in Section 3.4.2, the vertical 

operator zL  must now be applied to obtain the total Lagrangian derivative:  

( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2

2
2

2
2

d  ,
d

, ,
1

, , ,
1

h z h z z

hT
t h h z h z

h

hT
t h z h z z

h

D D RoL L L L L XJ p O Ro
Dt Dt t Bu

LRo RoL J B L L XJ p O Ro
Ro BuRo B y

LRo RoL L J B L XJ p O Ro
Ro BuRo B y

β

β

 = = + ∂ + 
 

 
= ∂ + + ∂ + + ∇ + 

= ∂ + + ∂ +
+ ∇ +

 

where ( ) hRo Bu L X  has finally been replaced by ( )Ro Bu X  at ( )2O Ro .  
Thus the Bernoulli formulation of the evolution equation for the generalized 

vorticity is:  

( ) ( ) ( )( ) ( )3
2 , .

1
hT

t z
h

DQ B LRoL LQ B J B L Q B O Ro
Dt Ro Ro B yβ

= ∂ + =
+ ∇ +



  



  (32) 

Here ( )Q B  has a similar form to ( )Q ψ , and  

( )  .hB B RoP p= −    

Note that B  is not the usual total Bernoulli function, because of the minus 
sign in front of the potential energy component. In the layer model, B  reduces 
to hB , the usual horizontal Bernoulli function. 

4. Layer Model 

The form of the relative vorticity and of the Lagrangian derivative in terms of 
pressure given in part 1 is projected onto homogeneous layers. The basic 
property of the layer model is the independence of the horizontal velocities (and 
of the horizontal vorticity ζ ) on the vertical coordinate in each homogeneous 
layer.  

Obviously, energy and enstrophy are conserved to the same order in Ro as for 
the continuously stratified case. 

4.1. Layerwise Conservation of Ertel Vorticity  

To obtain the conservation of the Ertel vorticity in each layer, successive steps 
are followed:  

1) the hydrostatic equation  is replaced by the constraint on the pressure 
jump at the density interface between layers 1i −  and i :  

( )1 0 1 2 1 1 2 1 0  ,     ,i i i i i i ip p g g gρ η ρ ρ ρ− − − − −′ ′− = = −           (33) 

where 1iη −  is the elevation of this density interface from its depth at rest 
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1 0iz z −= ≤ .  
2) Equation (H) is replaced by the equation of the vertical velocity component 

at the density interfaces  

d
  ,

d
i

iw
t
η

=  

3) equation (GV) in each layer is obtained by vertical integration on the layer 
thickness:  

( ) ( ) ( )( )1 1  1 d .i i

i i

z
i z ii z

GV QM RoY H z
η

η

− −+

+
 = × ⋅ + + ∫ n∇  

The discretization of the model equations of the previous section on layers 
leads to the same results as the truncation of the multilayer shallow-water 
equation model to ( )2O Ro . Both simplifications conserve potential vorticity 
and the integral invariant properties at the model order.  

Rather than using potential vorticity, its inverse, potential thickness  

  
1

i
i

i

hZ
Ro yζ β

=
+ +

 

is used with  

1 1  ,   i i i i i i x i y ih z z v uη η ζ− −= − + − = ∂ − ∂  

Indeed, in case of strong interface deformation, ih  could locally vanish or 
become considerably small, whereas the relative vorticity remains positive since 

0.5Ro ≤  (and β  is usually much smaller). Therefore, iZ  cannot become 
infinite (inertial instability cannot arise).  

In each layer, potential thickness conservation is written:  

( )3d
d

iZ O Ro
t
=                         (34) 

Potential thickness iZ  is then expanded in Ro :  

( ) ( )2 2 2 2 3  1 2 .i i i i iZ h Ro y Ro Ro y y O Roζ β ζ β ζ β= − − + + + +  

In terms of pressure, potential thickness conservation in each layer is written:  

( )( ) ( ) ( ) ( )31 ,  ,
2

T
t i i i i i i i i i

Ro RoL p Z y J p p p L p Z O Ro
Ro

β  ∂ + − − ⋅ = 
 

∇ ∇  (35) 

and the operator iL  is, in terms of pressure:  

( ) ( )2  1 .i i iL p Ro p O Ro= − ⋅ +∇ ∇                  (36) 

The term i iL Z  has the following form in layers 2i =  to 1i N= −  
(intermediate layers)  

( )
( ) 1 11

  1 ,
1

i i i i i i i
i i i

i

Ro F F p F p F p
L Z Ro p

Ro yζ β

+ − − +
− +

  + + − −  = − ⋅
 + +
 

∇ ∇  

( ) [ ]2  2 , ,i i x i y i ip RoJ p p y pζ β=∇ − ∂ ∂ − ⋅∇ ∇  

with  
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2 2 2 2
0 0

1 2 1 2

,   .i i
i i i i

f L f LF F
g H g H

+ −

+ −

= =
′ ′

 

For the upper layer, with the rigid-lid assumption  

( )
( )1 2 1

1 1 1
1

1
  1 ,

1

Ro F p p
L Z Ro p

Ro yζ β

+  − −  = − ⋅
+ +  

∇ ∇  

and for the bottom layer:  

( ) ( )11
  1 ,

1
N N N B B

N N N
N

RoF p p F
L Z Ro p

Ro y
η

ζ β

− +
− + − −

= − ⋅  
+ +  

∇ ∇  

with  

,   ,B B
B B

N B

H hF
H H

η+ ∆
= =

∆
 

for the coupling with the bottom topography.  
Numerical implementation of these equations in the N-layer form, with 

iterative solution of pressure from potential thickness is described and applied in 
(Filatoff et al., 1997). 

4.2. Comparison with the Generalized Geostrophy Model 

We show here that a simple restriction of the two-layer model yields the 
well-known generalized geostrophy equations ([11]). We recall that these 
equations were derived in the context of a rigid lid and flat bottom ocean. For an 
easier comparison, we use similar notations to these authors’ (beware that some 
might differ from ours in the previous sections). We define the interface 
elevation as:  

2 1 2 1 1 22 2 2 2, , , ,g H Pp p Ro Ro Ro Ro
f L f L

η γ γ
′∆

= − = = =  

where H∆  is the magnitude of the interface displacement and P the amplitude 
of the pressure in the lower layer. We also define a local Burger number and a 
thickness ratio of the two layers:  

1 1
2 2

1 2

, .g H Hs
H Hf L

δ
′

= =
+

 

We reorder our equations and keep as variables the interface elevation h and 
the geostrophic streamfunction in the lower layer φ . The upper layer dynamical 
equation is written:  

( )( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2 2

2

2 2

, ,

, , ,
2

,

, , , , ,

T
t

T t T t T t

Ro s s J sJ
Ro

RoJ sJ y RoJ y

Ro Ro Ro y Ro J

J Ro J Ro yJ J y

η γ φη η γ φ η η γφ η γφ

η η
η η η η γφ β η ηβ

η η γ η φ β η γ φ η η

η η φ γ φ η φ γβ φ η φ η

∂ − ∇ + ∇ + + − − ∇ −

∇ ⋅∇ − ∇ + − − − 
 

= ∂ ∇ ⋅ ∇ + ∂ ∇ ⋅ ∇ + ∂ − ∇ ⋅ ∇
+ ∇ + ∇ ⋅ ∇ + +  

 

https://doi.org/10.4236/ojms.2018.82013


N. Filatoff, X. Carton 
 

 

DOI: 10.4236/ojms.2018.82013 269 Open Journal of Marine Science 
 

for which the r.h.s. terms are on order of 2, , , , ,T T TRo Ro Ro Ro Ro Roγ β γ γ γβ  
and are thus neglected by the aforementioned authors. In the present framework, 
this amounts to assuming that both 2~TRo Ro  and ~ Roγ , i.e. that the 
time-derivative is slow and that the motion is concentrated in the upper layer (a 
restriction of the present model). Our model thus agrees with the generalized 
geostrophic model under its assumptions, and provides the form of the 
complementary terms one order beyond these limits.  

If the lower layer is at rest, the reduced gravity equation is restored  

( ) ( )
( ) ( )

2 2 2, ,
2

, ,  0.

T
t

Ro s sJ RoJ
Ro
sJ y RoJ y

η η
η η η η η η η

η β η ηβ

∇ ⋅∇ ∂ − ∇ + − ∇ − ∇ + 
 

− − =
      (37) 

In [10], the supplementary conditions 2
TRo Ro=  and s Ro=  are used 

which lead to the well-known frontal geostrophic model in a one-and-a-half 
layer configuration (with 1h η= + )  

( )2  , , .
2t

h hh J h h h J h h yβ∇ ⋅∇ ∂ = ∇ + + 
 

              (38) 

A second equation is obtained by summing the two layer equations and by 
substracting Ro times the dynamical equation and the continuity equation of the 
upper layer. It yields:  

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2

2
2

2

,

, , ,
2

, , , ,

, , , ,

, ,

T T
t t T t

T t

Ro Ros s Ro sJ
Ro Ro

RoJ Ro J Ro J

Ro J Ro J s J s J

s J sJ y RoJ y s J y

Ro Ro J Ro J

γ φ η η η η η
δ

η η
η η η γη φ η γη η φ

γ φ η η γ η φ η γ φ η γ η φ

γ γ
φ φ η β η ηβ φ β

δ δ
η η γ η φ η γ φ η

∂ ∇ − ∂ ∇ + ∇ ⋅ ∇∂ − ∇

∇ ⋅∇ − ∇ + + ∇ + ∇ 
 

+ ∇ ⋅∇ + ∇ ⋅∇ − ∇ − ∇

+ ∇ − − +

= − ∇ ⋅ ∂ ∇ − ∇ − ∇ ⋅ ( ), .Ro Jη γ η φ η∇ + ∇ ⋅∇

 

Using algebraic combinations and similar scaling arguments as previously, the 
r.h.s. terms are negligible according to these authors. When the upper layer is 
extremely thin (vanishing δ ), the lower layer motion is decoupled from the 
upper layer influence and obeys a barotropic vorticity equation:  

( )2 2, 0.T
t

Ro J y
Ro

φ φ φ β∂ ∇ + ∇ + =  

5. Conclusions 

We have presented here a set of equations satisfying the constraints that we had 
initially imposed. The model retains all terms at ( )O Ro  in momentum and at 

( )2O Ro  in vorticity-divergence or integral invariants; it appears under two 
forms, one in generalized streamfunction, and one in Bernoulli function. The 
model conserves total energy (kinetic and potential) at the consistent order 
( ( )3O Ro ), if the total work of pressure forces is zero, or if the total flux of 
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Bernoulli function across the boundaries vanishes; a new general expression of 
potential energy (up to ( )2O Ro ) has been provided. Potential enstrophy (as 
derived from Ertel’s vorticity) is conserved at ( )3O Ro . This conservation of 
potential enstrophy is essential for the study of vortex flows.  

It should be remarked that in the framework initially defined, the present 
model is formally equivalent to other intermediate models, but for terms at the 
order in Ro neglected in the present calculation. The model with continuous 
stratification is of use for comparison with the balance equations, and for 
general applications of Ertel vorticity conservation for oceanic processes. As for 
balance equations, a nonlinear elliptic equation has to be solved, here to recover 
streamfunction from potential vorticity. This nonlinearity is inherent to all 
intermediate models written in a single variable, if multiple time scale expansion 
is not used.  

The equations derived for continuous stratification have then been projected 
onto a discrete representation of vertical stratification. In the layer 
representation, the dynamical model equations conserve potential vorticity for 
each fluid particle and integral invariants for the whole fluid. For practical 
purposes, potential thickness was used rather than potential vorticity; this avoids 
singularity when layers become vanishingly thin. The model equations were 
compared successfully to the frontal and to the generalized geostrophic 
equations derived by [11]; this comparison also identified the terms which 
appear in the equations at higher order than that considered by these authors.  

This model has been implemented in generalized streamfunction, both with 
pseudospectral and finite-difference horizontal schemes. It has been applied to 
various studies of vortex dynamics:  
• barotropic vortex merger, showing a cyclone/anticyclone asymmetry when 

Ro increases [18]; this asymmetry is similar in the SWE and GV models but 
does not exist in the QG model. 

• intrathermocline vortex merger (the merger of two vortices in the middle 
layer of a three-layer ocean); the merger of two distant anticyclones is possi-
ble both in the SWE and the GV models, but not in the QG model. 

• the effects of strong bathymetry gradients on vortex dynamics and the effects 
of large density interface deviation on baroclinic vortex merger, in 
comparison with a SWE model [19]; the comparison of asymptotic and 
complete dynamical model results is then very satisfactory. 

• In summary, the GV model provides similar physical results as the complete 
shallow-water modem for vortex dynamics, in cases where the QG model 
misses the parity bias. 
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Appendix A: Available Potential Energy  
A1. Dynamical Expression  

The restoring force acting on a fluid particle displaced from elevation 0z  to z  
in a stably stratified fluid is buoyancy:  

( ) ( )( )0  .z T TF g z zρ ρ= − −  

The work produced by this force from 0z  to z  is  

( ) ( ) ( ) ( ) ( )

( )
00 0

0

2 3
0 02

0

d
2 6

,

z
z z z s z sz zz z z

z z

z z z z
W F F z g g

g z z

ρ ρ

ρ

= =

=

− −
= = − ∂ − ∂

+ −

∫  

in a Taylor expansion in sρ . This expansion is performed to the second order, 
like that in B2, for two reasons: 

1) it will later be expressed in terms of anomaly densities up to 2ρ . This is 
consistent with the model order, with the density decomposition given in 
Subsection 2.2;  

2) the constant and first-order terms in the expansion are the static and 
quasi-geostrophic contributions to potential energy, that we already know.  

We note that the above expression has two contributions, one hydrostatic due 
to the ambient stratification, one dynamical due to the motion of fluid masses.  

A2. Thermodynamical Arguments  

The thermodynamical variables of the system are entropy, density and tracer 
concentration (salinity) for the extensive variables, and temperature, pressure 
and chemical potential for the corresponding intensive variables. We assume 
that salinity is constant and that any adiabatic transformation is isentropic as the 
system is non dissipative. To maintain the fluid particle in an invariant 
thermodynamical state, density must be conserved for the particle (but obviously 
not for its environment or else potential energy would vanish). In other words, 
we look for the elevation z corresponding to a static thermodynamic equilibrium 
for the fluid particle, identical to its initial (dynamical) thermodynamic 
equilibrium at elevation 0z . This is written:  

( ) ( ) ( ) ( )0 0 0  ,T s s sz z z zρ ρ ρ ρ− = −  

or  

( ) ( ) ( ) ( )
0 0 0

2
02

0 ,
2z z z s z sz z z z

z z
z zρ ρ ρ= = =

−
= ∂ − + ∂  

which is inverted to yield  

( ) ( )( )
2

1 32
0  ,

2z s z s z sz z ρ
ρ ρ ρ ρ− −− = ∂ − ∂ ∂  

truncating terms at order 3ρ  and higher; this expression is consistent with the 
model order. We have also omitted the index 0z z=  on densities for simplicity.  
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A3. Final Expression of APE  

The 0z z−  expression is now introduced into the previous formula for the work 
of buoyancy forces  

( ) ( ) ( )( )
2

1 221 1 ,
2 3z z s z s z s

gW F ρ
ρ ρ ρ ρ− − = ∂ − ∂ ∂  

 

which can be put in dimensionless form and yield the expression  

( ) ( )
2

3  1 1 ,
2 3

s
z

RoRoP Ro S O Ro
SBu Bu
ρ ρ ρ = − ∂ + 

 
 

used in Section 3.3.2  

Appendix B: Derivation of the Lagrangian Derivative in  
Terms of Pressure  

These appendices give more detail on the algebra of Section 3.4. The total 
derivative D Dt  is given by Equation (12), the quantities X and Y by 
Equations (13) and (14), operator zL  is given in Subsection 3.4.1, and hL  in 
3.4.2, and the momentum conservation QM is written in Equations (7)-(9).  

B1. Vertical Derivative  

We expand here the combination given in Subsection 3.4.1, ( ) z
D H
Dt

− ∂ , which  

gives by part integration:  

( ) ( )d d .
d dz z z

Ro DX Ro D Ro DX X
t Bu Dt t Bu Dt Bu Dt
+ ∂ = + ∂ − ∂  

By permutation of Lagrangian and vertical derivatives, and using the 
definition of zL , we have:  

( ) ( )2d .
dz z z x z y

D RoL L X u v O Ro
Dt t Bu

= + ∂ ∂ + ∂ ∂ +  

The operator is transformed by the following difference:  

( )z z z
D RoL X
Dt Bu

− ⋅∂ ×n QM ∇  

to lead to  

( ) ( )2d , ,
dz z z

D RoL L XJ p O Ro
Dt t Bu

= + ∂ ⋅ +  

which is the form written in Equation (23).  

B2. Horizontal Derivative  

The combination  

( ) ( )d1 .
d zy
t

β+ − ⋅ ×n QM ∇  

used in subsection 3.4.2 is expressed as:  
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( ) ( ) ( )2d1 , ,
d

T
t z

Roy J p Ro O Ro
Ro t

β  + ∂ + ⋅ + ⋅ × + 
 

un ∇  

or by part integration,  

( ) ( ) ( ) ( )2d d1 , .
d d

T
t z z

Roy J p Ro Ro O Ro
Ro t t

β  + ∂ + ⋅ + ⋅ × − ⋅ × +      
n u n u∇ ∇  

Permutation of horizontal derivatives and horizontal Lagrangian operator 
yields:  

( ) ( ) ( )

( ) ( )
2 2

2

d1 1 1
d

1 , ,
2

z z

T
t

y Ro Ro
t

Ro u vy J p Ro O Ro
Ro

β

β

+ + ⋅ × − ⋅ ×      

 +
= + ∂ + − ⋅ + 

 

n u n u∇ ∇

 

which, with the expression for hL , is Equation (24).  

B3. Final Result for the Total Lagrangian Derivative  

With the definition given in 3.4.1 for the zL  operator, we have  

[ ] ( )2d  ,
dz z z z

D RoL L X p O Ro
Dt t Bu

= + ⋅ ∂ × +n ∇ ∇  

so that by applying the product of operators h zL L  to the total Lagrangian 
derivative, we obtain  

( ) ( )

( ) [ ] ( )

2 2

2

1 1 ,
2

1 ,

h z t h z h z
T

h z z

D Ro u vy L L y L L J p Ro L L
Dt Ro
Roy L X p O Ro
Bu

β β

β

 +
+ = + ∂ + − 

 

+ + ⋅ ∂ × +n ∇ ∇

 

which is the equation above Equation (26).  

B4. Equivalence between the Expressions of Generalized Vorticity  
in Bernoulli Function and in Streamfunction  

To prove the identity between the two expressions of the generalized vorticity 
equation, one just needs to check that  

( ) ( ) ( )( )2

d 1 ,
d 1

T
h h t h h h h h

h

RoL B L B J B L B
t Ro Ro B yβ
= ∂ +

+ ∇ +
   



 

and  

( ) ( ) ( ) ( )( )d 1 ,
d

T
h t h h

RoL L y J L
t Ro

βΦ = ∂ Φ + − Φ Φ  

are equivalent. For the partial time derivative, this is obvious to order 2Ro . We 
compare the Jacobian terms, the difference of which is:  

( ) ( ) ( ) ( )2, , , , ,h h h h h hJ B Ro B J B Ro B J B RoJ B−Φ − ⋅ − ∇ + Φ ⋅     ∇ ∇ ∇ ∇  

or also with ( )h h hB Ro B B−Φ = ∇ ⋅∇   ,  

( ) ( ) ( )2, , , ,h h h h h hRo B J B B J B J B B ⋅ −∇ + ⋅ 
     ∇ ∇ ∇ ∇  

which vanishes for any test function. Thus the two systems are equivalent. 
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