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Abstract 
First of all, we investigate whether the transformation of Lemaître inevitably 
leads from the static de Sitter cosmos to an expanding cosmos. A Lorentz 
transformation which can be assigned to the Lemaître transformation results 
in a frame of reference that moves relatively to the static dS system. Because of 
the homogeneity of space, this applies to every point in the space which does 
not itself undergo any change. We interpret the “expansion” of the cosmos 
Milne-like. It is not the space that expands, but the mesh of the Lemaître 
coordinate system. The velocity parameter of the associated Lorentz trans-
formation is geometrically based and shows that the joined observer systems 
are moving in free fall. We also discuss the question of whether the speed of 
light for free-falling observers in the universe can be reached or can be ex-
ceeded, respectively. We raise the question of whether the model can be ex-
tended in such a way that the motions take place with a velocity that is lower 
than the one of the free fall. We believe that the method we have derived can 
be generalized to models with genuine expansion. 
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1. Introduction 

We want to discuss the question of whether a cosmological model is possible which 
expands at a rate lower than the one of free fall. Before we elaborate a procedure that 
may be universally valid, we examine the problem for the Sitter cosmos. 

In Section 2, we give a short overview of the Sitter cosmos. We critically re-
view the usual interpretation of the static and expanding versions of the dS cos-
mos. We assume that space does not expand, but that a family of observers 
moves in such a way that their members diverge. It is also pointed out that the 
recession velocity on the cosmic horizon can only reach the speed of light 
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asymptotically. Since superluminal velocities are excluded, the dS model fulfills 
the basic laws of special and general relativity. Galactic island formation cannot 
occur. 

In Section 3, we generalize the model. We implement a family of observers 
that moves at a speed less than the one of free fall. We accomplish this with the 
double-velocity approach, subtracting relativistically two velocities from one 
another. As a result of this generalization, acceleration of the recession velocity is 
possible. With a new parameter, one can manipulate the calculated redshift. 

In Section 4, we examine the field equations of the generalized model with the 
result that the extension of the dS model is an exact solution of the field equa-
tions. 

In Section 5, we specify the additional part of the recession velocity and thus 
we gain more insight into the geometric structure of the model. 

In Section 6, we also discuss the possibility of a coordinate transformation ac-
companying the accelerated observers. 

2. Basics of the de Sitter Cosmos 

The metric of the dS cosmos in the static version is mostly written down in the 
canonical form 

( )2 2 2 2 2 2 2 2 2 2
2 2

1d d d sin d 1 d
1

s r r r r t
r

ϑ ϑ ϕ= + + − −
−

R
R

,       (1.1) 

R  being the radius of the pseudo-hypersphere representing the dS cosmos. 
With the relations 

2 2 2 2, 1 1 , 1

sin , cos , sin

R R R R R

R R

rv a v r a

v a r

α

η η η

= = − = − =

= = =

R
R

R
             (1.2) 

one gets 

2 2 2 2 2 2 2 2 2
2

1d d d sin d cos d
cos

s r r r tϑ ϑ ϕ η
η

= + + − ,          (1.3) 

wherein η is the polar angle of the pseudo-hypersphere and r the radial coordi-
nate. With 

sin , const.r η= =R R                        (1.4) 

one finally has 
2 2 2 2 2 2 2 2 2 2 2 2 2d d sin d sin sin d cos ds iη η ϑ η ϑ ϕ η ψ= + + +R R R R .    (1.5) 

The latter notation indicates that the dS metric is the metric on a pseu-
do-hyper sphere of constant radius R . In particular, the coordinate time inter-
val d di t iψ= R  is the arc element of an open pseudo-circle (hyperbola of con-
stant curvature) on the pseudo-hyper sphere extending to infinity. d dRT a t=  is 
the proper time of an observer being at rest in the cosmos. 

Lemaître [1] has specified the coordinate transformation 
'' e , ' ln cos , ' 'r r tψ ψ ψ η ψ−= = + = R                 (1.6) 
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which brings the metric into the form 
2 2 ' 2 2 2 2 2 2 2d e d ' ' d ' sin d d 's r r r tψ ϑ ϑ ϕ = + + −  .              (1.7) 

The time-dependent factor 2 'e ψ  in the line element indicates that the spatial 
arc elements expand equally into all three directions. This leads to the assump-
tion that the space itself is expanding. 't  is the coordinate time and at the same 
time the proper time of an observer who rests in the primed coordinate system. 
It applies to all observers of the system and is also called cosmic time. 

We note here that a coordinate transformation can neither change the physi-
cal content of a theory nor the geometric structure of space. For example, if one 
introduces a rotating coordinate system, the space will certainly not rotate, but 
the description of a fact is more complicated. Even a helical coordinate system 
does not lead to any querying of the space. Thus, (1.7) describes by no means an 
expanding space but a coordinate system whose meshes enlarge. 

At this point, a note about the curvature parameter k is appropriate. From the 
canonical form of (1.1) we read off 1k =  which stands for a positively curved, 
closed space—an unquestionable conclusion. The dS cosmos is based on a pseu-
do-hyper sphere. From the metric (1.7) can be read 0k = . In [2] we have dis-
cussed in detail that a line element with 0k =  need not to indicate a flat infi-
nite space. In addition, it is not clear how a closed, finite space can be trans-
formed into a flat infinite space by a coordinate transformation. A metric with 

0k =  is usually described with the help of a coordinate system that is related to 
free fall. To deepen that, we assign a Lorentz transformation to the coordinate 
transformation. 

With (1.7) and with ' | '
i i
i ixΛ =  ( i  and 'i  are coordinate indices), and the 

scale factor 'e 'r rψ= =K , and using the 4-beine 
1' 4'1 4 1 4 1' 4'

1 4 1' 4'1 4 1' 4'

1, , , , , 1, , 1R R R Re e a e a e e e e eα α= = = = = = = =K
K

  (1.8) 

we establish the matrices of the coordinate transformation 
2

'
'

2 2
2

1
1,

1
1

1

R R
R

i i
i i

R R R
R R

iviv

i v
i v

α

α α
α

 
−   

   
   Λ = Λ =
   
   
   − 

K
K K

K

.       (1.9) 

We determine the Lorentz transformation with 

'
' ' '

mm i i
m i i m

L e e= Λ                         (1.10) 

and we obtain 

'

1
1

R R R

m
m

R R R

i v

L

i v

α α

α α

− 
 
 =
 
 
 

,                  (1.11) 
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with Rα  as Lorentz factor associated to the recession velocity Rv  of the galax-
ies. The parameters occurring in it have already been mentioned in (1.2). After 
having succeeded in assigning a Lorentz transformation to the coordinate trans-
formation, one can unambiguously assign a speed Rv  (the recession velocity of 
the galaxies) to every point in the universe—relatively to an observer who de-
fines his position as a pole on the hyper sphere. Since all points on the sphere are 
equivalent, this applies to any observer. Rv  is the velocity with which observers 
are driven away by the force 1 1E U= − , 

( )
4

41
1 41 4 |14|1

1 1cos
cos R RU A e e vη α

η
= = − = = −

R
 

from any point into all directions. We recognize that the equatorial sphere is de-
scribed in the dS space with r = R . In this location is 1Rv = , i.e., in the natural 
measurement system the speed of light. That surface is called the cosmic hori-
zon. 

The Lorentz transformation together with the tetrad representation enables us 
to clearly describe the cosmos in the “freely falling” frame of reference. Due to 
Einstein’s elevator principle [2], it can be expected that the force 1U  will no 
longer occur in the freely falling system. Instead tidal forces are to be expected. 
In fact, the relation 

'
1 ,0,0,0 ' 0,0,0,m R R m

iU v Uα   = − → = −   
   R R

        (1.12) 

is obtained from the inhomogeneous transformation law of the Ricci-rotation 
coefficients. Furthermore, the spatial part of the lateral field quantities [2] ob-
tains a flat form 

' '
1 1 1,0,0, , , cot ,0,m m

i iB C
r r r

ϑ   = − = −   
   R R

,         (1.13) 

and as the 4th components one gets the tidal forces. Freely falling observers do 
not feel the acceleration of their system, they experience the space to be flat [2]. 

With the question of how observers behave at the horizon, we want to occupy 
ourselves in detail. First of all, we follow the path customary in cosmology. For 
the change of the radial coordinate we obtain with 1 R ra∂ = ∂  and with (1.11) 

{ } { }| | '1,0,0,0 , ,0,0,m R m R R R Rr a r i v aα α= = − .           (1.14) 

Thus, one has |4' Rr iv= − , and with 4' 'i t∂ = ∂ ∂  

R
rr v= =

R
.                         (1.15) 

With (1.6) we find the relation between the comoving and non-comoving 
radial coordinates 

'', er r ψ= =K K .                       (1.16) 

With this one can write 

1,r Hr H= = K
K

                      (1.17) 
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instead of (1.15). H is called the Hubble parameter and (1.17) the linear expan-
sion law. According to our interpretation of the dS cosmos it is the expansion 
law of the coordinate mesh. 

Equation (1.17) suggests that r can accept arbitrarily high values. That may be 
correct for a flat or a negatively curved, thus open cosmos. Both models are infi-
nite and contain an infinite amount of matter. Apart from the fact that it is hard 
to imagine the infinite, the question of how an infinite amount of matter may 
have been created by the Big Bang remains unanswered. Therefore we believe 
that only positively curved, spatially closed universes are physically meaningful. 
Thus, the range of r is limited, namely to the range [ ]0, R  and thus the reces-
sion velocity is also limited. Its highest value is the speed of light as we have 
stated above. 

However, we doubt that a drifting galaxy in the cosmos can really reach the 
speed of light. This would violate the laws of special relativity. Therefore, we 
examine the behavior of an observer when approaching the cosmic horizon 
more closely. 

Now we write (1.15) as 

d
d '

r r
T

=
R

.                         (1.18) 

Therein 'T  is the proper time of the comoving observer. We face the region in 
front of the cosmic horizon. We calculate the time that passes if an observer ap-
proaches the horizon or if he possibly reaches the horizon. 

Thus, we integrate (1.18) in the interval mentioned 

( ) ( )1' d ln ln
r

T r r r
r−

= = − −  ∫
R

R

R R R . 

The time function obtained we have plotted in Figure 1. 
 

 
Figure 1. Time function for the dS cosmos. 
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It can be seen that an observer A, who starts at 0r =  and travels the whole 
distance from 0r =  to r = R  needs an infinite amount of time to get infinitely 
close to the cosmic horizon. Drifting observers in the cosmos neither exceed the 
velocity of light nor do they even reach it. 

A second observer B, released anywhere in the considered interval, reaches the 
horizon of A in finite time, but at a speed that is respectively lower than that of 
A. Since all points on a sphere are equal, any observer will call his starting point 
a pole. When the observer B leaves his pole, he travels through the horizon of A 
with subluminal speed and he reaches his individual equator, i.e., he reaches his 
horizon only asymptotically. The equator of B lies beyond the equator of A. 

In an earlier paper [3] we have extended the dS cosmos to a genuine expand-
ing model by giving up the condition const .=R , i.e., allowing an expansion of 
the pseudo-hyper sphere. In this case, the observer’s motion described above is 
related to expansion and is responsible for the recession velocity of the galaxies. 
In the subluminal model we have proposed this velocity is also geometrically de-
fined. We can access the same formulae as above and we get the results dis-
cussed. Even in a generalized expanding model, the speed of light is the unat-
tainable barrier to any motion of galaxies. 

If A sends a beam of light to a galaxy B and is reflected back to A, both run-
times are equal in accordance with the special theory of relativity, because B can 
define his position as a pole on the hypersurface. Both distances have the same 
length and the motion of the light source has no influence on the behavior of a 
light beam. This applies likewise to motions in the static model as well as to mo-
tions caused by expansion in the subluminal model. 

With the subluminal model one has a cosmological model at hand which sa-
tisfies all requirements of special and general relativity. It is supported by Melia’s 
carefully performed evaluation of observational data. Melia1 refers to the 

hR ct=  model proposed by him which is flat and infinite. However in [2] and 
[3] we have shown that this model is identical to our subluminal model if we 
reinterpret the model of Melia using Einstein’s elevator principle. It should also 
be mentioned that Chodorowski [4] [5] [6] has dealt with the question of 
whether the recession velocity of the galaxies is due to an expansion of space or 
whether is a motion in the static space in the sense of Milne. 

We have extensively dealt with the transformation of coordinate systems into 
reference systems in the dS family in the papers [7] [8] [9]. In particular, the pa-
per of Florides [10] should be pointed out. 

3. The Generalized de Sitter Model 

We raise the question of whether the expansion of a cosmos can take place at a 
lower speed than that of free fall. We simplify the problem by studying it in the 
dS cosmos. We start with its static form. We define a motion by relativistically 
subtracting a second velocity from the velocity of free fall. 

 

 

1The papers of Melia are listed in [3]. 
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This double-velocity model will by no means describe Nature. It only serves to 
elaborate the mathematical methods. But it can also be stimulating to think 
about a genuine expanding model that expands more slowly and that predicts to 
have a lower recession velocity for its galaxies. This can affect the interpretation 
of the redshift. 

To formulate the problem we use the formula apparatus of the special relativ-
ity theory for relative velocities. We use the Lorentz transformations 

1' 4' 1' 4'
1 1 4 4
1'' 4'' 1'' 4''
1' 1' 4' 4'
1'' 4'' 1'' 4''
1 1 4 4

, , ,

, , ,

, , ,
E E E E E E

R R R R R R

L L i v L i v L

L L i v L i v L

L L i v L i v L

α α α α

α α α α

α α α α

= = − = =

= = − = =

= = − = =

.         (2.1) 

Therein Rv  is the speed of a fictional observer driven by the dS forces. This 
velocity is reduced by a second speed Ev . This gives the actual recession velocity 
v . In the formulae ''m  tags the fictitious system, 'm  the physical comoving 
system, and m  the static system. We illustrate this with Figure 2 below: 

 

 
Figure 2. The composition of the velocities. 

 
Furthermore, we need the formulae for the relativistic relation of the velocities 

, ,
1 1 1

R E E R
R E

R E E R

v v v v v vv v v
v v vv v v
− + −

= = =
− + −

              (2.2) 

together with the Lorentz relations 
2 2 21 1 , 1 1 , 1 1R R E Ev v vα α α= − = − = − ,           (2.3) 

( ) ( ) ( )1 , 1 , 1R E R E R E E E R Rv v vv v vα α α α αα α α α= − = + = − ,     (2.4) 

( ) ( ) ( ), ,R E R E R R E E E E R Rv v v v v v v v vα α α α αα α α α= − = + = − .    (2.5) 

The analytic form of the new speed cannot be chosen arbitrarily. All quantities 
which contain Ev  must satisfy Einstein’s field equations and the conservation 
law. Furthermore, we expect that in case of reduced recession velocity radial re-
pulsive forces in the comoving system still occur, but with lower strength than 
those in the freely falling system. Furthermore, we expect tidal forces. The latter are 
easy to derive and they give first useful hints for the ansatz of the velocity Ev . 

In addition, we convince ourselves that the recession velocity is relativistically 
defined. For the dS coordinate r applies 

|1 |4, 0R
R

rr a r
rα

∂
= = =

∂
. 

Thus, one gets 
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{ } { }| | ' ' |1,0,0,0 , ,0,0,m
m R m m m Rr a r L r i v aα α= = = − .          (2.6) 

With 4'd d 'x i T=  one has d d 'R r T vα α= . In the dS cosmos is 1d dRx rα=  
and for the comoving system one has 1'd 0x = , d dT T α′ = . This finally results 
in 

1
1'd , const .

d R
x v v x
T
= < = .                   (2.7) 

On the other hand, one obtains from 1d 0x = , d ' dT T α=  
1'

1d , const .
d '

x v x
T

= − = .                    (2.8) 

The recession velocity fits the basic structure of the special theory of relativity. 
To calculate the new field quantities, we need the inhomogeneous transforma-

tion law of the Ricci-rotation coefficients. Since the motions take place in the [1, 
4]-slice of the space, the [2, 3]-quantities transform homogeneously, just like 
vectors. Thus, 

{ } ( )| |

' ' ' '

1 1 11,0,0,0 , sin , cot ,0,0
sin

,

R R
m m m m

m m
m m m m m m

a aB r C r
r r r r r

B L B C L C

ϑ ϑ
ϑ

 = = = =  
 

= =

 

applies for the lateral field quantities. With (1.1) they attain the form 

' '
1,0,0, , , cot ,0,   R R R R

m m
a a a aB i v C i v
r r r r r

α α α ϑ α   = − = −   
   

.    (2.9) 

With this we recognize that the radial part and the timelike part of these 
quantities no longer appear to be flat, as it was the case for the freely falling 
frame of reference of the dS Model with (1.13). The formula (1.13) for free fall is 
obtained only if Rα α= , i.e., if 0Ev = . If one now demands that the comoving 
volume element expands equally in all three directions one has 

4' 4' 4'' RaB C U i v
r

α∗ ∗= = = −                    (2.10) 

and thus one has derived the timelike component of the radial quantity '' mU  of 
the comoving system. Since one must obtain the same expression with the in-
homogeneous transformation law of the Ricci-rotation coefficients, one can 
draw conclusions about the properties of the quantity Ev . 

The inhomogeneous transformation law of the Ricci-rotation coefficients 
' ' ' ' '

' ' ' ' ' ' ' ' '  | '' ' , 's s s s s s
m n m n m n m n s n mA A L L L L= + =              (2.11) 

can be simplified, since in the present case the Lorentz transformation is a 
pseudo rotation in the [1, 4]-slice of the surface. The inhomogeneous term 
which we call the Lorentz term, can be expressed with { }' ' diag 1,0,0,1m nh =  and 
can be brought into vector form with 

{ }' ' ' ' 4 ' 1'
' ' ' ' ' ' ' ' ' 4 '1' 1'4'' ' ' , ' ' ' , 's s s s

m n m n m n n s nL h L h L L L L L= − = = .     (2.12) 

From (2.11) remains only Einstein’s elevator law [2] 
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{ }' ' ' '
1' ' , ,0,0,m m m m R RU U L U i v vα α α = + = − − 

 R
.         (2.13) 

With (2.11), (2.12), and (2.1) we calculate 
2 2

1' |4' 4' |1'' , 'L i v L i vα α= = − . 

With the help of the relation 
2 2 2d d dR R E Ev v vα α α= −  

we evaluate 
2 2 2 2

1' |4' |4' 4' |1' |1'' , 'R R E E R R E EL i v i v L i v i vα α α α= − = − + . 

First, we determine the first terms of these relations. In analogy to (1.14) we 
now have 

{ } { }| | '
1 11,0,0,0 , ,0,0,R m R R m Rv a v i v aα α= = −
R R

.         (2.14) 

With (2.10) and (2.13) on hand we obtain 

( )

2 2
4' |1'

2 2
|1' |1'

1 1'

11

R R R R E E

R R E R E E E

U i v v i i v

i vv i v i i v

α α α αα α

αα α α α

= − ⋅ +

= − − + = − +

R R

R

. 

We take the value for 4''U  from (2.10) and after some calculation we get 

|1'
1

E E Ev a v
r

= .                        (2.15) 

Furthermore, we require that the quantity Ev  in the comoving system is time 
independent, so that we finally obtain 

{ } { }| ' |
1 11,0,0,0 , ,0,0,E m E E E m E Ev a v v i v a v
r r

α α= = .        (2.16) 

Now we are also able to clearly present the Lorentz term 

{ } { }' ' ' ' '
1 1' , ,0,0, , 0,0,0,1m m m m R m E EL G l G i v i l i v

r
α α α α= − + = =

R
   (2.17) 

and also with '
''m

m m mL L L= −  the inverse transformation 

{ } { }1 1, 0,0,0,1 , ,0,0,m m m m R m E EL G l G i l i v i v
r

α α α α= − = = −
R

.   (2.18) 

The components G and l are assigned to the changes of Rv  and Ev , respec-
tively. 

Now we can continue with (2.13) 

1'
1 1' R R RU v vαα αα= − +
R R

. 

Finally, we have with (2.5) 

'
1 1' ,0,0,m E E RU v i va

r
α α = − − 

 R
.              (2.19) 

It can be seen that, in contrast to the “free falling” observer (1.12), radial forces 
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act on a less rapidly comoving observer 

1' 1'
1' ' E EE U vα= − =
R

, 

acting repulsively. At the same time tidal forces occur. 
With (2.11) we have obtained this quantity from the non-comoving system by 

an inhomogeneous transformation law. But since the field quantities of the freely 
falling system are also known, we can derive (2.19) from this system as well. 

The inhomogeneous transformation law for '' 'm m→  is 
' " " ' '' ' ' ' "

' ' ' ' " '' '' ' ' ' ' " '  | '' " ,s m n s s s s s s
m n m n s m n m n m n s n mA L A l l L L= + = .          (2.20) 

The Lorentz term 

{ }2 2
' |4' |1', 0,0,m E E E El i v i vα α= −                   (2.21) 

leads to the simple expression 

{ }'
10,0,0,1m E El i v
r

α=                     (2.22) 

which we have already worked out on the way to (2.17). But now we can give a 
better justification. We write (1.12) as 

{ }" '" 0,0,0, , " ,0,0,m m E E E
i iU U i vα α   = − = − −   

   R R
 

and finally we have recovered the quantity (2.19) with 

' ' '' "m m mU U l= + .                      (2.23) 

We have deduced all field quantities which we need for the generalized ver-
sion of the dS model. 

4. The Field Equations of the Generalized dS Model 

The ansatz introduced in the last Section for a double-velocity model as a gene-
ralization of the dS model can only be justified if the field quantities obtained sa-
tisfy Einstein’s field equations. For verification, we have to process the quantities 

' '

'

1,0,0, , , cot ,0,

1  ' ,0,0,

R R R R
m m

R
m E E

a a a aB i v C i v
r r r r r

aU v i v
r

α α α ϑ α

α α

   = − = −   
   
 = − − 
 R

.      (3.1) 

With these quantities and the unit vectors 
{ } { } { } { }' ' ' '1,0,0,0 , 0,1,0,0 , 0,0,1,0 , 0,0,0 1  ,m m m mm b c u= = = =     (3.2) 

the Riccitensor and Ricci scalar take the form 

1

2 2

3 3

1 2 3

' '
' ' || ' ' ' '

' '
' || ' ' ' ' ' || ' '

' '
' || ' ' ' ' ' || ' '

' ' ' ' ' '
|| ' ' || ' ' || '

' ' '

1 ' ' '
2

s s
m n s s m n

s s
n m n m n m s s

s s
n m n m n m s s

s s s s s s
s s s s s

R U U U h

B B B b b B B B

C C C c c C C C

R U U U B B B C C

 = − +  
   − + − +      
   − + − +      
   − = + + + + +      

'sC 
  

.       (3.3) 
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Therein we have used the graded derivatives [11] [12] 

1

2 3

'|| ' '| '

' ' '
' || ' '| ' ' ' ' '|| ' '| ' ' ' ' ' ' '

' '

' , '

n m n m

s s s
n m n m m n s n m n m m n s m n s

U U

B B U B C C U C B C

=

= − = − −
      (3.4) 

which allow a clear representation of the field equations. The subequations of 
(3.3) describe the curvatures in the radial and lateral slices of the dS space, as 
viewed by the comoving observers. Therefore we solve the subequations of Eins-
tein’s field equations separately 

( )
2 2

3 3

' '
| ' ' 2

' '
' || ' ' ' ' ' || ' '2 2

' '
'|| ' ' ' ' ' ' ' || ' '2 2

1' ' '

1 2,

1 3,

s s
s s

s s
m n m n m n s s

s s
m n m n m n m n s s

U U U

B B B h B B B

C C C h b b C C C

+ = −

+ = − + = −

+ = − + + = −

R

R R

R R

.       (3.5) 

With this we get for the Ricci-quantities 

' ' ' ' ' ' ' ' ' '2 2 2

3 12 3, ,m n m n m n m n m nR g R G g Tκ= = = − = −
R R R

.         (3.6) 

From the last relation we get for the components of the stress-energy-momentum 
tensor and the equation of state 

0 02 2

3 3, , 0p pκ κµ µ= − = + =
R R

.                 (3.7) 

The values obtained are equal to those of the static dS cosmos. We note that 
matter transport cannot be observed in the comoving system. The cause is the 
form of the equation of state. For all models with 0 0p µ+ =  one has 1'4' 0T = , 
as we can easily convince ourselves with the transformation ' ' ' '

m n
m n m n mnT L T= . 

5. More about the Velocities 

While the velocity Rv r= R  is geometrically determined, we do not so far have 
knowledge of the second part of the recession velocity. We only know the 
change from Ev  which we have determined as a general feature of the model. 
We have succeeded in establishing plausible field quantities which fulfill Eins-
tein’s field equations and which lead to the familiar expressions for the pressure 
and the density of matter in the cosmos. 

Now we will examine whether an analytic expression can be found which is 
compatible with all relations of Section 4 and provides a deeper insight into the 
geometric structures of the model. 

We put 

( ), ' ' '
'E
rv T= =R R
R

.                       (4.1) 

'R  is a new time-dependent parameter and we notice the analogy with the de-
finition Rv r= R . Thus, we can assume that Ev  has a similar geometrical 
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meaning in a fictive cosmos, which is preliminary to the dS cosmos, where Rv  
is well defined. 

For the recession velocity of the galaxies we then have 

2
'

1
'

r r

v
r

−
=

−

R R

R R

                            (4.2) 

according to (2.2). For ' =R R  the recession velocity is 0v = . For ' →∞R  is 
0Ev =  and v  takes its maximum value, namely the dS velocity. At the cosmic 

horizon, the recession velocity asymptotically reaches the velocity of light re-
gardless of the value of Ev . Thus, the ranges of 'R  and r are 

' , 0 r≤ ≤ ∞ ≤ ≤R R R                        (4.3) 

and 'R  is a parameter with which one can manipulate the recession velocity 
v . If this technique can be applied to a model that is closer to Nature, the cal-
culable redshift values may be better adapted to the values observed. In Figure 3, 
the recession velocity is plotted in the range 0 r≤ ≤ R  for different 'R . It can 
be seen that a deviation from the linear velocity law ( ' = ∞R ) by an appropriate 
choice of 'R  is possible. 

Since v  depends on time, as shown in (4.1) and (4.2), the generalized dS 
model allows accelerations of the drifting systems. 
 

 
Figure 3. Recession velocity. 

 
Now all we have to do is to show that the approach (4.1) meets the require-

ments made in the previous sections. In particular, we have to check if 

{ }| '
11,0,0,0E m E Ev a v
r

=                       (4.4) 
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is well-matched with Equation (2.6) and (4.1). Following (4.1) we write 

| ' | ' | '
1 1 '

'E m E m mv v r
r

 = − 
 

R
R

.                     (4.5) 

Since (2.14) has already been calculated, we only need to know more about the 
quantity 

' | '
1' '

'm m=R R
R

                          (4.6) 

which we obtain by equating (4.4) with (4.5). After some calculation and re-
peated use of (2.3)-(2.5) we get 

'
1 1' ,0,0,

'm R Rva i va
r

α α = − − 
 

R
R

. 

We recognize that the 4th component of this quantity has already arisen as 

4''U . Applying again the Lorentz relations leads to 

{ } { }' ''' , 0,0, , ' 0,0,0,1
' 'm E E E m
i i i ii vα α    = − − = −   

   
R R

R R R R
.   (4.7) 

The second relation (4.7) contains the already known expression  

4""U i= − R  which results from the temporal change of the scale factor K . 
Therefore the ansatz (4.1) is satisfactory and thus (4.4) can be written as 

{ }
2

| ' 21,0,0,0 , 1
' '

E
E m E

a rv a= = −
R R

,               (4.8) 

i.e., in the same way as in (2.14). The inhomogeneous transformation law of the 
Ricci-rotation coefficients can be simplified with the quantities (2.17) and (2.18), 
if one considers (4.1) 

{ } { }

{ } { }

{ } { }

' '

'

1 10,0,0,1 , ,0,0,
'

1 1,0,0, , 0,0,0,1
'

' ,0,0, 0,0,0,1
'

m R m E

m R m E

m E E E E

G i l i v i

G i v i l i

i iU i v

α α α α

α α α α

α α α

= = −

= =

 = − + 
 

R R

R R

R R

.         (4.9) 

One should note the analogy of the quantities G and l. 

6. Coordinate Transformations 

The model described above was carried out in the tetrad calculus. A resort to a 
coordinate system was only necessary when basic mathematical operations had 
to be performed. For this, the static dS coordinate system was sufficient. Cos-
mologists, however, are trying to find coordinate systems for both the comoving 
and the non-comoving frames of reference. We want to investigate whether 
coordinate systems exist for all states of motion and also transformations be-
tween them. The reader who is only interested in the general structure of the 
model can skip this section. 
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Coordinate systems have been known for the static and the fictitious comov-
ing systems since de Sitter and Lemaître. The question is, however, whether 
there is not only a frame of reference for the physical comoving system, but also 
a coordinate system. 

To get closer to the problem, let us start with the static dS system 
1 2 3 4 2 2

1 2 3 4, , sin , , 1 1R R R Re e r e r e a a rα ϑ α= = = = = = − R      (5.1) 

and the expanding one 
" " " "1 2 3 4

1" 2" 3" 4", , sin , 1,
"

re e r e r e
r

ϑ= = = = =K K ,           (5.2) 

where r is the non-comoving and "r  is the comoving radial coordinate and 
K  the scale factor. From (5.2) it can be seen that the coordinate time and the 
proper time of the drifting observers coincide ( " "t T= ). "T  is the cosmic time 
common to all drifting observers. 

The coordinate transformation between the two systems has been given in 
(2.9)2 and the associated Lorentz transformation in (1.11). Since the Lorentz 
transformation to the physical system is known as (2.1), we first transform the 
static system (5.1) into the physically comoving system while maintaining the 
static coordinates 

' '1 4 ' 1' 4

1 1 4 4
1 1 4 4

1' 4 ' 1' 4 '

, , ,

, , , .
R R R R

R R R R

e e i v e i va e i a

e a e i va e i v e

αα α α α α

α α α α αα

= = − = =

= = − = =
            (5.3) 

The Ricci-rotation coefficients for this system provide the values obtained in 
the previous Section. With the help of 

' '
' '

m mi
i i ie e= Λ                              (5.4) 

the system can be diagonalized. For the matrix of the coordinate transformation 
we get 

2 2 2

2 2

'
'

22 2 2

1,1
11

1

R

R R
i i
i i

R

v vi i
v

i vi v

α α α
α α

αα α

   −   
   

Λ = Λ =   
   
     −  

.        (5.5) 

Alternatively, one can start with the freely falling dS system 
' ' '' " "

" " " ' " ',
m m mm m i

i m i i i ie L e e e= = Λ .                     (5.6) 

With 

" '
' "

1 1

1 1,
1 1

R R
E E E E E E

R R

i i
i i

R R
E E E E E E

R R

v i v i v
v v

vi v i v

α α α αα α α αα α α α

α α α αα α α α
α α α α

   −   
   
   Λ = Λ =   
   
   − −    

KK K

K
 

 

 

2The primes on the indices of Section 2 are now to be replaced by double primes. 
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(5.7) 

one also arrives at the diagonalized system for the physical comoving observer: 
' '1 4 1' 4'
1' 4' 1' 4 '

, , ,R R

R R

ve e e e
v

α αα α
α α α α

= = = = .             (5.8) 

Herewith the line element takes the form 
2 2 2

2 2 2 2 2 2 2 2
2 2d d ' d sin d d '
R R

vs r r r tα α
ϑ ϑ ϕ

α α
= + + − .          (5.9) 

The two observer transformations (5.5) and (5.7) are related to the holonomic 
Lemaître transformation (1.9) by 

" " ' " "
' |,i i i i i

i i i i ixΛ = Λ Λ Λ = . 

It can be seen that there is no cosmic universal time for the comoving physical 
observer system. Rather, one has for the proper time of the observers 

d ' d '
R

T tα
α

=                         (5.10) 

in accordance with the general theory of relativity. 
However, the Ricci-rotation coefficients cannot be derived from the 4-bein 

system (5.8), as we have learned in the previous sections. The reason is the an-
holonomicity of the two coordinate transformations (5.5) and (5.7). One easily 
convinces oneself that 

[ ] [ ]
' ' ' ' ' '

| " | "| " | "0 , 0j j j j j j
i i i ii k i kx xΛ ≠ ⇒ Λ ≠ Λ ≠ ⇒ Λ ≠ .        (5.11) 

Thus, there exists no associated global coordinate mesh for the comoving ob-
server system, but only anholonomic coordinates. These are mathematical arti-
facts described in detail by Schouten [13]. 

If one proceeds in the usual way and elaborates with (5.8) the expression 
' ''' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' '[  '  | '] [  '  | '] [  '  | ']

t tss j s r j s r j
m n j n t j m t jn m r m r n

A e e g g e e g g e e= + −  

and if one then complements the object of anholonomity 

[ ]
'' '' '

' ' ' ' | '' '

si ks j j
m n j j k im n

e e eΛ = Λ Λ                    (5.12) 

one finally gains the Ricci-rotation coefficients 
' ' ' ' '

' ' ' ' ' ' ' ' ' '' s s s s s
m n m n m n m n n mA A= + Λ + Λ + Λ              (5.13) 

with the values known of Section 3. 
It is clear that the search for coordinate systems which accompany the families 

of observers is not necessary and often not practical. 

7. Conclusions 

We have proposed a model which we do not assume to be realized by Nature. 
However, it includes useful mathematical techniques which can be transferred to 
more sophisticated models. In particular, it is possible to reduce the recession 
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velocity of the galaxies compared to those of the “free fall” and thus to manipu-
late the calculated values for the redshift. This could allow a better adjustment to 
the observed values. 

In the next step, by dropping the relation const .=R , we want to examine a 
genuine expanding model with these methods. We hope to publish this else-
where. 
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