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Abstract 
The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra 
in the vicinity of the exciton-resonance frequency 1nA =  for CdS-type crystals 
have been theoretically and experimentally investigated with allowance for the 
mechanical exciton decay Γ . The results of the numerical calculations of 
the partial and interference contributions of the bulk and radiative surface 
spectral modes to the EPL in the geometry of additional s- and p-polarized 
waves emitted into vacuum are analyzed. It is shown that the contributions of 
purely longitudinal excitons and their interference with polaritons of the up-
per dispersion branch near the longitudinal frequency Lω  to the EPL are 
small (~10% - 30%); nevertheless, they must be taken into account to obtain 
quantitative agreement with experimental data. Specifically these contribu-
tions are responsible for the formation of an additional LA′  line (along with 
the fundamental TA  line) in the case of oblique incidence of radiation. 
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1. Introduction 

The polariton mechanism of luminescence plays an important role in the forma-
tion of low-temperature emission spectra of semiconductor crystals in the vicin-
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ity of exciton resonances. To date, many fundamental questions concerning the 
polariton luminescence (PL), which are related to the specific features of polari-
ton dispersion, conditions of radiation transmission through a boundary in the 
vicinity of resonance, and the character of spatial and energetic distribution of 
polaritons, have been understood [1]-[9]. A detailed study of the exciton energy 
structure of crystals shows that, along with the phenomena of exciton-polariton 
interaction (polariton effect) and spatial dispersion (dependence of the permit-
tivity tensor αβε  on the wave vector k ), the effects related to exciton decay 
may play an important role in the formation of low-temperature photolumines-
cence spectra. In particular, exciton decay may cause build-up of the emission of 
radiative surface modes (purely spatially decaying waves, propagating into crys-
tal bulk at 0Γ = ) and the interference luminescence of coherently emitting 
states of different dispersion branches with close ω and k  values. A PL theory 
was developed in [6] [9] for the case where dissipative exciton decay may violate 
the applicability criteria for the kinetic Boltzmann equation 

Re β βαk                            (1) 

This theory proved to be valid at an arbitrary relation between 2Re k  and 

2α  (where 2k  and 2α  are, respectively, the wave vector and the absorption 
coefficient for polaritons of upper dispersion branch 2). The contributions of the 
waves of lower polariton branch 1 and strongly damped wave 2 to the PL in the 
vicinity of longitudinal exciton frequency Lω  (branch 3) were successively cal-
culated and the experimental spectra of ZnP2, CdS, and СdTe crystals were ade-
quately analyzed based on this theory. However, the specific calculation and ex-
periment were performed for the simplest case of normal polariton emission 
from a crystal into vacuum, where the contribution of longitudinal excitons to 
PL is zero. At the same time, it has been known for a long time (see, e.g., [3] [4] 
[5]) that energy transfer can be implemented in crystals by purely longitudinal 
excitons in the presence of spatial dispersion (SD). These excitons manifest 
themselves in low-temperature photoluminescence spectra of CdS crystals only 
in the case of oblique emission [7] [8]. Nevertheless, their contributions to the 
EPL have not been quantitatively analyzed.  

In this study, the microscopic PL theory for CdS-type crystals with SD is ge-
neralized with allowance for the contributions of the emission of purely longitu-
dinal excitons in the vicinity of frequency Lω . The EPL is considered for the 
case where inequality (1) is violated simultaneously for the additional waves 

2β =  and 3β =  but remains valid for the polaritons of the lower dispersion 
branch 1β = . The developed EPL theory, in contrast to the conventional PL 
theory based on the use of polariton distribution function, allows one to take in-
to account the interference of coherently emitting states of transverse polaritons 
and longitudinal excitons in the presence of decay 0Γ ≠  (this is undoubtedly a 
new effect, which was not considered in [6] [7] [9] [10] [11]), i.e., go beyond the 
applicability limits of the kinetic equation for waves 2 and 3, which is also de-
termined, along with (1), by a more stringent condition: 
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( ) ( )Re , , 2,3β β β βα α β β′′ ′− =k k 
              (2) 

If inequality (2) is valid, one can neglect the interference contribution of co-
herently emitting polariton states of different dispersion branches. Below, using 
this theory, we analyzed the angular dependence of experimental EPL spectra of 
CdS crystals with hexagonal point symmetry for s- and p-polarized radiation. 

2. Theory  
2.1. Statement of the Problem  

Let us consider a dipole-active triplet exciton, which is characterized by the re-
sonance frequency 0ω , effective mass M, and longitudinal-transverse splitting 

0LT Lω ω ω= − , in a crystal with isotropic permittivity tensor [5] [6] [9] 

( ) ( ) ( ) ( )
, , 1

, 2
LT

b
o

k
k i kαβ αβ αβ

ω
ε ω ε ω δ ε δ

ω ω ω
 

= = + ⋅ 
− − Γ  

k       (3) 

where bε  is the background permittivity; ( )
2 2

2o o
kk
M

ω ω= +


   is the mechanical  

exciton energy; and ( ),kωΓ  is the exciton decay, which is determined by scat-
tering or capture processes. It is known that normal waves of two types can be 
excited in these crystals: transverse ( ( ) 2 2 2,k c kε ω ω= , where c is the speed of 
light in vacuum) and longitudinal ( ( ), 0kε ω = ). For most semiconductors 

0LTω ω  (for example, 2.0LTω =  meV and 0 2552.4ω =  meV for CdS) and 
in the vicinity of the resonance 0ω , which is determined by the condition 

o o LTω ω ω ω−                         (4) 

the dispersion equations of transverse polaritons ( 1,2β = ) and longitudinal ex-
citons ( 3β = ) can be presented in a simplified form: 

( )

( )
( )2

2

,
2 2

T b LT
o

o b

kk i
M ck

ωε ω
ω ω ω

ω ε

Γ
= = + − −

−
k

            (5) 

( ) ( )2
3 ,

,
2 2L L o LT

kk i
M

ω
ω ω ω ω ω ω

Γ
= = + − = +k

            (6) 

Note that polaritons 1 and 2 are described by formula (5) in the ranges 

0 bk k ε>  and 0 bk k ε< , respectively ( 0 0k cω= ). 
Figure 1 shows calculated exciton-polariton dispersion curves in the case of 

isolated exciton resonance with isotropic effective mass for the following Γ  
values: 1) 0.075, 2) 0.5, 3) 1.0, 4) 1.457, 5) 2.0, and 6) 5.0 meV. As can be seen in 
the figure, the dispersion curves of exciton-polariton modes are significantly 
transformed with an increase in decay Γ . This transformation is especially 
pronounced near the longitudinal frequency Lω  for modes 2, 2' and 3, 3', 
which can propagate only in the frequency range of θω ω>  and are purely de-
caying (i.e., radiative surface) when θω ω< . The characteristic frequency 

Lθω ω≥  is determined by the condition of total internal reflection for waves 
2,3β =   
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Figure 1. Calculated energy spectrum of normal waves depending on the exciton decay 
ħГ in a cubic crystal with SD for the following parameters of the lowest exciton 
resonance A (n = 1) in CdS: ħω0 = 2552.4 meV, ħωLT = 2.0 meV, М = 0.9 m0 (m0 is the 
free-electron mass), and εb = 9.4 [7]. The dashed lines correspond to noninteracting 
mechanical excitons and photons: 1, 1', 2, 2' are transverse polaritons and 3, 3' are 
longitudinal excitons. 

 

( )Re Re sinn c kβ β ω ω θ= =                  (7) 

Here, θ is the exit angle of radiation from the crystal into vacuum and nβ  is 
the refractive index of the crystal for wave β ( Re 1nβ <  at θω ω< ). We should 
note the following. First, the occurrence of an imaginary part of wave vector kβ  
at 0Γ ≠  (Figure 1, curves 2', 3') at θω ω>  indicates a certain spatial decay 
of propagating modes, which leads (in some frequency range θω ω− ∼ Γ ) to vi-
olation of inequalities (1) and (2). Second, in the frequency range θω ω< , 
where condition (1) is always violated for waves 2 and 3, a real additive to wave 
vector kβ  arises at finite Г (curves 2 and 3); this additive indicates that radiative 
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surface modes 2 and 3 cease to be purely decaying and are involved in the trans-
fer of exciton excitation energy in the crystal. The latter circumstances are un-
doubtedly of great importance for the formation of the EPL spectrum of crystals 
in the emission geometry of purely longitudinal excitons, whose analysis is the 
object of our study.  

Let us analyze the spectral intensity ( ) ( )0 ,Iλ ω Ω  of radiation with polarization 
λ, propagating in vacuum near the crystal surface along the unit vector ( ),θ ϕΩ  
(which lies in the yz plane, while the internal normal to the crystal boundary is 
directed along the z axis; ,s pλ = , where s x , p y ): 

( ) ( ) ( ) ( )0 0, ,I Iλ βλ
β

ω ω= ∑Ω Ω . 

Here, 1,2β =  at sλ =  and 1,2,3,23β =  at pλ = . The partial intensity 
( )0
23 pI  describes the interference contribution of waves 2 and 3 to the EPL. We 

assume that low-temperature luminescence is excited via stationary illumination 
of crystal by natural light in the intrinsic absorption spectral region ( gEω ≥ ), 
where free electrons and holes are generated. Being thermalized, these charge 
carriers are coupled (as a result of the Coulomb interaction) into excitons, 
which, in turn, are multiply scattered from phonons, impurities, and other lat-
tice defects to relax (in both energy and momentum) into the vicinity of reson-
ance ωo, where, in terms of the conventional PL theory, some nonequilibrium 
stationary polariton distribution function is settled. Near the frequency ωL, the 
densities of states  

( ) ( )( ) ( )
( ) ( )

2

3

1
2πo

k
V v

ββ
β

β

ω
ρ ω δ ω ω

ω
= − =∑ k

k
, 

where oV  is the crystal volume and ( ) d dv kβ βω ω=  is the polariton group veloci-
ty, are significantly different for the polaritons belonging to branch 1 and branches 

2,3β = . For example, at Lω ω> , ( ) ( ) ( )3 2 3
1 2 3 10LT b Mρ ω ρ ω ω ε ω≈ ≈ ×  for 

CdS ( 2
0 2M k Mω =  ). Then, naturally, the wave scattering within the branches 

2,3β =  can be disregarded in the vicinity of frequency Lω . For the same rea-
son, one can neglect the generation of waves 2 and 3 with small k  values 
(Figure 1(a)), which occurs due to the scattering by LO phonons from higher 
lying exciton states and due to their possible induction by multiple specular ref-
lection of waves 1 from the internal crystal boundary [5]. Thus, the distribution 
function f of polaritons is formed mainly due to their relaxation over the states 
of the transverse mode ( )11 ,kf zλ ω− .  

Since the successive determination of the function ( )1 ,kf zλ ω  is beyond the 
scope of our study, this function is considered as specified. Naturally, isotropiza-
tion of the distribution function over directions and polarization states occurs in 
a cubic crystal as a result of multiple scattering. Furthermore, when carrying out 
a calculation in a narrow frequency range near Lω , it is sufficient to restrict 
oneself to the simplest factorized form 

( ) ( ) ( )1 1, expkf z f z Lλ ω ω= − , 
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which contains some smooth frequency dependence ( )1f ω . Here, L is the ef-
fective distribution depth for the polaritons of branch 1, which is determined by 
the processes of multiple scattering of free carriers and excitons-polaritons. The 
coordinate dependence ( )1 ,kf zλ ω  on only z characterizes the problem as ho-
mogeneous along the surface plane. 

The partial contribution ( )0
1I λ  is determined from the formula 

( ) ( )
( )

( ) ( )
2

0
1 01 13, 0

2π
o

k
k

I T f zλ
λ λω ω= ⋅ = +Ω               (8) 

where  

( )
( )

( )
( )

0
0cos 1

cos
N

o o
N

I w
T t

n wI
λ λ
β ββ

β β β

θ
θ

= =  

is the energy transmittance of wave β with polarization λ, emerging from the 
crystal into vacuum, and ( )

ot
λ
β  is the corresponding amplitude transmittance. In 

expression (8), NI  is the normal component of the energy fluence to the sur-
face and n wβ β  is the coupling coefficient between the energy fluence and the 
squared modulus of the electric field amplitude for the normal wave β:  

22

3 3, 1 1 , 1, 2,3
8π 8π

M b
o

LT b

nc cw w β
β β β

ω ε
δ δ β

ω ε

  
 = = − + − + =     

. 

2.2. Theoretical Calculation  

The intensity of s-polarized EPL, 
( ) ( ) ( ) ( ) ( ) ( )1 2, , ,s s sI I Iο ο οω ω ω= +Ω Ω Ω  

does not contain the interference term, because condition (2) is assumed to be 
satisfied. The partial contribution ( )

1sI ο  is determined in the kinetic approxima-
tion from formula (8), where λ = s. To calculate ( )

2sI ο  at finite exciton decays, 
i.e., with allowance for the arbitrary relation between Rek2 and α2, we will use the 
Keldysh diagram technique and find the Green's function ( )2 , ;SG ω−+ ′k k  for 
polaritons of branch 2 with polarization λ at a specified distribution function for 
polaritons of branch 1, neglecting the scattering in branch 2. Figure 2 shows the 
corresponding diagram for the function ( ), ;Gβλ ω−+ ′k k  (here, β = 2). The solid 
lines present the exciton Green’s functions, renormalized with allowance for the 
exciton-photon and exciton-lattice interactions 

( ) ( ) ( )1 *
, 2 , ,TG i G Gω ω ωω ω ω

−
−− ++ −− = − + Γ = − k k k kk  

( ) ( )( )1 1 1( ) 2π ,TG z f zλω λ δ ω ω−+ = −k k k  

where ( ),ωΓ k  is the polariton decay, determined by the scattering or capture 
processes. The function ( )G Gω ω

−− ++
k k  is expanded in a sum of two pole terms:  

( )
2 2

0
2 2 2 2

1,2 1 2

2 1, 1 bk kMG G G
k k k k

β β
ω β ω β ω

β β

ε−− −− −−

=

−
= = −

− −∑k k k


. 
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Figure 2. Diagram for the Green’s function ( ), ;Gβλ ω−+ ′k k : 2β β′= =  at sλ =  and 

, 2,3β β′ =  at pλ = . 
 

When calculating ( )
2sI ο , the functions 1G ω

−−
k  and 1G ω

++
′k  are assigned to the 

upper and lower exciton lines in Figure 2. It is not necessary to take into ac-
count the diagram with external lines 1G ω

−−
k  and 1G ω

++
k  (i.e., to consider the 1→1 

scattering), because the function ( )1f zλk  is assumed to be specified. Using the 
diagram technique rules, we obtain  

( ) ( )
( )

( ) ( ) ( )
2 2 20 20

2 023

1, , ; 0 ,
8π 2π

S
S S

k
I t E zω ω⊥= ⋅ = +kΩ         (9a) 

( ) ( )

( ) ( ) ( ) ( ) ( )1 1
1 1

1 1

22

2

2
1 2 12

2

, ;

exp
z

S

z j S
j k b

E z

G
C ik z z e V G z

n
λω

λ ω
λ

ω

ω ε

⊥

−−
−+ = − ⋅ − −∑∑ ∑ kk
k

k

k

k k
 (9b) 

Here, ( ) ( ), ;SЕ zβ ω⊥k  is the amplitude of a light wave with frequency ω and 
transverse component ⊥k  (note that ⊥k  is a good quantum number), equal to 
the transverse component ok ⊥Ω  of the wave vector of this wave in vacuum; 
( )s
ot β  is the amplitude transmittance; 0n k kβ β=  is the refractive index of wave 

β; ( )1 1λke  is the polarization vector; ( )1 1
Se λk  is its projection onto the X axis; Zj is 

the coordinate of the jth scattering center; and C is a constant.  
Substituting (9b) into (9a), replacing summation over j with integration over 

jr  according to the rule di j
j

N→∑ ∫ r , and integrating over kz and 1k , we fi-

nally arrive at  

( ) ( )
( )

( )
( )

( )

2
202 1

2 3 1 22 22 21 2 1 2

2 cos
,

2 Im2π

s

b LТ
S

o z z

t f M c
I

k n L n n n

ο ω ε ω θ
ω

τ
−=

+ −

Ω ,        (9) 

where ( )1 22 2
2 2 sinzn n θ= − ; the values of ( )

02
st  and n2 are calculated with al-

lowance for the decay 211 2τΓ = .  
In the case of elastic scattering from static defects, 

( ) ( ) ( )( )1
1

2
1 2 12

21

1 2π 2
3

T
iN V δ ω ω

τ ω
= − ⋅ −∑ k

k
k k



,           (9c) 

where Ni is the defect concentration and ( )V q  is the Fourier transform of the 
perturbing potential. For an isotropic potential, ( ) ( )V V q≡q . Note that, at 

М LT bω ω ε , the k2(ω) value is small in comparison with k1(ω), and the term 
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( )1 2V −k k  in (9c) can be replaced with ( )1V k . 
In the case of p-polarized radiation, to calculate the partial contributions 
( ) ( )0 0
2 3,p pI I , and the interference component ( )0

23pI  to the total intensity ( )0
pI , using 

formula (8), 
( ) ( ) ( ) ( ) ( ) ( )0 0 0

23
1,2,3

, , ,p p pI I Iβ
β

ω θ ω θ ω θ
=

= +∑              (10) 

We will consider the Green’s functions ( )2 , ;pG ω−+ ′k k  (for the transverse po-
laritons of branch 2) and ( )3 , ;pG ω−+ ′k k  (for longitudinal excitons). The dia-
gram for these functions is shown in Figure 2, where , pλ λ′ =  and 

, 2,3β β ′ = . The solid line in the case of longitudinal exciton corresponds to the 
Green's function 

( ) ( )
13

3 2 2
3

2 1, 2 ,k k
MG i

k kω ω ω ω
−

−−  = − + Γ = −  −
k



        (11) 

where ( )3
kω  is determined from formula (6), and 3k  is a solution to the disper-

sion equation for longitudinal excitons: 
1 2

3 3 0 3,
2 L Mk n k n iω ω ω Γ  = = + −    

.            (12) 

Using the corresponding considerations and calculation technique for the s 
polarization, we arrive at 

( ) ( )
2

0
1

0

, , 2,3,
2 Im

p
p

z

F
I F

k n L
β

β β
β

ω θ β−= ⋅ =
+

            (13) 

( ) ( ) ( )
2 30

23 23 1
0 2 3

, 2Re ,p p
p

z z

F F
I F

ik n n L
ω θ

∗

∗ −

 ⋅
 = ⋅
 − − + 

           (14) 

where  

( )
( )2

3
1

2 cos1 ,
2π

b LT iM c f
Fβ

β

ε ω θ ω
τ

=


               (15) 

( )

( )
( )

02 03
2 32 2

32 1 2

, ,
p p

p p
z bz

t t
F F

nn n n ε
= =

−
 

and 23F  is obtained from Fβ  by replacing 1βτ  with ( )1 2
21 31τ τ⋅ . It was taken 

into account that the electric field strength and the exciton part of crystal pola-
rization for longitudinal excitons are related as follows: 3 34π bε= −P E . Expres-
sion (14) describes the interference contribution of the waves of branches 2 and 
3 to the intensity of external p-polarized radiation; this contribution is caused by 
scattering from the same polariton center of branch 1 into coherently emitting 
states 2 and 3 under conditions where inequality (2) is also violated, along with 
Equation (1). 

Now we have to calculate the amplitude transmittances ( )
0

pt β  of wave β into 
vacuum. To this end, we used, along with the boundary Maxwell conditions, 
Pekar additional boundary conditions with a “dead layer.” For the case where 
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p-polarized wave 2 falls on the crystal surface from the bulk, we find 

( ) ( )
( ) ( )

2 2
1 2 2 2

02 2
1

1 2

2
,

cos sin 1

p z

b oz bz
oz p p p

b z

n n n nt
n nnn n i n n

n

θ
ε ε

δ δ
ε

−
=

−  
+ − ⋅ + + ⋅ 

 





  (16) 

where  

( )1 2 2 2 1 1, ,p oz p p p z z p bn n n n n n n n ε= + = + ⋅ ⋅  

2 2 2
1 2 3 2

1 2 2 2
2 1 3 1

, sin .z z ox b
p x ox

z z ox b

n n n n n
n n n

n n n n n β
ε

θ
ε

+ −
= ⋅ = =

+ −
 

The transmittance ( )
01

pt  is obtained from ( )
02

pt  by the symmetric replacement 

1 2n n↔ . When a longitudinal wave falls on the crystal surface from the bulk, we 
determine the amplitude coefficient of conversion of longitudinal-exciton nor-
mal wave into external light as follows: 
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                                                              (17) 

3. Discussion of the Results of Numerical Calculation and  
Comparison with Experimental Data  

The partial ( ( ) ( )0
pIβ ω , ( )0

sIβ ) and integrated ( ( ) ( )0
sI ω , ( )0

pI ) luminescence spec-
tral intensities were numerically calculated using formulas (8 - 10) and (13 - 15) 
as basic ones. Auxiliary formulas of the (16), (17) type were applied to calculate 
the amplitude transmittances 0t βλ  and refractive indices nβ . The only variable 
parameter of the theory is the effective distribution depth L for lower branch 
polaritons. The Γ  value was assumed to be known from experiment. Numer-
ical calculations were performed with the following values of the main parame-
ters of exciton resonance 1nA =  for CdS crystal: 0 2.5524 eVω = , 

2.0 meVLTω = , 00.9exM m=  ( 0m  is the free-electron mass), background 
permittivity 9.4bε = , and “dead layer” thickness 70= Å . These values of pa-
rameters are in good agreement with the experimental results on exciton reflec-
tion of light and exciton luminescence at T = 2 K [4] [7]. 

Figure 3 shows the theoretical spectral dependences ( ) ( ) ( ) ( ) ( ) ( )0 0 0
2 3, ,p p pI a I b I c , 

and ( ) ( )0
23pI d , calculated with different values of the Γ and L parameters. The 

intensity and half-width of the curves ( ) ( )0
2 pI ω  and, correspondingly, ( ) ( )0

pI ω  
turned out to depend strongly on LΓ ⋅ . Similar parameters of the curves 

( ) ( )0
3 pI ω  and ( ) ( )0

23pI ω  at L > 1 μm are barely sensitive to variations in L, which 
is due to the relatively large absorption coefficient for wave 3 ( )3 1Lα ⋅  . 

Moreover, the half-width ∆3 of ( ) ( )0
3 pI ω  is practically completely determined 

by the Γ value. According to the numerical calculation, 3 2∆ ≈ Γ . Note that the 
contribution of ( )0

3 pI  to ( )0
pI  sharply decreases with an increase in Γ ; at the  
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Figure 3. Spectral dependences of the total (I) and partial (I2p, I3p) intensities 
and the interference contribution Ip23, calculated for the parameters of exciton 
resonance А(n = 1) in CdS at the exit angle θ = 800 and different values of the 
exciton decay, Г= 0.075 (1 - 3) and 0.15 (1' - 3') meV, and the distribution 
depth of branch-1 polaritons, L = 0.2 (1, 1'), 1.0 (2, 2'), and 2.0 (3, 3') μm. 

 
same time, ( )0

2 pI  increases and significantly broadens. As a result, at the same L 
value, a rise in Γ leads to a slight decrease in the maximum of the dependence 

( ) ( )0
pI ω  at the frequency θω  and its broadening. This is explained as a result 

of SD suppression for longitudinal waves by mechanical-exciton decay.  
The quantum theory presented in Section 2 was used to describe the experi 

mental EPL spectra of CdS crystals in “isotropic” emission geometries (s polari-
zation, when ( ),θ ϕΩ  lies in the хz plane and the optical axis XC  , and p 
polarization, when Y⊥ CΩ  ; here, the z axis is perpendicular to the emitting 
crystal surface). Spectra were recorded on a setup developed by Professor A.V. 
Sel’kin (we kindly acknowledge his support). The setup was based on a DFS-24 
spectrometer and operated in the photon-counting mode at a minimum spectral 
width of the slit (0.04 meV), under conditions providing maximum spectral res-
olution. EPL excitation was performed at a wavelength λ = 476.5 nm by an Ar+ 
laser beam focused on the crystal surface into a spot ~0.4 × 4 mm2 in size at a 
luminous flux power of 7 mW. 
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Figure 4(a) and Figure 4(c) demonstrate the general view of the luminescence 
profiles for the CdS crystal in the s-emission geometry at (a) 0θ =  and (c) 

80θ =  . The dashed line in Figure 4(a) presents the experimentally measured 
(from the 2 LO replica spectrum) occupancy function ( ) ( ) ( )1 1 1g fω ρ ω ω=  for 
the polariton states of branch 1; it was used to determine the distribution func-
tion ( )1f ω , which is also shown in Figure 4(a) by a dotted line. The theoretical 
EPL spectra in Figure 4(a') and Figure 4(c') (curves 0), calculated at 

0.075 meVΓ = , 0.8 mL = µ , and 70δ = Å , are in good agreement with expe-

riment (triangles). The partial contribution of ( )0
2SI  (dotted lines 2) plays an  

 

 
Figure 4. (a) (b) (c) Experimental and (а') (b'), (c') theoretical EPL spectra 
of CdS crystals (T =2 K) for the detection geometries corresponding to the 
(a) (а') (с) (c') s and (b) (b') p polarizations. The dashed line in panel shows 
a 2LO-replica spectrum of the occupancy function for polariton states of 
branch 1; this spectrum was used to calculate the distribution function f1 
(ω), which is shown by a dotted line. (0) Total intensity and (triangles) ex-
perimental data, (1 - 3) the contributions of the transverse polaritons 
(branches 1, 2) and longitudinal excitons (branch 3), and (23) the interfe-
rence contribution Iр23. 
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important role in the formation of total intensity ( )0
SI  in the frequency range 

Lω ω≥ .  

We should especially note the following. As can be seen in Figure 4(a') and 
Figure 4(c'), using renormalization of dashed curve 1 (describing the contribu-
tion ( )0

1SI  of lower branch polaritons), one can obtain agreement between this 
curve and experiment with a certain error; however, within this error, it is not 
correct to put a question about the exact value of contribution ( )0

2SI . Therefore, 
the good description of experimental results based on the kinetic theory in the 
studies devoted to the PL in the vicinity of longitudinal exciton frequency seems 
doubtful. 

Figure 4(c) shows an EPL profile for a CdS crystal in the p-polarized emission 
geometry at 80θ ≈  ; here, along with the fundamental maximum TA , one can 
see a small additional maximum LA′ , located at the short-wavelength side of 

Lω  (at the frequency 
80

2.5547 eV h
θ

ω
=

=


). Previously the occurrence of this 
maximum was explained by only the “deexcitation” of purely longitudinal exci-
tons. However, according to the results of numerical calculations presented in 
Figure 4(c'), the LA′  line is formed in a complicated way. The spectral depen-
dences of the total intensity ( )0

pI  (solid line 0) and the partial contributions 
( )0
1pI  (curve 1), ( )0

2 pI  (2), ( )0
3 pI  (3), and the interference component ( )0

23pI  (23) 
were calculated for the known CdS parameters [2] at the same Γ, L, and  values 
as the curves in Figure 4(a') and Figure 4(c'). The frequency range θω ω<  is 
noteworthy; here, within the kinetic approximation, longitudinal excitons (as 
well as transverse polaritons 2) cannot be transformed into external photons, i.e., 
yield luminescence into vacuum. According to the wave theory, which is consis-
tent with the experiment (compare curve 0 and triangles in Figure 4(c'), the ex-
citon decay induces emission of radiative surface modes and their interference. 
This, undoubtedly, is a new mechanism of EPL formation in the crystals having 
spatial dispersion. Strictly speaking, the frequencies θω  are somewhat different 
for waves 2 and 3. At 0Γ =  in the vicinity of Lω , the dispersion relations for 
waves 2 and 3 can be expressed accurate to the small parameter 1M b LTω ε ω   
using the formulas 

( ) ( )2
2 2
T

L LT bnω ω ω ω ε≈ + ⋅k ,                  (18) 

( ) ( )3 2
3L Mnω ω ω ω≈ + ⋅k .                    (19) 

Hence, (18) and (19) yield the following relations for the characteristic fre-
quencies ( )2

θω  and ( )3
θω : 

( )2 2sinL LT bθω ω θ ω ε≈ + ⋅ ,                  (20) 

( )3 sinL Mθω ω θ ω≈ + ⋅ .                    (21) 

In the case of ultimately large exit angles ( 85θ ≈  ), these relations yield the 
following expressions for the CdS parameters at T = 2 K: 

( )2
,max , 0.22 мэВL LT b LT bθω ω ω ε ω ε≈ + ≈ , 
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( )3 3
,max , 7 10 мэВ, 2.5544 эВL M M Lθω ω ω ω ω−≈ + ≅ × =  . 

As was shown by the experiment and numerical calculation (Figure 4(c')), the 

LA′  emission line is peaking specifically near the characteristic frequency of 
transverse polariton 2: ( )2

,max 2.5546 eVθω ≈ . Due to the influence of exciton de-
cay Γ, the real maximum of the frequency dependence ( )0

3 pI  shifts to shorter 
wavelengths with respect to the frequency Lω  and approaches the frequency 

( )2
θ θω ω≈ . Figure 4(c') shows also that the profile of the LA′  line cannot be ob-

tained using only the contribution ( )0
3 pI . It should be especially noted that, even 

for the practically minimal value 0.075 meVΓ =  for CdS crystals, the kinetic 
approximation cannot be used to describe the partial contributions ( )0

2 pI  and 
( )0
3 pI  in the vicinity of the emission line LA′ , because ( ),max 2.0Lθω ω− Γ ≈  and 

inequality (1) is not satisfied at θω ω=  for the longitudinal wave, whereas for 
the transverse mode θω  is a critical frequency, below which the 2k  value is 
purely imaginary at 0Γ =  for the given direction ( ),θ ϕΩ  in vacuum. 

Figure 5 shows a comparison of the theoretical (curves 0) and experimental  
 

 
Figure 5. Comparison of the theoretical (curves 0) and experimental 
(triangles) EPL spectra for the (а) (с) (е) s- and (b) (d) (f) p-polarized 
emission from CdS crystals at different exit angles: θ = 300, 450, and 600. 
The designations are the same as in Figure 4. 
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(triangles) spectra of CdS crystals and the calculated frequency dependences of 
the partial contributions (curves 1, 2, 3, 23) in the emission geometries corres-
ponding to the s ( ), ,a c e  and р ( ), ,b d f  polarizations at different values of 
the exit angle ( ): 30 ,a bθ  , ( )45 ,c d , and ( )60 ,e f . One can see that the rel-
ative contributions ( )0

1I λ  and ( )0
2I λ  to the luminescence depend weakly on θ; 

however, the contribution ( )0
3 pI  (curves 3) from normal wave 3 significantly in-

creases with a rise in θ and plays a key role in the formation of the LA′  line.  
The rise in the contribution ( )0

3 pI  with an increase in θ is directly related to 
the manifestation of SD in luminescence spectra. In the absence of SD, waves 3, 
as well as waves 1, cannot exist in the frequency range Lω ω> . At 0θ = , lon-
gitudinal waves 3 undergo total internal reflection and, therefore, the contribu-
tion of ( )0

3 pI  to ( )0
pI  is zero. This situation occurs also at 3 sinLn θ> , a fact ex-

plaining the sharp decrease in ( )0
3 pI  with an increase in frequency in the range 

θω ω> . It is noteworthy that the interference component ( )0
23pI  gives a small 

negative contribution to the total intensity ( )0
pI , and its absolute value decreases 

with an increase in θ, when modes 2-2' and 3-3' diverge in Figure 1. However, 
without the contribution of ( )0

23pI , it is difficult to obtain quantitatively a small 
minimum at ωL in the EPL spectrum that would be practically independent of θ. 
Let us analyze in more detail the blue shift of the LA′  line with respect to Lω  
that occurs with an increase in angle θ at м b LTω ε ω  and ( )Lθω ωΓ − . In 
this case, taking into account that 2 2 2sinzn nβ β θ= + , the dispersion relation for 
the states of branch 2 (near Lω ), emitting into vacuum, can be written as  

2

0

b LT
z bn

ε ω
ε

ω ω
′

≅ −
−

,                  (22) 

where  
2

20 sinsin 1LT LT LT
b b

ω ω θω ω θ ω
ε ε

 −′ = + ≈ + 
 

.      (23) 

Naturally, for the θ values at which 2 0zn < , wave 2 undergoes spatial decay 
even at 0Γ = . As follows from (22), this occurs in the frequency range Lω ω<  
at 0θ =  and, at 0θ ≠ , in the frequency range below θω , the formula for 
which can be derived from (22):  

2

2

sin
sinL LT

b
θ

θω ω ω
ε θ

 
= +  

− 
.                (24) 

This expression differs from (20) by only the replacement of bε  with 
2sinbε θ− . Thus, with an increase in θ, the bottom of the energy band of “light” 

transverse polaritons emitting into vacuum shifts upwards; i.e., the longitudinal 
transverse splitting LTω  somewhat increases (see (23)). This effect manifests 
itself mainly in the shift of the LA′  emission line with an increase in θ. For two 
exit angles, 1θ  and 2θ , formula (24) yields the relation  

( )
( )

2
21

2
2 1

sin 1

sin 1
bL

L b

θ

θ

ε θω ω
ω ω ε θ

−−
=

− −
. 
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Using this relation, we obtain a value of 3.2 for CdS ( 9.4bε = ) at 1 60θ =  , 

2 30θ =  , whereas Figure 5(b), (f )demonstrates a somewhat different value: 2.8. 
The cause of this small inconsistency is that the condition ( )LГ θω ω−  is 
not exactly satisfied in the case under consideration. 

4. Conclusions 

1) A theory of exciton-polariton luminescence of cubic crystals with spatial dis-
persion, when the applicability criteria of the kinetic Boltzmann equation for 
the geometry of longitudinal-exciton emission are violated, was developed. A 
new mechanism of EPL formation was proposed, which involves coherent 
scattering of polaritons from well-defined initial quantum states into emit-
ting (final) states of normal modes with a short lifetime, for which the wave 
vector is not a well-defined quantum number. 

2) The formation of EPL spectrum has a number of new specific features. Due 
to the transformation of the normal-wave spectrum with allowance for the 
real exciton decay, radiative surface modes are involved in the energy transfer 
through the crystal boundary, and the presence of SD leads to their interfe-
rence interaction. The contributions of ( )0

3 pI  and ( )0
23 pI  to ( )0

pI  sharply de-
crease with an increase in Γ , which can be explained by the SD suppres-
sion due to mechanical-exciton decay for longitudinal waves. At the same 
time, the contribution of ( )0

2 pI  increases and becomes significantly broa-
dened, as a result which an increase in Γ at the same L value leads to a weak 
decrease in the amplitude of the ( ) ( )0

pI ω  peak at θω  and its broadening. 
3) The contribution of purely longitudinal excitons to the EPL and their inter-

ference with polaritons of the upper dispersion branch are low (∼10−20%); 
nevertheless, they must be taken into account to obtain quantitative agree-
ment with experiment. 

4) The above-described method for analyzing EPL spectra makes it possible to 
determine the optical parameters of crystal (for example, the LTω  value 
proceeding from the frequency of the LA′  line). It can be used with small 
variations to study the inelastic scattering spectra of polaritons in the vicinity 
of longitudinal exciton frequency (taking into account the finite decay and 
SD). 
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