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Abstract 

We give a study result to analyze a rather different, semi-analytical numerical 
algorithms based on splitting-step methods with their applications to mathe-
matical finance. As certain subsistent numerical schemes may fail due to pro-
ducing negative values for financial variables which require non-negativity pre-
serving. These algorithms which we are analyzing preserve not only the 
non-negativity, but also the character of boundaries (natural, reflecting, ab-
sorbing, etc.). The derivatives of the CIR process and the Heston model are 
being extensively studied. Beyond plain vanilla European options, we crea-
tively apply our splitting-step methods to a path-dependent option valuation. 
We compare our algorithms to a class of numerical schemes based on Euler 
discretization which are prevalent currently. The comparisons are given with 
respect to both accuracy and computational time for the European call option 
under the CIR model whereas with respect to convergence rate for the 
path-dependent option under the CIR model and the European call option 
under the Heston model. 
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1. Introduction 

Stochastic differential equations (SDEs) are fundamental in mathematical 
finance. Particularly, they serve as models for describing the evolution of certain 
financial variables, such as the stock price, interest rates or volatility of an asset. 
Although there are extensive studies on SDEs, explicit solutions of SDEs are 
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rarely known or very difficult to obtain, so numerical approximations are relied 
on. Actually a wealth of numeric methods have been proposed and tested (see 
for example [1] [2] [3] [4]). In our work, we mainly dedicate to applying rather 
different numerical algorithms to evaluate financial derivatives with comparison to 
methods based on Euler discretization. We concentrate on the Cox-Ingersoll-Ross 
(CIR) model [5] and the Heston model [6] as they are two of the fundamental 
models in mathematical finance.  

1.1. Problem Statement and Motivation 

In some cases, the Itô-type SDEs of the form 

( ) ( )( ) ( )( ) ( ) ( ) 0d d d , 0X t f X t t X t W t X X Dσ= = = ∈        (1.1) 

are well-defined only with certain boundary conditions. For example, the 
Cox-Ingersoll-Ross (CIR) [5] model and the Heston model [6] which were pro-
posed to describe the short rate of interest and stock price dynamics respectively 
are well-defined in the domain [ )0,D = ∞ , where ( ) 0X t =  implies an ab-
sorbing or reflecting state. Precisely, the CIR process can be expressed in the 
form 

( ) ( )( ) ( ) ( )d d d VV t V t t V t W tκ θ σ= − −             (1.2) 

where ( )VW t  is a Wiener process and , ,κ θ σ  are positive constants. The 
Heston model is a two-factor model of the form: 

( ) ( ) ( ) ( ) ( )d d d SS t S t t V t S t W tµ= +              (1.3) 

( ) ( )( ) ( ) ( )d d d VV t V t t V t W tκ θ σ= − +            (1.4) 

where ( ) ( ),S VW t W t  are two correlated Wiener processes with 
( ) ( ) ( )d d d , 1,1S VW t W t tρ ρ= ∈ − , and , , ,µ κ θ σ  are positive parameters. The 

component S describes the evolution of a financial variable such as stock index 
or exchange rate, and V describes the stochastic variance of its returns. One can 
notice that the component V in the Heston model evolves according to the CIR 
process (1.2). 

First let’s mention that the SDE (1.2) for CIR process is not explicitly solva-
ble but its transition probability is known; it can be represented by a 
non-central chi-square density. Depending on the number of degrees of free-
dom 2: 4d κθ σ= , there are significant differences in the boundary behavior of 
CIR process. According to Feller’s classification [7], if 2d ≥ , the boundary 
( ) 0V t =  is unattainable and the strong solution is strictly positive; if 2d < , 

the boundary is attracting and attainable but strongly reflecting, i.e., each sample 
path will reflect instantaneously into the positive domain once it reaches 0 (see 
e.g. Karlin & Taylor [8]). The reflecting behavior in the latter case is particularly 
difficult to capture numerically. During our work, we only focus on the case that 
the boundary is attainable, i.e. 2d < . 

https://doi.org/10.4236/am.2018.93024


Y. Yuan 
 

 

DOI: 10.4236/am.2018.93024 315 Applied Mathematics 

 

Second, as the square-root term in CIR process avoids the possibility of nega-
tive values, Euler-Maruyama [1] and higher order Taylor-type methods [1] [2] 
cannot be applied in this case as they lead to negative values of ( )X t  in prac-
tice. The numerical methods which preserve non-negativity are preferred. Ac-
tually various numerical schemes have been devised to meet this requirement, 
among which the schemes based on Euler discretization normally gives high ef-
ficiency, but their strong convergence rate and discretization errors are difficult 
to establish. In contrast to the Euler-type methods giving strong convergence of  

order 1
2

ε− , Moro and Schurz [9] provide the splitting-step methods of strong  

convergence at least of order 1. Although they are more costly with respect to 
computational time, they give higher accuracy and convergence rate. With this 
motivation, we would like to evaluate some important financial instruments us-
ing splitting-step methods with comparison to Euler-type numerical schemes. 
We apply them to option pricing including a path-dependent option valuation 
comparing both accuracy and computational cost. 

Third, exact simulation methods exist for both the CIR process (see Glasser-
man [10]) and the Heston model (see Broadie and Kaya [11] [12]). The draw-
back of these exact simulation methods is that they are very time-consuming. 
They are competitive when one just simulates the process at one time (or few 
times), for example to price a European option with a Monte-Carlo algorithm. 
On the contrary, they are too slow when one has to simulate the process along a 
time-grid, for example to compute a path-dependent European option. Thus, the 
splitting-step methods may have advantage on pricing path-dependent options 
as they are more efficient. 

1.2. Review of Research Status 

For the CIR process, a number of numerical schemes based on implicit 
time-stepping integrators have been devised for the case of unattainable boun-
dary condition, see for example Alfonsi [13], Kahl and Schurz [14] and Dereich 
et al., 2012 [15]. There also are some splitting methods that serve for both 
boundary conditions without any restriction of parameters, such as Alfonsi [16], 
Moro and Schurz [9]. The latter paper gives a splitting-step method which high-
ly relied on the knowledge of explicit solution of SDEs. This method is what we 
mainly use throughout our project. 

Other direct approaches that can be applied to both attainable and unattaina-
ble zero boundary cases are based on modification of Euler-Maruyama approx-
imations. See for example Deelstra and Delbaen [17], Bossy and Diop [18], Ber-
kaoui, Bossy and Diop [19], Higham and Mao [20], Lord et al., 2008 [21]. These 
methods all are proved to converge to the exact solution as the time step tends to 
0, but the strong convergence rate and discretization errors are difficult to estab-
lish. The full truncation method in Lord et al., 2008 [21] has been shown in 
practice to be the leading method in this class. 
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The exact simulation method for CIR model exists, see Glasserman [10], but it 
requires more computational time than discretization schemes (up to a factor 
10). This was analyzed in Alfonsi [13]. For the Heston model, the exact simula-
tion scheme (see Broadie and Kaya [11] [12]) has the same drawback of highly 
time-consuming and were analyzed in Broadie and Kaya [11] [12] and Lord et 
al., 2008 [21]. After comparing to various numerical schemes, Kahl and Jäckel 
[22] conclude that combining the balanced Milstein method (BMM) for the va-
riance process with their bespoke IJK method for the logarithm of the stock 
price gives the best results with respect to strong convergence measure. The 
BMM method actually preserves positivity for the variance process if 24κθ σ> : 
But this restriction is rarely satisfied in practice, and one typically finds that the 
sampling scheme for V produces negative values with substantial probability. 

Anderson [23] considered two new discretization schemes: the truncated 
Gaussian scheme (TG) and the quadratic-exponential scheme (QE) with addi-
tional martingale-corrected versions labeled by “TG-M” and “QE-M” respec-
tively. Both TG and QE schemes were attested to outperform the full truncation 
method proposed by Lord et al., 2008 [21] with respect to biases and only cost 
marginally more computational time than the Euler scheme. The TG scheme is 
more natural to use than the QE scheme in multi-asset applications that involve 
several correlated variance processes, but generally performs somewhat worse 
than QE at practically relevant time steps. Thus they concluded that the QE 
scheme should be the default choice of the schemes considered due to its sim-
plicity and strong performance; martingale correction (the QE-M scheme) is op-
tional. 

Further, for pricing financial derivatives under Heston model, closed form 
semi-analytical formulae for plain vanilla option prices have been derived in [6]. 
However, these formulae require the evaluation of logarithms with complex ar-
guments during the involved inverse Fourier integration step. Carr & Madan [24] 
pioneered the use of the fast Fourier transform (FFT) technique by mapping the 
Fourier transform directly to option prices via the characteristic function. Lewis 
[25] considered the same type of approach, except that there the transform was 
taken with respect to the log-spot price. An important step in Lewis [25] was 
made by considering the resulting integral as a contour integral in the complex 
plane. Lee [26] generalizes Carr & Madan [24] and unifies it with extensions of 
some relevant elements and proved an error analysis for these FFT methods. 
Kahl & Jächel [27] propose a new approach which enables the use of Heston’s 
analytics for practically all levels of parameters and even maturities of many 
decades since most implementations of Heston’s formulae are not robust for 
moderate to long dated maturities or strong mean reversion. Lord & Kahl [28] 
present the optimal contour of the Fourier integral, taking into account numeri-
cal issues such as cancellation and explosion of the characteristic function. Fang 
& Oosterlee [29] proposed the COS method which is based on the Fourier and 
Fourier-cosine expansion. 
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1.3. Summary of the Paper 

In the remaining paper, we introduce the general structure and properties of 
splitting-step algorithm proposed by Moro and Shurtz in [9] in Section 2, in-
cluding an efficient sample manner for generating a non-central chi-square dis-
tribution random number. 

In Section 3, we present numerical results of applications to CIR model, eva-
luating a European plain vanilla call option and a path-dependent option with 
comparisons to the methods based on Euler discretization. The comparisons are 
with respect to both accuracy and computational time. All of our numerical re-
sults are generated on a MacBook Pro with an Intel Core i7 2.3 GHz processor, 
16 GB 1600 MHz DDR3 memory, using Xcode 6.4 and R 3.1.0 in a Mac OS X 
Yosemite environment. 

In Section 4 we study the option valuation under the Heston model. The re-
sults show that the splitting-step method gives the best convergence rate for 
pricing a European plain vanilla call option among the five algorithms utilized in 
our project. 

Finally we conclude and point out the future work in Section 5. 

2. General Structure of Splitting-Step Algorithms 

2.1. Construction of the Algorithms 

The splitting-step algorithm [9] has general structure as followed. Suppose that 
the more general equation to be integrated is of the form 

( ) ( )( ) ( )( ) ( )( ) ( )d , , d , d ,X t X t t X t t t X t t W tα β σ = + +        (2.1) 

where ( )W t  is a standard Wiener process? Then decompose the above equa-
tion into two subsystems 

( ) ( )( ) ( )( ) ( )1 1 1d , d , d ,X t X t t t X t t W tβ σ= +            (2.2) 

( ) ( )( )2 2d , dX t X t t tα=                      (2.3) 

where it’s required that we know the exact strong solution for ( )1X t  or the 
conditional probability ( ) ( )1 1| 0P X t X   . Afterwards, approximate the solu-
tion of (2.1) along the time interval [ ],t t∆  using the following two-step algo-
rithm for each t∆ . 
 Step 1: Knowing the value tX , taking it as an initial data of (2.2), i.e. 

( )1tX X t= , we obtain an intermediate value ( )1tX X t t= + ∆

 through the ex-
act integration of (2.2), or alternatively, through the conditional transition 
probability ( ) ( )1 1|P X t t X t+ ∆   . 
 Step 2: Using Xt obtained in step 1 as the initial condition for (2.3), i.e. 

( )2tX X t= , integrate (2.3) by any converging deterministic numerical algo-
rithm to get ( )2X t t+ ∆  (at least of deterministic order 1). Then  

( )2 .t tX X t t+∆ = + ∆  
Easily speaking, the procedure is as follow: 
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1), Solve Equation (2.2) exactly for ( ) ( )( )1 ,X t t t X t+ ∆ = Φ ; 

2), Approximate numerically the equation (2.3) 
         For ( )2X t t+ ∆  with initial condition 

( )2 1X X t t= + ∆ , then 

( ) ( ) ( )( )2 1 1 ,X t t X t t X t t t tα+ ∆ = + ∆ + + ∆ ∆ +  

3) Take ( ) ( )2X t t X t t+ ∆ = + ∆ . Thus 

( ) ( )( ) ( )( )( ), , ,X t t t t X t t t X t t tα+ ∆ = Φ + ∆ + Φ + ∆ ∆ +  

 
We adapt the example in [9] to see how to obtain ( )1X t  through the condi-

tional transition probability ( ) ( )1 1| 0P X t X   . Suppose that ( )1, 0X tβ = , 
( )1 1,X t Xσ = , then the conditional probability distribution is given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( )
( )( )

1 1

1

1
22 01

1 1 1 1 1
1

4 0

1

02 4| 0 0 e

                                e

X t X
t

X
t

X
P X t X I X t X

t X t t

X tδ

− +  

−

   =           

+

 

where ( )xδ  is the Dirac delta function and I is the modified Bessel function of 
the first kind with index ν which is given by 

( ) ( )

2

0

1 , 0
! 1 2

n

n

xI x x
n n

ν

ν ν

+∞

=

 = > + +  
∑  

with gamma function ( ) 1
0

: e d , 0t xt x x t
∞ − −Γ = >∫  specially ( ) ( )1 !n nΓ = −  for 

0,1,2,n =  . Then we can sample the conditional probability distribution func-
tion using the rejection or inverse methods but it’s computational expensive. 
There is a more simple way to obtain ( )1X t . Noticing that the variable  

( ) ( )1
4Z t X t
t

=  follows a non-central χ2-distribution, that is 

[ ] ( ) ( ) ( )2
2

2
4

0
1

2 e
| e

! j

j t

j
P Z Z P Z Z

j

λ
λ

χ

λ
δ

−∞ −

=

= +∑  

where 0
4 Z
t

λ =  and ( )2
2 j

P x
χ

 is χ2-pdf with 2j degrees of freedom. Then 

( ) 2
1 2

1

0 if 0,
1

if 0,2
K

i
i

K
X t

z Kk
=

=
=  ≠
∑

 

where 2k
t

=  and K is chosen from a Poisson distribution with mean 2λ  and  

iz  are independent Gaussian random numbers with zero mean and unit va-
riance. 

Generally, a non-central chi-square distribution random variable ( )2
dχ λ′  

with d degree of freedom and non-centrality parameter λ whose probability den-
sity function is given by 
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( ) ( )
( ) ( )

( ) ( )
2 42

2
2 2

e; ,
2

dx

d d
xP x p x d I x

λ

χ λ λ λ
λ

−− +

−
  ′ = = =     

     (2.4) 

see Johnson et al., 1994 [30]. This distribution is properly defined for d positive, 
and was extended to the case 0d =  by Siegel [31], afterwards was extended to 
the case for 2, 4,d = − −   by Moro and Schurz [9]. They used the fact that the 
distribution of (0.1) can be expressed as a mixture of central χ2 variables with 
Poisson weights, then it can be sample as follow: Choose K from a Poisson dis-
tribution with mean = 2, then 

( )2 2
2d d Kχ λ χ +′ =  

And 

( )2
2

2

0 if 2 0
0, 2, 4,

if 2 0d
d K

d K
d

d K
χ λ

χ +

+ ≤′ = = − − ′ + >


 

where 2
2d Kχ +  can be sampled using any standard random number generator of 

the 2
dχ  distribution. This sampling is used specially when λ  is small. For the 

case of large λ , other approximations (see e.g. Johnson et al., 1994 [30]) might 
be taken into account for improving the speed of the splitting-step algorithms. 

2.2. Strong and Weak Convergence of Splitting-Step Methods 

Let [ ]( ), 0,i j dC T×  denote the vector space of continuous functions 
( ),f f x t=  which are i times continuously differentiable with respect to the 

space 
Coordinate kx ∈ , ( )1,2, ,k d=   and j times continuously differentiable 

with respect to the time coordinate [ ]0,t T∈ . Let 

0 1 10 n n Nt t t t t T+< < < < < < < =   

be any random partition of the given time interval [ ]0,T  with sufficiently small 
maximum step size 1,2, , 1max 1i N i it t= −∆ = − ≤



. Then the time discretized ap-
proximation X∆

  of a continuous-time process X, is said to be of general strong 
order of convergence γ to X at time T if there exists a positive constant C, which 
does not depend on ∆, and a 0 0δ >  such that the following strong error ( )ε ∆  
satisfies 

( ) ( ) ( )( )E X T X T C γε ∆∆ = − ≤ ∆  

for each ( )00,δ∆∈ . 
Along with the strong convergence, the weak convergence can be defined. A 

discrete-time approximation Y∆  is said to converge with weak order 0β >  to 
X at time T as 0∆→  if for each smooth function g of polynomial growth there 
exists a constant gC , which does not depend on ∆ and [ ]0 0,1∆ ∈  such that the 
following weak error ( )∆  satisfies the estimate 

( ) ( )( ) ( )( )g g gE X T E Y T C β
∆∆ = − ≤ ∆  

for each ( )00,∆∈ ∆ . 
The splitting-step algorithm has been shown that has strong and weak order 
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1.0 of convergence under certain assumption of the coefficient functions in [9]. 
We quote the convergence theorem here: 

Recall that the original SDE is 

( ) ( )( ) ( )( ) ( )( ) ( )d , , d , d .X t X t t X t t t X t t W tα β σ = + +       (2.5) 

We refer to the splitting 

( ) ( )( ) ( )( ) ( )1d , d , dX t X t t t X t t W tβ σ= +             (2.6) 

( ) ( )( )2d , dX t X t t tα=                      (2.7) 

Theorem Assume that the coefficient functions [ ]( )2,1, 0,dC Tα β ∈ ×  and 
[ ]( )3,2 0,dC Tσ ∈ ×  with exclusively uniformly bounded derivatives are such 

that 

( ) ( )( ) ( )( ) ( )( )2 2 22

0
sup , , ,

t T
E X t X t t X t t X t tα β σ

≤ ≤

 + + + < +∞  
 

for a fixed finite, nonrandom terminal time 0T > . Then the splitting-step algo-
rithm with step 1 and 2 (see section §2.1) has (global) strong and weak order 1.0 
of convergence on the interval [ ]0,T  (in the worst case). 

The proof and a general theorem on L2-convergence based on varia-
tion-of-constants formula (VOP) see Moro and Schurz [9]. We check the weak 
convergence with numerical experiment by taking g the identity function in sec-
tion 3, where we present numerical studies of various strategies for integrating 
SDEs. 

3. Numerical Studies with the CIR Model 

3.1. CIR Model and Its Properties 

The famous Cox-Ingersoll-Ross (CIR) model was introduced in 1985 by John C. 
Cox, Jonathan E. Ingersoll and Stephen A. Ross in [5] as an extension of the Va-
sicek model. It serves to describe the evolution of interest rates. This model spe-
cifies that the interest rate dynamics follows the stochastic differential equation, 
which is also called CIR Process: 

( ) ( )( ) ( ) ( )d d d ,V t V t t V t W t tκ θ σ += − − + ∀ ∈        (3.1) 

with k, θ and σ strictly positive parameters and ( )W t  a Wiener process. The 
parameter κ determines the speed of adjustment, θ is the long-run mean and σ is 
the so-called volatility to volatility. The drift factor, ( )( )V tκ θ −  is exactly the 
same as in the Vasicek model. It ensures mean reversion of the interest rate to-
wards the long-term value θ, with speed of adjustment governed by the strictly 
positive parameter k. According to Feller’s boundary criteria, see Feller [32], dif-
ferent k, θ and σ values may produce distinct behavior at the boundary 
( ) 0V t =  

• If 2 2κθ σ≥ , the upward drift is sufficiently large to make the boundary 
unattainable, i.e., the solution is always positive ( ) 0V t >  if 0 0.V >  

• If 2 2κθ σ< , there are infinite many values of 0t >  for which ( ) 0V t = . 
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The boundary becomes attainable, but it is strongly reflecting. That is, when 
a sample path reaches 0, then it returns immediately to the positive domain 
in a reflecting manner. 

Since for all positive values of k and θ, the standard deviation factor ( )V tσ  
rejects the possibility of negative interest rates, integration strategies must pre-
serve non-negativity. Otherwise, it not only lacks any possible interpretation in 
the context of finance but also could induce severe errors in option valuation. 

3.2. Simulation Schemes for the CIR model 

We now turn to the simulation of CIR model (12). The exact simulation method 
for CIR model exists, see Glasserman [10], but it’s very time-consuming. A sim-
ple Euler discretization of the CIR process may produce negative values of ( )V t . 
Practitioners often choose either a absorption or reflection fix whenever the 
process attains a negative value. That is to say, they deal with it by either setting 
( ) 0V t =  or setting ( ) ( )V t V t= −  whenever ( ) 0V t <  (see e.g. [33]). Other 

direct approaches base on forced Euler-Maruyama approximations by slight 
modification of the model are also prevalent, see for example Higham and Mao 
[20], Deelstra and Delbaen [17], Lord et al., 2008 [21], which the full truncation 
method in Lord et al., 2008 [21] in practice has been proved to be the leading 
method of this class. Apart from Euler-type schemes, the splitting-step methods 
we introduced in the foregoing section can be applied to CIR model without any 
modification of the SDE. Moreover, the non-negativity is preserved during all 
the time interval. 

3.2.1. Numerical Schemes Based on Euler Discretization 
Here we outline the numerical schemes based on Euler discretization which we 
mentioned above. Let 

0 1 10 n n Nt t t t t T+< < < < < < < =   

be any random partition of the given time interval [ ]0,T . 
• Higham and Mao [20] considered an Euler discretization of the CIR model 

with a novel fix, for which they prove strong convergence. Their scheme 
deals with the squart-root term in (12) by taking absolute value of the inside 
component, i.e. 

( ) ( ) ( )( ) ( )1 ,n n n n nV t V t t V t V t Wκ θ σ+ = − ∆ − + ∆        (3.2) 

( ) ( )0 0 ,V t V=                         (3.3) 

where ( ) ( )1n n nW W t W t+∆ = − . 
Although it can be applied to the simulation, it leads to negative values of 
( )V t  in practice as we can see from Figure 1 

• In Lord et al., 2008 [21], when they referred the method Higham and Mao, 
they had one more step which was taking the absolute value of the right side 
of (3.2), we call this method Higham and Mao complemented, which is as 
follow 
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Figure 1. Trajectories of CIR model with 0 1, 1, 1, 1, 2V T κ θ σ= = = = = . The split-
ting-step algorithm preserves non-negativity for positive initial data while Higham-Mao 
produces negative values occasionally. 

 

( ) ( ) ( )( ) ( )1 ,n n n n nV t V t t V t V t Wκ θ σ+ = − ∆ − + ∆               (3.4) 

( ) ( )1 1 ,n nV t V t+ +=                          (3.5) 

( ) ( )0 0 .V t V=                           (3.6) 

• Deelstra and Delbaen [17] proposed an Euler-type scheme by taking positive 
part of the component inside the squared-root, this scheme is called partial 
truncation in Lord et al., 2008 [21] and has the form as follow 

( ) ( ) ( )( ) ( )( )1n n n n nV t V t t V t V t Wκ θ σ
+

+ = − ∆ − + ∆            (3.7) 

( ) ( )( )1 1n nV t V t
+

+ +=                      (3.8) 

( ) ( )0 0V t V=                       (3.9) 

• Full truncation was devised by Lord, Koekkoek & Van Dijk in [21] which is 
the leading method of these classes. The difference between full truncation 
and partial truncation is the treatment of the drift term, where the full trun-
cation method has one more x and can be expressed as follow 

( ) ( ) ( )( ) ( )( )1n n n n nV t V t t V t V t Wκ θ σ
++

+ = − ∆ − + ∆           (3.10) 

( ) ( )( )1 1n nV t V t
+

+ +=                       (3.11) 

( ) ( )0 0V t V=                         (3.12) 

We refer the above four numerical schemes as Higham and Mao, Higham and 
Mao complemented, partial truncation and full truncation respectively. 

3.2.2. Splitting-Step Algorithms Applied to CIR Process 
According to the general structure of splitting-step algorithm in Section 2, we 
split the SDE (3.1) into two equations as follows. 
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( ) ( ) ( )1 1d d dV t t V t W tκθ σ= +                (3.13) 

( ) ( )2 2d dV t V t tκ= −                      (3.14) 

We note that the process defined by (3.13) is a κθ-dimensional squared Bessel  

process (BESQ) with index of the process = 2

2 1κθν
σ

= −  (see Makarov and  

Glew [34]). The boundary ( )1 0V t =  is entrance if 0ν ≥ , regular if 1 0ν− < < , 
or exit if 1ν ≤ − . For the regular diffusion on ( )0,∞  the transition probability 
density function (PDF) is given by 

( ) ( )( ) ( )
( )

( ) ( )( ) ( ) ( )2
1 122

1 11
1 1 2 2

1

4e|
2

V t t V t t V t t V tV t t
P V t t V t I

V t t t

ν
σ

νσ σ

− +∆ + ∆  + ∆ + ∆  + ∆ =     ∆   
(3.15) 

in the case of a regular boundary, where Iν  is the modified Bessel function of 
the first kind with index ν. Then we notice that the transition density 

( ) ( )1 1|P V t t V t+ ∆    can be written in terms of a non-central 2χ  distribution. 
Recalling the probability density function (PDF) of a non-central chi-square dis-
tribution random variable with d degree of freedom and non-centrality parame-
ter λ: 

( ) ( )
( ) ( )

( ) ( )
2 42

2
2 2

e; , , 0
2

dx

d d
xP x p x d I x x

λ

χ λ λ λ
λ

−− +

−
  ′ = = = >    

 

Comparing the equation above and (3.15), we have 

( ) ( )( ) ( ) ( )1 1
1 1 2 2 2 2

4 44 4| ; , ,
V t t V t

P V t t V t p
t t t

κθ
σ σ σ σ

+ ∆ 
+ ∆ =  

∆ ∆ ∆ 
    (3.16) 

as 1
2
dν = − . The Equation (3.16) shows that the random process 

( )1
2

4V t t
tσ

+ ∆

∆
 

can be represented by a non-central chi-square distribution with 2

4d κθ
σ

=  de-

gree of freedom and non-centrality parameter 
( )1

2

4V t
t

λ
σ

=
∆

. Hence we have 

( ) ( )
2

2
1 4 d

tV t t σ χ λ∆ ′+ ∆ =                    (3.17) 

where 

( )1
2 2

4 4,
V t

d
t

κθλ
σ σ

= =
∆

                    (3.18) 

Then along the time interval [ ],t t t+ ∆ , given ( )V t , first we take it as an ini-
tial data of (3.13) and integrate the SDE though the transition conditional prob-
ability (3.15) to obtain ( )1V t t+ ∆  which can be done by sampling a ( )2

dχ λ′  
random number in (3.17). Second we regard ( )1V t t+ ∆  has the initial data of 
(3.14) and integrate it by any deterministic numerical method of at least order 1. 
In our project, we practically sample the ( )2

dχ λ′  random number by the aid of 
the function rnchisq() inside the Rmath library from R and integrate (3.14) with 
deterministic Euler method. 
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In Figure 1, three trajectories for the CIR process are shown with a compari-
son to Higham-Mao which is simply taking absolute value of ( )V t  in the 
squart-root term. Here we choose 1, 1, 2κ θ σ= = = , so that the boundary is at-
tainable. 

The figure depicts that the splitting-step algorithm preserves non-negativity 
for positive initial data while Higham-Mao produces negative values occasional-
ly. Thus splitting method is preferable as the CIR process is not defined for neg-
ative values. 

3.2.3. Weak Convergence 
In this section we verify that the splitting-step algorithm has weak convergence 
of order 1.0 on the interval [0,T] for a fixed finite, nonrandom terminal time 

0T > . 
We take g the identity function and use the model 

( ) ( )( ) ( ) ( )d d dV t a bV t t V t W tσ= + +              (3.19) 

Then split it in this way: 

( ) ( ) ( )1 1d d dV t a t V t W tσ= +                 (3.20) 

( ) ( )2 2d dV t bV t t=                      (3.21) 

Similarly to (3.17) (3.18), we have 

( ) ( )
2

2
1 4 d

tV t t σ χ λ∆ ′+ ∆ =                   (3.22) 

where 

( )1
2 2

4 4,
V t ad

t
λ

σ σ
= =

∆
                   (3.23) 

We use (3.22) (3.23) to obtain ( )1V t t+ ∆  which is corresponding to (3.20) 
and deterministic Euler method to integrate (3.21). 

Now, we calculate the expected value of exact solution of (3.19) with the initial 
value ( ) 00 0V V= ≥ . 

Taking the expected value of both sides of (3.19) reads: 

( ) ( )

( ) ( )( ) ( ) ( ) ( )
0

0 0

d E 0

E 0 d E d| 0

|

|

V t V V

a b V t V V t V t W t V Vσ

 =

 = + = + =







  
    (3.24) 

Notice that the second term on the right side  
( ) ( ) ( ) 0E d | 0 0V t W t V Vσ = =   as ( )W t  is a standard Wiener process. We 

define 

( ) ( ) ( ) 0E 0|y t V t V V= =    

Then ( )y t  is a deterministic function of t. Equation (3.24) becomes 

( ) ( )( )d dy t a by t t= +  

with ( ) 00y V= . Solving the above equation we have 
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( ) ( ) ( )0 e e 1bt btay t y
b

= + −  

Therefore, 

( ) ( ) ( ) ( )00E | e e0 1bt btay tV V
b

V t V = = +=  −          (3.25) 

For 1, 1a b= = , we have 

( ) ( ) ( )0 0E | e 10 1tV t V V V=  = + −              (3.26) 

Then we apply the splitting-step method to obtain the numerical approxima-
tion ( )V t . Figure 2 depicts the error 

( ) ( )E Et V t V t∆  = −    
                 (3.27) 

Versus decreasing uniform step size ∆t, which shows that the method has 
weak order 1.0 while using constant step sizes ∆t. Moreover, we compare to 
Higham-Mao complemented, partial truncation and full truncation for the same 
equation. Figure 2 shows that splitting methods has the highest precision among 
these four algorithms. 

3.3. Option Valuations 

Among the variety of financial derivatives, the option is one of the most impor-
tant financial instruments. In current financial markets, there are mainly four 
kinds of options: American option, European option, Asian option, and Barrier 
option. In our work, we only focus on pricing European options, which can only 
be exercised on the maturity date whereas an American option can be exercised 
at any time before expiration. 
 

 
Figure 2. Value of weak convergence error (3.27) as a function of ∆t for 

1.0T =  and ( )0 1.0S = , 1a b+ = , 2σ =  using the splitting-step, Hig-

ham-Mao complemented, partial truncation and full truncation algorithms in 
log-log scale for 107 realizations. The dashed line is proportional to ∆t. 
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3.4. A European Call Option 

A European call option on an asset is a contract that allows the buyer to buy (but 
not obligate) this asset at the price K at time T. The number 0K >  is called the 
exercise (or strike) price and 0T >  the maturity (or expiration) time. We pay 
K to buy the asset at time T if ( )V T K≥  and sell it immediately at ( )V T  
making a profit of ( )V T K− . The option is worthless if ( )V T K<  as we can 
buy it cheaper than K. 

Thus at time T, the call option has the value 

( )( ) ( )( )E E max ,0TC V T K V T K
+ = =  − 

−           (3.28) 

Suppose that CT is the numerical approximation of CT, then the error 

call T TC C= −                       (3.29) 

reveals the precision of an algorithm. Since the exact solution CT no explicitly 
known, we compute a numerical reference solution with a very small t and re-
gard it as CT. Here we use the numerical approximation of CT with 410t =  
computed by splitting method as reference. Figure 3(a) depicts the comparison 
of the four algorithms with respect to the precision of calculating call option for 
each step size t and Figure 3(b) shows the computational cost versus precision 
among them. We observe that Higham-Mao complemented, partial truncation 
and full truncation work better on this call option pricing as they have more 
precision and higher speed. 

3.4.1. A Path-Dependent Option 
Apart from the typical European call option in the previous section, more exotic 
options exist in the market (see, for example [35] [36]). Here we consider one of 
path-dependent options: up-and-out call option (hereafter referred as U&O op-
tion). An up-and-out call option pays off the usual ( )( )max  ,0V T K−  at ex-
piry unless at any time during the life of the option the underlying asset reaches 
certain level (from below, obviously) then it is said to knock out and become 
worthless. The Figure 4 explains the payoff of each underlying asset. We assume 
that a underlying will be knocked-out once it reaches L from below at any time 
prior to expiry time T. Then the underlying asset corresponds to the blue one 
has payoff 0 as it’s knocked-out. 

As we say that an U&O option expires worthless if the asset price touches 
some barrier L from below, say, at any time prior to expiry, where L is larger 
than the present asset value 0V , the price of U&O call option at expiry time T is 
given by 

( ) ( )( ) ( ){ }
&

0 ,0E 1U O
V t L t TC T V T K < < ≤ ≤

+
= − 

 
          (3.30) 

where { }1 x  is one if x is true and zero otherwise. 
The exact option price ( )&U OC T  is not available since the exact solution of 

U&O call option under CIR model is not explicitly known. Then instead of eva-
luating biases we work on the convergence properties of the algorithms. 
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(a)                                                          (b) 

Figure 3. (a) The call option valuation error (3.29) as a function of ∆t for ( )0 1.0V = , 1κ θ= = , 2σ = , 2K = , 10T =  using 

the splitting-step, Higham-Mao complemented, partial truncation and full truncation algorithms in log-log scale for 107 realiza-
tions. The dashed line is proportional to ∆t. (b) Computational time in seconds as a function of the call option valuation error for 
the same parameter setting. 

 

 
Figure 4. Payoff of each sample path. The underlying asset corres-
ponds to the blue one has payoff 0 as it’s knocked-out. 

 
Let tu∆  which depends on the time step ∆t be a numerical approximation of 

an exact value u. The numerical method said to be of order p means that there 
exists a number C independent of ∆t such that 

p
tu u C t∆ − ≤ ∆  

At least for sufficiently small ∆t. It’s also said that the convergence rate of the 
method is pt∆ . Normally the error tu u∆ −  depends smoothly on ∆t. Then 

( )1p p
tu u C t O t +

∆ − = ∆ + ∆  

i.e., 

( )1p p
t u C t O tu +

∆ ∆= + ∆ +  

An approach of p is to check the relative differences between tu∆  computed 
for different ∆t. In most cases we compare solutions where ∆t is halved succes-
sively. Then we get 
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( ) ( )
( )

( )

1
2

1

1

2

11
2

pp p
t t

p p
p

p p

u u u C t u C t O t

C t O t

C t O t

+
∆ ∆

+

+

− = + ∆ − − ∆ + ∆

 = ∆ − + ∆ 
 

′= ∆ + ∆

 

 

with 
11

2 pC C  ′ = − 
 

 Hence, we can get an estimate of the order of accuracy p 

after computing tu∆  and 2tu∆  for different ∆t. 

The relative differences 2t tu u∆ ∆−   indicate the convergence rate of an algo-
rithm. The faster converges a scheme (has higher p value), the faster relative dif-
ferences reduce to 0 as ∆t tends to 0. Now we define the relative difference of 
U&O call option value as: 

( ) ( )& & &
2

U O U O U O
t t tC T C T∆ ∆ ∆= −                 (3.31) 

where ( )&U O
tC T∆
  is the numerical approach of ( )&U O

tC T∆  using time step ∆t. 
Thus ( )& 1U O p p

t C t O t +
∆ = ∆ + ∆ , with C a constant independent of ∆t. We show 

the relation between &U O
t∆  and the time step ∆t to get an estimate of p for the 

four algorithms. We also analyze the computational cost with respect to the rela-
tive difference &U O

t∆ . For sufficient small ∆t, the relative differences &U O
t∆  

computed by splitting method are much less than standard error of the mean 
(SEM) which suggests to increase substantially the number of sample paths for  

the sake of validity of these &U O
t∆ . But roughly 

1SEM
N

  where N is size of  

the sample, which means that the SEM will reduce to 10% if we increase N to 
100N. As we have already used 710N =  sample paths, it’s impossible in prac-
tice to increase it to at least 1110N =  to make &U O

t∆  larger than SEM. Then for 
sufficient small ∆t, we estimate &U O

t∆  computed by splitting by the fit of exist-
ing data. This has implied that splitting convergent the fastest as it’s the first one 
to reach the SEM level. Figure 5(a) depicts that the splitting-step method has the 
highest order of accuracy p since p corresponds to the slope of these lines. The 
parameter what we used are ( )0 1.0V = , 1κ θ= = , 2σ = , 10T = , 2K = , 

10L =  and 107 sample paths are generated. Figure 5(b) portrays the computa-
tional time in seconds with respect to the relative difference &U O

t∆ . At the be-
ginning, splitting performs the worst as it’s the most time-consuming one, see 
for example when & 0.02U O

t∆ = . But along the trend of smaller relative differ-
ences, splitting performs better and better and costs the least since certain value 
of relative difference. For example, with the same parameter setting, we can de-
duce that splitting will cost the least for the cases of & 0.001U O

t∆ <  from the 
tendency of these four algorithms. 

4. Option Pricing with Heston’s Stochastic Volatility Model 

4.1. Heston Model Basics 

The Heston model [6] is defined by the coupled two-dimensional stochastic dif-
ferential equation (SDE): 
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(a)                                                           (b) 

Figure 5. (a) The relative difference (3.31) of values of up-and-out option at time T as a function of ∆t for 10T = , 10T = , 
10T = , 2σ = , 2K = , 10L = , using the splitting-step, Higham-Mao complemented, partial truncation and full truncation 

algorithms in log-log scale for 107 realizations. Dash lines are p power laws of ∆t and t∆ . (b) Computational time in seconds as 
a function of the relative difference (3.31) for the same parameter setting. 

 

( ) ( ) ( ) ( ) ( )d d d SS t S t t V t S t W tµ= +              (4.1) 

( ) ( )( ) ( ) ( )d d d VV t V t t V t W tκ θ σ= − +             (4.2) 

where , ,κ θ σ  are positive constants, ( )SW t  and ( )VW t  are Wiener 
processes with correlation, i.e., ( ) ( ) ( )d d d , 1,1S VW t W t t ρ= ∈ − . The parame-
ters μ is the rate of return of the asset. θ is the long variance, which means as t 
tends to infinity, the expected value of ( )V t  tends to θ. κ is the rate at which 
( )V t  reverts to θ σ is the so-called vol of vol, which determines the variance of 
( )V t . We note that the variance (4.2) follows a CIR process. 
For ( )V t  it has the same boundary behavior as we mentioned in §3.1. 
1) 0 is an attainable boundary when 2 2σ κθ> . The boundary is strongly re-

flecting; 
2) ∞ is an unattainable boundary. 
There is an additional condition for ( )S t  which is iii) ( )S t  has an ab-

sorbing barrier at 0. 

4.2. Path Simulation 

There are plenty of methods can be used to simulate Heston model. Broadie and 
Kaya [11] [12] derived an exact simulation method without bias, but highly 
time-consuming. This is analyzed in Broadie and Kaya [21], and Lord et al., 2008 
[21]. The exact scheme is competitive when one simulates the process just at one 
time (or few times), for example to price European options with a Monte-Carlo 
algorithm. On the contrary, they are drastically too slow for simulating the 
process along a time-grid, which occurs when computing path-dependent op-
tions prices. Kahl and Jäckel [22] state that combining the balanced Milstein 
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method (BMM) for the variance process with their bespoke IJK method for the 
logarithm of the stock price gives the best results with respect to strong conver-
gence measure. The BMM method actually preserves positivity for the variance 
process if 24κθ σ> : But this restriction is rarely satisfied in practice, and one 
typically finds that the sampling scheme for V produces negative values with 
substantial probability. The TG and QE schemes proposed by Anderson [23] 
were attested to outperform the full truncation method proposed by Lord et al., 
2008 [21] with respect to biases and only cost marginally more computational 
time than the Euler scheme. 

Comparing to the methods above, Euler discretization and splitting-step are 
very simple to implement. For simulating the variance process (4.2) we use 
Splitting-step, Higham-Mao, partial truncation and full truncation methods in-
troduced in §3. Then we switch to logarithms for the asset price ( )S t , as in 
Lord et al., 2008 [21], i.e. 

( ) ( ) ( ) ( ) ( ) ( )( )21ln ln 1
2 V SS t t S t V t t V t W t W tµ ρ ρ + ∆ = + − ∆ + ∆ + − ∆ 

 
(4.3) 

with ( ) ( ),S VW t W t  two independent Wiener processes. For Higham-Mao, as it 
may produce negative values of ( )V t  with substantial probability which we 
have seen in §3.2.1, we follow their spirit to take the absolute value of ( )V t  in 
(4.3), i.e., 

( ) ( ) ( ) ( ) ( ) ( )( )21ln ln 1
2 SV tS t t S t V t t V t W W tµ ρ ρ + ∆ = + − ∆ + ∆ + − ∆ 

 
(4.4) 

4.3. A European Call Option with Heston Model 

Closed form semi-analytical formulae for plain vanilla option prices have been 
derived in [6]. However, these formulae require the evaluation of logarithms 
with complex arguments during the involved inverse Fourier integration step. 
Carr & Madan [24], Lewis [25] considered the use of the fast Fourier transform 
(FFT) technique by mapping the Fourier transform directly to option prices via 
the characteristic function. Lee [26] generalizes Carr & Madan [24] and unifies it 
with extensions of some relevant elements and proved an error analysis for these 
FFT methods. Kahl & Jächel [27] propose a new approach which enables the use 
of Hestons analytics for practically all levels of parameters and even maturities of 
many decades since most implementations of Hestons formulae are not robust 
for moderate to long dated maturities or strong mean reversion. Lord & Kahl 
[28] present the optimal contour of the Fourier integral, Fang & Oosterlee [29] 
proposed the COS method which is based on the Fourier and Fourier-cosine 
expansion. 

For simplicity and efficiency, in this section we mainly work on the conver-
gence performance of the algorithms we mentioned in §4.2 and demonstrate 
that besides the well performance in convergence rates, splitting has superiority 
in computational efficiency. 
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We define ( )HesC T  to be the exact European call option price at maturity 
time T based on Heston model, i.e. 

( ) ( )( ) ( )( ) ,E E max 0HesC T S T K S T K
+   = − = −     

and Hes
tC∆
  is an numerical approximation of ( )HesC T  with time step ∆t. 

Then the relative difference is defined as 

2
Hes Hes Hes
t t tC C∆ ∆ ∆= −                         (4.5) 

The same technique with §3.3.2 gives that ( )1Hes p p
t C t O t +

∆ = ∆ + ∆ , with C a 
constant independent of ∆t, where p is the order of accuracy defined in §3.3.2. 
We estimate p by computing Hes

t∆  for different ∆t. The slope of the plots of 
Hes
t∆  with respect to ∆t gives the approximation of p. 
Figure 6 are drawn with parameters ( )0 100S = , ( )0 0.04V = , 0.02µ = , 

1.5κ = , 0.06θ = , 0.7σ = , 0ρ = , 120K = , 10T =  and 107 sample paths. 
Obviously the splitting-step method has the highest order of accuracy p. Al-
though the splitting method is more time-consuming than the others for each 
∆t, and with respect to relative differences, it costs the most at the beginning as 
for the case 2Hes

t∆ >  illustrated in Figure 6(b). But it costs the least computa-
tional time if one restricts that the relative differences should be less than a cer-
tain value. For example, if one requires that the relative difference should be less 
than 0.10 with the same parameter setting, splitting practically works much fast-
er than the others. The Figure 6(b) gives the evidence. 

More precisely, we analyze the computational cost by taking the case 
0.065Hes

t∆ =  as an example. As partial truncation and full truncation give fluc-
tuant points (see Figure 6(b)), we choose Higham-Mao to compare with. The 
fitted line of Higham-Mao is extended to intersect with the vertical line 

0.065Hes
t∆ = . From Figure 7, one can find that for reducing Hes

t∆  to 0.065, 
splitting needs around 104 seconds ≈ 2.8 hours while Higham-Mao needs much 
more than 106 seconds ≈ 277.8 hours which is more than 100 times than split-
ting. 

5. Conclusions 

A number of existing numerical algorithms for integrating SDEs cannot be used 
to simulate certain financial models which require non-negativity, such as the 
CIR model, the Heston model that we have seen. A slight modification of Eu-
ler-Maruyama [1] method conducts to various Euler-type numerical schemes. 
They are simple to implement and efficient enough, but have lower accuracy 
compared to exact simulation schemes. Sometimes they also give (4.5). The ver-
tical dash line corresponds to 0.065Hes

t∆ = . 
Less precision is compared to semi-analytical numerical schemes such as the 

splitting-step methods which we are analyzing in our project. Since the exact 
simulation schemes are thoroughly too slow for simulating a process along a 
time-grid, splitting-step methods preponderate them with respect to efficiency. 
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(a)                                                         (b) 

Figure 6. (a) Relative differences of call option (4.5) as a function of ∆t in log-log scale with ( )0 100S = , ( )0 0.04V = , 0.02µ = , 

1.5κ = , 0.06θ = , 0.7σ = , 0ρ = , 120K = , 10T = , and 107 sample paths. Dash lines are power laws of ∆t and t∆ . (b) 
Computational time in seconds as a function of the call option valuation relative differences for the same parameter setting. 

 

 
Figure 7. Computaional cost in seconds as a function of relative difference Hes

t∆ . 

 
The splitting algorithms heavily rely on the exploitation of the specific struc-

ture of original system (2.1). One can decompose the original system into two 
subsystems appropriately for which either one knows the explicit solution or the 
conditional transition probability of one of the subsystems and integrate the re-
maining one by deterministic numerical methods of at least order 1. In this way, 
it preserves the non-negativity and a maximum of convergence order 1.0 both in 
strong and weak sense. For the analytical solution of SDEs, an extensive list of 
known one can be found in textbooks such as Kloeden and Platen [1]. 
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Among the numerical schemes in §3, splitting-step method gives the best 
convergence rate and normally highest accuracy. We observe that it doesn’t per-
form better than other four schemes on call option valuation with CIR model. 
Despite it costs more computational time to generate sample paths, it may cost 
even less for certain × errors. For example, if one requires that the relative dif-
ference of A European call option under the Heston model should be less than 
0.10 with the parameter setting in ×4.3, the splitting method costs the least 
computational time than others. 

6. Future Work 

Since derivatives are one of the three main categories of financial instruments 
where the other two being stocks (i.e., equities or shares) and debt (i.e., bonds 
and mortgages), and as we said that the splitting methods are much more effi-
cient but has less accuracy than exact simulation methods which are not suitable 
for pathwise simulations, then one direction of our interest is applying split-
ting-step method to other path-dependent options, probably with comparison to 
other efficient algorithms like what we have done in §3.3.2. 

Another direction is the application of splitting-step models to portfolio 
problems which are aiming to find the optimal investment strategy of an inves-
tor. Following the optimal portfolio strategy leads to the maximum expected 
utility of the terminal wealth. For example the classical Merton’s problem [37] 
and mixed stock & bond portfolio problem like in [38] are under consideration. 

As Moro and Schurz [9] have mentioned that the splitting-step scheme is ap-
plicable to multi-dimensional problems, we intend to encounter some suitable 
splitting manners to deal with them which in particular can be SDEs with linear, 
decoupled, commutative or diagonal noise terms. Furthermore, non-linear par-
tial differential equations, for instance, Super-Brownian motion interest us to 
verify its properties by implement splitting-step methods. 
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