
Applied Mathematics, 2018, 9, 240-249
http://www.scirp.org/journal/am

ISSN Online: 2152-7393
ISSN Print: 2152-7385

DOI: 10.4236/am.2018.93018 Mar. 29, 2018 240 Applied Mathematics

Visual BasicTM Routine for In-Place Matrix
Inversion

Debabrata DasGupta1,2,3

1Former V.P.-Development, LEAP Software, Inc., Tampa, FL, USA
2Former Principal Consultant, McDonnell Douglas Automation Co., St. Louis, MO, USA
3Former Assistant Director, Central Water & Power Commission, New Delhi, India

Abstract

A modified version of the Gauss-Jordan algorithm for performing In-Place
matrix inversion without using an augmenting unit matrix was described in a
previous article by the author. He had also developed several Structural Engi-
neering softwares during his career using that method as their analysis engine.
He chose matrix inversion because it was suitable for in-core solution of large
numbers of vectors for the same set of equations as encountered in structural
analysis of moving, dynamic and seismic loadings. The purpose of this article
is to provide its readers with its theoretical background and detailed computa-
tions of an In-Place matrix inversion task as well as a Visual Basic routine of
the algorithm for direct incorporation into Visual Basic 6TM softwares and
Visual Basic for ApplicationsTM macros in MS-ExcelTM spreadsheets to save
them time and effort of software development.

Keywords

VB6, VBA, FORTRAN, MS-Excel, Numerical Methods, Gauss-Jordan, Matrix
Methods, Matrix Inversion, In-Place Inversion, Structural Analysis

1. Introduction

Gauss-Jordan is a standard matrix inversion procedure developed in 1887 [1]. It
requires the original matrix to be appended by a unit (identity) matrix and after
the inversion operation is completed the original matrix is transformed into a
unit matrix while the appended unit matrix becomes the inverse.

A detailed description of the original Gauss-Jordan method as well as its
comparison with the author’s In-Place version which does not require the aug-

How to cite this paper: DasGupta, D.
(2018) Visual BasicTM Routine for In-Place
Matrix Inversion. Applied Mathematics, 9,
240-249.
https://doi.org/10.4236/am.2018.93018

Received: January 15, 2018
Accepted: March 26, 2018
Published: March 29, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2018.93018
http://www.scirp.org
https://doi.org/10.4236/am.2018.93018
http://creativecommons.org/licenses/by/4.0/

D. DasGupta

DOI: 10.4236/am.2018.93018 241 Applied Mathematics

menting matrix and the reason for its development were previously published by
him in another article [2].

This paper reproduces relevant parts of that article appended by the computa-
tional details of an example and a Visual Basic routine.

2. Mathematics

The author has used certain terms in the following discussion which are defined
as follows: Normalization is dividing an entire row by its pivotal element to
transform the pivotal element to unity; Virtualization is replicating an element
or a vector of the current augmenting matrix within the original matrix space
without creating the real unit matrix; the Complementary of a component of the
original matrix is its corresponding component in the virtual augmenting matrix
and the Reduction of a row is the modification of the pivotal row by the ratio of
the row element on the pivotal column and the pivotal element and then sub-
tracting it from the row, thereby reducing the row element on the pivotal col-
umn to zero.

Unlike the classical Gauss-Jordan method, the author’s In-Place Inversion
algorithm does not require augmenting with and performing operations on an
identity matrix and the procedure is described below:

Just as with Gauss-Jordan, the following two operations are iterated on all
rows to obtain the inverse.

Operation 1: The unpivoted row with the largest absolute diagonal element is
selected as the pivotal row p and the value of its pivotal element ,p pA is saved
as the pivot pP after which the pivotal element ,p pA is replaced by unity (1)
to virtualize the complementary element ,p p nA + of the unit matrix. Then the
pivotal row p is normalized by dividing the entire row by pP , i.e.,

, ,p j p j pA A P= where 1j n= → . This changes the pivotal element ,p pA to
1 pP which replicates the current value of its complementary element within
the virtual unit matrix.

Operation 2: Each non-pivotal row i , i.e., 1i n p= → ≠ , is reduced by sav-
ing the value of its pivotal column element ,i pA as iP , recomputing all ele-
ments in the current row i as , , ,i j i j p j iA A A P= − ∗ where 1j n= → and
then resetting ,i pA to 0 to minimize truncation error. As mentioned earlier,
this is a shorter version of the operation , , , ,i j i j p j i p pA A A P A= − ∗ where

1j n= → since ,p pA = 1 in the original matrix after normalization of the pi-
votal row.

This procedure implicitly duplicates the functionality of the unit matrix of the
Gauss-Jordan method within the original matrix. After performing these two
operations on every row, treating each row once as a pivotal row, the original
matrix is replaced by its inverse.

The sequence of operations 1 and 2 can be reversed but in that case the pi-
votal element ,p pA will not be unity during operation 2 and the explicit
formula will have to be used, thereby substantially increasing the amount of

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 242 Applied Mathematics

computation.
Solutions of the same example by both Gauss-Jordan and In-Place algorithms

are given in the Author’s original article for comparison purposes and hence are
not reproduced here.

Computational details of a 3 × 3 matrix [3] as well as a Visual Basic subrou-
tine with a sample calling routine are given below. It is equally useful for VB6
programs as well as a VBA routine in MS-ExcelTM spreadsheets. Conversion of
the routine into other languages is also quite simple.

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 243 Applied Mathematics

3. Computational Details of In-Place Inversion of a 3 × 3 Matrix [3]

Initialization
==============

 Preset all rows to Active

 Current Matrix:
 -1.0000 -1.0000 3.0000 Active
 2.0000 1.0000 2.0000 Active
 -2.0000 -2.0000 1.0000 Active

Cycle 1
=======

 Currently active row with largest (absolute) diagonal = 1

 Process Pivotal Row 1
 Save element (1,1) = -1.0000 as Pivot
 Reset Element (1,1) = 1.0000 to 1.
 Reset Pivotal Row 1 to Inactive

 Current Matrix:
 1.0000 -1.0000 3.0000 Inactive
 2.0000 1.0000 2.0000 Active
 -2.0000 -2.0000 1.0000 Active
 Divide all elements of pivotal row 1 by Pivot = -1.0000

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 2.0000 1.0000 2.0000 Active
 -2.0000 -2.0000 1.0000 Active

 Process non-pivotal row 2
 Retrieve Pivotal column element (2,1) = 2.0000 and reset it to 0.

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 0.0000 1.0000 2.0000 Active
 -2.0000 -2.0000 1.0000 Active

 Subtract from each element in current row 2.0000 * corresponding element in pivotal row 1

 Previous element (2,1) = 0.0000 is now 0.0000 - 2.0000 * -1.0000 = 2.0000
 Previous element (2,2) = 1.0000 is now 1.0000 - 2.0000 * 1.0000 = -1.0000
 Previous element (2,3) = 2.0000 is now 2.0000 - 2.0000 * -3.0000 = 8.0000

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 2.0000 -1.0000 8.0000 Active
 -2.0000 -2.0000 1.0000 Active

 Process non-pivotal row 3
 Retrieve Pivotal column element (3,1) = -2.0000 and reset it to 0.

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 2.0000 -1.0000 8.0000 Active
 0.0000 -2.0000 1.0000 Active

 Subtract from each element in current row -2.0000 * corresponding element in pivotal row 1

 Previous element (3,1) = 0.0000 is now 0.0000 - -2.0000 * -1.0000 = -2.0000
 Previous element (3,2) = -2.0000 is now -2.0000 - -2.0000 * 1.0000 = 0.0000
 Previous element (3,3) = 1.0000 is now 1.0000 - -2.0000 * -3.0000 = -5.0000

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 2.0000 -1.0000 8.0000 Active
 -2.0000 0.0000 -5.0000 Active

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 244 Applied Mathematics

Cycle 2
=======

 Currently active row with largest (absolute) diagonal = 3

 Process Pivotal Row 3
 Save element (3,3) = -5.0000 as Pivot
 Reset Element (3,3) = 1.0000 to 1.
 Reset Pivotal Row 3 to Inactive

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 2.0000 -1.0000 8.0000 Active
 -2.0000 0.0000 1.0000 Inactive
 Divide all elements of pivotal row 3 by Pivot = -5.0000

 Current Matrix:
 -1.0000 1.0000 -3.0000 Inactive
 2.0000 -1.0000 8.0000 Active
 0.4000 0.0000 -0.2000 Inactive

 Process non-pivotal row 1
 Retrieve Pivotal column element (1,3) = -3.0000 and reset it to 0.

 Current Matrix:
 -1.0000 1.0000 0.0000 Inactive
 2.0000 -1.0000 8.0000 Active
 0.4000 0.0000 -0.2000 Inactive

 Subtract from each element in current row -3.0000 * corresponding element in pivotal row 3

 Previous element (1,1) = -1.0000 is now -1.0000 - -3.0000 * 0.4000 = 0.2000
 Previous element (1,2) = 1.0000 is now 1.0000 - -3.0000 * 0.0000 = 1.0000
 Previous element (1,3) = 0.0000 is now 0.0000 - -3.0000 * -0.2000 = -0.6000

 Current Matrix:
 0.2000 1.0000 -0.6000 Inactive
 2.0000 -1.0000 8.0000 Active
 0.4000 0.0000 -0.2000 Inactive

 Process non-pivotal row 2
 Retrieve Pivotal column element (2,3) = 8.0000 and reset it to 0.

 Current Matrix:
 0.2000 1.0000 -0.6000 Inactive
 2.0000 -1.0000 0.0000 Active
 0.4000 0.0000 -0.2000 Inactive

 Subtract from each element in current row 8.0000 * corresponding element in pivotal row 3

 Previous element (2,1) = 2.0000 is now 2.0000 - 8.0000 * 0.4000 = -1.2000
 Previous element (2,2) = -1.0000 is now -1.0000 - 8.0000 * 0.0000 = -1.0000
 Previous element (2,3) = 0.0000 is now 0.0000 - 8.0000 * -0.2000 = 1.6000

 Current Matrix:
 0.2000 1.0000 -0.6000 Inactive
 -1.2000 -1.0000 1.6000 Active
 0.4000 0.0000 -0.2000 Inactive

Cycle 3
=======

 Currently active row with largest (absolute) diagonal = 2

 Process Pivotal Row 2
 Save element (2,2) = -1.0000 as Pivot
 Reset Element (2,2) = 1.0000 to 1.
 Reset Pivotal Row 2 to Inactive

 Current Matrix:
 0.2000 1.0000 -0.6000 Inactive

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 245 Applied Mathematics

 -1.2000 1.0000 1.6000 Inactive
 0.4000 0.0000 -0.2000 Inactive
 Divide all elements of pivotal row 2 by Pivot = -1.0000

 Current Matrix:
 0.2000 1.0000 -0.6000 Inactive
 1.2000 -1.0000 -1.6000 Inactive
 0.4000 0.0000 -0.2000 Inactive

 Process non-pivotal row 1
 Retrieve Pivotal column element (1,2) = 1.0000 and reset it to 0.

 Current Matrix:
 0.2000 0.0000 -0.6000 Inactive
 1.2000 -1.0000 -1.6000 Inactive
 0.4000 0.0000 -0.2000 Inactive

 Subtract from each element in current row 1.0000 * corresponding element in pivotal row 2

 Previous element (1,1) = 0.2000 is now 0.2000 - 1.0000 * 1.2000 = -1.0000
 Previous element (1,2) = 0.0000 is now 0.0000 - 1.0000 * -1.0000 = 1.0000
 Previous element (1,3) = -0.6000 is now -0.6000 - 1.0000 * -1.6000 = 1.0000

 Current Matrix:
 -1.0000 1.0000 1.0000 Inactive
 1.2000 -1.0000 -1.6000 Inactive
 0.4000 0.0000 -0.2000 Inactive

 Process non-pivotal row 3
 Retrieve Pivotal column element (3,2) = 0.0000 and reset it to 0.

 Current Matrix:
 -1.0000 1.0000 1.0000 Inactive
 1.2000 -1.0000 -1.6000 Inactive
 0.4000 0.0000 -0.2000 Inactive

 Subtract from each element in current row 0.0000 * corresponding element in pivotal row 2

 Previous element (3,1) = 0.4000 is now 0.4000 - 0.0000 * 1.2000 = 0.4000
 Previous element (3,2) = 0.0000 is now 0.0000 - 0.0000 * -1.0000 = 0.0000
 Previous element (3,3) = -0.2000 is now -0.2000 - 0.0000 * -1.6000 = -0.2000

 Current Matrix:
 -1.0000 1.0000 1.0000 Inactive
 1.2000 -1.0000 -1.6000 Inactive
 0.4000 0.0000 -0.2000 Inactive

Inversion Complete

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 246 Applied Mathematics

4. Microsoft Visual Basic Routine for In-Place Matrix Inversion

'(A) Sample calling routine for In-Place Subroutine

'Legend:
'iNmat = Matrix size
'dblMatrix = Matrix array

 Dim iNmat As Integer

'Sample matrix size = 3x3
 iNmat = 3

'Sample matrix elements
 ReDim dblMatrix(iNmat, iNmat) As Double

 dblMatrix(1, 1) = -1: dblMatrix(1, 2) = -1: dblMatrix(1, 3) = 3
 dblMatrix(2, 1) = 2: dblMatrix(2, 2) = 1: dblMatrix(2, 3) = 2
 dblMatrix(3, 1) = -2: dblMatrix(3, 2) = -2: dblMatrix(3, 3) = 1

'In-Place Inversion
 InPlace iNmat, dblMatrix()

'The matrix dblMatrix will now contain the inverse for post-processing.

'(B) In-Place Matrix Inversion Subroutine

Public Sub InPlace(iNmat As Integer, arrMatrix() As Double)

'In-Place Matrix Inversion Subroutine for Modified Gauss-Jordan Algorithm
'Author: D. DasGupta, P.E., M.Tech., M.ASCE, MCP

'Legend:
'iNmat = Matrix size
'arrMatrix = Matrix array

 Dim iRow As Integer, jCol As Integer, iCycle As Integer
 Dim dPivot As Double, dAbsDiag As Double, iBig As Integer
 ReDim blnRowProcessed (iNmat) As Boolean

'Preset entire Processing Index vector to False (Unprocessed)
 For iRow = 1 To iNmat: blnRowProcessed(iRow) = False: Next iRow

'Loop over diagonal elements
 For iCycle = 1 To iNmat

' Preset Pivot to Zero
 dPivot = 0!

' Find the row number and value of largest diagonal element of
' unprocessed rows (blnRowProcessed = False)

' Loop over matrix rows
 For iRow = 1 To iNmat

' If processing index for this row is False
 If blnRowProcessed(iRow) = False Then

' Store ABS value of its diagonal element
 dAbsDiag = Abs(arrMatrix(iRow, iRow))

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 247 Applied Mathematics

' If ABS(Diagonal) > Current Pivot then
 If dAbsDiag > dPivot Then
' Store current row number and diagonal value as pivot
' Note: Since all diagonal elements must be positive,
' this test must succeed at least once
 iBig = iRow: dPivot = dAbsDiag
 End If

 End If

 Next

' The number of active row with highest diagonal has been determined
' and the value of its diagonal element has been stored as Pivot

' Reset Index of the row with highest diagonal to Processed and its
' diagonal element to Unity to reduce truncation error.

 blnRowProcessed(iBig) = True
 dPivot = arrMatrix(iBig, iBig)
 arrMatrix(iBig, iBig) = 1!

' Divide the entire Pivotal row with Pivot
 For jCol = 1 To iNmat
 arrMatrix(iBig, jCol) = arrMatrix(iBig, jCol) / dPivot
 Next

' This will make the Pivotal Row diagonal = Unity

' Loop over all rows
 For iRow = 1 To iNmat

' Skip the Pivotal row which has already been processed
 If iRow <> iBig Then

' Retrieve the Pivotal column element of the current row and
' reset it to zero

 dPivot = arrMatrix(iRow, iBig)
 arrMatrix(iRow, iBig) = 0!

' Subtract from each element of the current row the
' Pivotal column element times the Pivotal column element in
' the row equal to current column
 For jCol = 1 To iNmat
 arrMatrix(iRow, jCol) = arrMatrix(iRow, jCol) - _
 dPivot * arrMatrix(iBig, jCol)
 Next

 End If

 Next

 Next

End Sub

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 248 Applied Mathematics

5. Conclusion

During the early years of his career the author had developed a number of
Structural Engineering softwares in India using his In-Place Inversion me-
thod as their analysis engine in FORTRAN language for mainframe applica-
tions. He later developed MicrosoftTM QuickBasic, Compiled Basic, Visual
Basic 6 (VB6) [4] [5] and Visual Basic for Applications (VBA) [6] versions of
the inversion routine in the USA for PC-based engineering applications [7]
[8] and spreadsheets, the last one of which has been presented here. The
purpose of this article is to provide its readers with a ready-to-incorporate
subroutine for VB6 softwares and MS-ExcelTM spreadsheets and even if Vis-
ual Basic is phased out in future [9], it may still remain useful as a template
for scientific and engineering software developers to create equivalent rou-
tines in other languages.

Acknowledgements

The author gratefully acknowledges his introduction to Matrix Algebra by late
Prof. B. R. Seth, former Head of the Department of Mathematics, Indian In-
stitute of Technology, Kharagpur, India; the guidance and encouragement
from his ex-supervisor and mentor late K. Madhavan, former Deputy Director,
Central Water and Power Commission, New Delhi, India and the valuable
contributions and suggestions of his ex-colleague late M. R. Rao, former Ma-
thematician/Programmer, Computer Center, Planning Commission, New Del-
hi, India.

About the Author

D. DasGupta is a retired Structural Engineer whose past positions included V.P.,
Development, LEAP Software, Inc., Tampa, FL; Principal Consultant, McDon-
nell Douglas Automation Co., St. Louis, MO; Senior Engineer, Parsons Brinck-
erhoff/Tudor, Inc., Atlanta, GA; Structural Engineer, LEAP Associates, Inc.,
Lakeland, FL and Assistant Director, Central Water and Power Commission,
New Delhi, India. He received his M.Tech. degree from Indian Institute of
Technology, Kharagpur, India and D.I.C. from Imperial College of Science and
Technology, London, England. He is a Life Member of the American Society of
Civil Engineers and former Professional Engineer registered in Florida, Penn-
sylvania and Texas. He is certified in AutomatH (FORTRAN) programming by
Honeywell, Inc., a Microsoft-Certified Professional and MS-OfficeTM User Spe-
cialist/MS-AccessTM Expert. During his career he has worked as a practicing en-
gineer as well as the author of several computer software libraries for Hydraulics,
Soil Mechanics, Structural Analysis and Engineering Design in India and the
USA.

https://doi.org/10.4236/am.2018.93018

D. DasGupta

DOI: 10.4236/am.2018.93018 249 Applied Mathematics

References

[1] Smith, W.A. (1986) Elementary Numerical Analysis. Prentice-Hall, Inc., Englewood
Cliffs, NJ, USA, 51-52.

[2] DasGupta, D. (2013) In-Place Matrix Inversion by Modified Gauss-Jordan Algo-
rithm. Applied Mathematics, 4, 1392-1396. https://doi.org/10.4236/am.2013.410188

[3] McFarland, T. (2007) The Inverse of an n × n Matrix. University of Wiscon-
sin-Whitewater. http://math.uww.edu/~mcfarlat/inverse.htm

[4] Microsoft Press (1998) Microsoft Visual Basic 6.0 Programming Guide.

[5] Holzner, S. (1998) Visual Basic 6 Black Book. Coriolis Technology Press, Scottsdale,
AZ, USA.

[6] MicrosoftTM (2017) Language Reference VBA|MSDN.
https://msdn.microsoft.com/en-us/vba/vba-language-reference

[7] Staff Reporter (1987) Roads, Bridges and Computers. Roads & Bridges Magazine,
48.

[8] Corporate Technology Information Services, Inc. (1990) Corporate Technology Di-
rectory. U.S. Edition, Corporate Technology Information Services, Inc., Woburn,
MA, USA, 3-873.

[9] Microsoft (2017) Support Statement for Visual Basic 6.0 on Windows.
https://docs.microsoft.com/en-us/visualstudio/vb6/vb6-support

https://doi.org/10.4236/am.2018.93018
https://doi.org/10.4236/am.2013.410188
http://math.uww.edu/%7Emcfarlat/inverse.htm
https://msdn.microsoft.com/en-us/vba/vba-language-reference
https://docs.microsoft.com/en-us/visualstudio/vb6/vb6-support

	Visual BasicTM Routine for In-Place Matrix Inversion
	Abstract
	Keywords
	1. Introduction
	2. Mathematics
	3. Computational Details of In-Place Inversion of a 3 × 3 Matrix [3]
	4. Microsoft(Visual Basic(Routine for In-Place Matrix Inversion
	5. Conclusion
	Acknowledgements
	About the Author
	References

