
Journal of Computer and Communications, 2018, 6, 118-127
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.63009 Mar. 28, 2018 118 Journal of Computer and Communications

A Lightweight MVC Framework
Based on Code Decoupling Principle

Guiling Sun, Yingjie Wang, Mengsha Li, Zhenjun Liu

College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China

Abstract

This paper analyzed the problems in the existing framework, and achieved a
reasonable framework based on reflection and aspect-oriented programming
combined with annotations to map the request parameters, and inversion of
the control of the various components. The proposed framework reduced the
volume of the application context, and achieved the purpose that dependen-
cies between the various components are controlled by the framework. Based
on the problems existing in the known framework, the lightweight MVC
framework was implemented and the proposed framework was tested by
JMeter test tool. The test results showed that the framework proposed in this
paper can respond to requests faster, improve access throughput and enhance
application performance and user experience. The framework proposed in
this paper combined the functions of MVC and IOC to minimize the volume
of external dependencies in the development and greatly improved the effi-
ciency of Web applications development.

Keywords

Web, Online Framework, Code Decoupling, MVC Pattern

1. Introduction

In object-oriented programming, the so-called framework consists of a set of
interoperable, reusable components that can be customized to create different
applications. The MVC (Model/View/Controller) is design pattern most
commonly used for today’s web application development [1]. The core idea of
MVC framework is to separate the view layer from the business logic. When
the business is logic changes, we only need to modify the model layer and the
controller. In addition, the framework’s flexible extensibility makes it possible
to introduce IOC (Inversion of Control) for further code decoupling. The

How to cite this paper: Sun, G.L., Wang,
Y.J., Li, M.S. and Liu, Z.J. (2018) A
Lightweight MVC Framework Based on
Code Decoupling Principle. Journal of
Computer and Communications, 6, 118-127.
https://doi.org/10.4236/jcc.2018.63009

Received: January 29, 2018
Accepted: March 25, 2018
Published: March 28, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.63009
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.63009
http://creativecommons.org/licenses/by/4.0/

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 119 Journal of Computer and Communications

so-called IOC is that the program’s components lifecycle management is
handed over to the container, and the application is not responsible for the life
cycle of the required components [2]. Dependency injection, on the other
hand, is an extended explanation of the IOC pattern which defines that the
high-level components should not rely on the basic one, and both should rely
on abstraction, while abstraction does not depend on the details, but the de-
tails depend on the abstraction. Decoupling the program through MVC [3],
Dependency Injection, and Inversion of Control can significantly improve
program reusability and maintainability. At present, the framework of SSH
(Struts 2/Spring/Hibernate) is still widely used in the field of JavaWeb
lightweight application development because of its versatility. However, SSH
has a problem with version chaos, poor compatibility between versions and
low efficiency. Therefore, this paper proposes a lightweight MVC framework
based on the idea of code decoupling.

1.1. Existing MVC Framework

Struts 2 is an MVC framework, the core for Struts MVC, is DispatcherFilter
which plays the role of controller [4] [5]. It is actually a filter. Struts 2 works as
long as it is configured to pass all Http requests to FilterDispatcher. Web con-
tainer first searches for the web.XML, where the developers must first specify
Filter Dispatcher’s configurations so that Struts 2 can start working. Struts 2’s
entire workflow is shown in Figure 1.

1.2. Existing Problems

1) The core of the Struts 2 itself is a filter [6], which performs a class-level in-
terception in which one class corresponds to one request context, while a me-
thod in Struts 2’s Action can correspond to a URL; however, its class properties
are shared by all methods, which cannot be annotated or otherwise identified by
their own methods. As the request is mapped to an instance of an Action class, it
makes a big overhead for you to create a corresponding relationship between the
framework components and requests.

2) From the above reason, though the method in Struts 2 is independent,
but all Action variables are shared, this will not affect the operation of the
program, but give us trouble when coding the program. Each time a request
comes, an Action instance is created, Struts 2’s class-based development model
uses class member variables to receive parameters, which cause that the devel-
opers can not apply the Singlton design pattern [7], but only able to use mul-
tiple instances.

3) Because Struts 2 must package each request, the request object, session and
other servlet life cycle related variables are encapsulated into a Map for the Ac-
tion to use in the course of processing the incoming request, where you need to
ensure synchronization of Map access and isolation, which is more re-
source-intensive [8].

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 120 Journal of Computer and Communications

Figure 1. Struts 2 workflow (from Struts 2 official website).

2. Design and Implementation of the Proposed Framework

2.1. Overall Architecture

In view of the above problems, this paper presents an MVC framework based on
code decoupling ideas, the overall view of the framework is shown in Figure 2.

Front-End Controller: It is responsible for providing a unified access point
for the presentation layer, filtering requests to the rear components of the
framework, the requests are gathered here for centralized distribution, so as to
avoid duplication of control logic in the old framework, while the front-end
controller calls back the function methods provided by the user and provides
common logic for multiple requests (such as preparation of the context, encap-
sulation of the request parameters, etc.), separates the specific view selection and
the functional disposal.

Application Controller (hereinafter referred to as the Handler, described
later): After the front-end controller separates the selection of the specific view

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 121 Journal of Computer and Communications

Figure 2. Overall architecture.

and the specific functional action, it needs someone to manage the input para-
meters to complete the processing logic (such as service layer and data layer), the
application controller is used to determine the specific view technology (view
management) and the specific function processing strategy, you can easily switch
the view/page controller, without having impact on the other part of the pro-
gram

Result Processor: Handles functional results, collects parameters, encapsu-
lates parameters into the model, transfers them to the business object to handle
the model, returns the logical view name to the front-end controller (decoupled
from the specific view technology). Delegated to the application controller to se-
lect a specific view to show, can be the command design pattern implementa-
tion.

View Selector: Processes the result returned to the Front-End Controller for
further processing, chooses which specific view to return or the data object to
return as a response.

Context: With the context in hand, we prepare the model for the view in the
context, thus, we can place the relevant data in the context and access the model
data regardless of the protocol (e.g., the Servlet API) through Thread Local mode.

2.2. Components

The framework consists of six major components, the dependencies between the
components are shown in Figure 3.

BootStrap Loader:
The framework BootStrap loader is responsible for initializing and starting the

whole framework. It first drives the configuration loader to read the relevant
configuration files of the framework, and then loads all the classes involved in
the framework’s base package path into the framework by starting the class load-
er. Acquire the framework managed bean class (complete the dependency injec-
tion) with reference to the relevant dependency injection mapping information

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 122 Journal of Computer and Communications

Figure 3. Framework components.

obtained from the dependency injector, add it to the bean container, and finally
scan all the bean of the Controller type in the bean container and start the Class
Loader.

Class Loader:
Class Loader is the infrastructure of the entire framework, the follow-up work

needs to be completed before the class loading, its main responsibility is to load
all the classes the framework needs based on the base package path obtained
from the configuration loader and to generate the map of classes set for use by
other components in the framework.

Configuration Loader:
The Configuration Loader reads in the configuration file under the specified

path and saves the base package path, log configuration, static resource path, and
the location of the view path for further use by other components in the frame-
work.

Bean Container:
The Bean Container saves all the instances used by the framework, maintains

the mapping between the classes loaded by the Class Loader and the corres-
ponding instances, takes care of the entire life cycle of the bean, provides services
such as acquiring, adding, modifying bean instances externally and interacts
with the dependency injector to complete the framework’s internal bean rela-
tionships maintenance.

Dependencies Injector:
The Dependency Injector sweeps the bean container, establishes the depen-

dency mapping between each bean and the dependent class collection, mean-
while, manages the behavior between the various class instances.

3. Realization of the Framework

The entire framework is realized with Java, which is divided into six parts whose
corresponding code structure is shown in Figure 4.

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 123 Journal of Computer and Communications

Figure 4. Framework implementation’s structure.

The class in the util package is the basic tool that encapsulates the underlying
operations and provides basic functionality for other components of the frame-
work. This part of the design follows the toolkit’s design methodology and pro-
vides all of the functional methods as a static method, but does not allow instan-
tiation and inheritance. Here, identified by class name, functions provided by
this package include array operations, data type conversion operations,
class-related operations, encoding operations, set-related operations, JSON
processing operations, attribute operations, reflection operations, stream opera-
tions and string operations.

The class in the tool package uses functions provided in the util (a package
name) package, combined with the composition of the framework makes a fur-
ther functional package encapsulation and abstraction, provides the framework
with AOP enhancements, bean management, class loading, configuration file
loading, controller loading, dependency injection. It also prepares the startup of
the framework by doing the initialization within the static block in each class.

The entities package contains the data needed in the framework, the Http re-
quest parameters are mapped to the framework’s internal definition of the data
model, thus, realizes decoupling of code. The data that the framework needs to
use are divided into five categories: Request which packs up the incoming Http
request, Param which is the controller’s parameters, Handler which is the appli-
cation processor, View is the jsp response and Data is the json format response.

The annotation package defines annotations for the framework controller
identification, dependency injection declaration, business layer description, and
request handling method.

The aop package contains the necessary proxy component for AOP. Proxy
and ProxyChain is for AOP programming, ProxyManager is for management

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 124 Journal of Computer and Communications

and Aspect Proxy is the aspect template.
The core package includes the pre-processor Dispatcher and the initial starter

Boot Loader.
In view of the problems raised in the first chapter, the framework considers

the use of servlet as a front-end controller to carry out the implementation. By
setting the path mapped for the servlet, it is set to respond to all requests to the
framework and starts with the web container as started, the front-end controller
distributes the requests to different application processor for processing, for the
first issue, the framework uses @Controller annotated class instance as a con-
troller, the request parameters are encapsulated as Param object, and it is passed
into designated controller method, this way the controller development is based
on the level of “method”, so that each request corresponds to a method, you can
use annotation @Action to mark different methods to map different requests

In the Controller, parameters of the method correspond to the request para-
meters, since parameters of a method are local variables, they are naturally
thread-safe, so you can handle different requests in a single Controller instance
without causing errors caused by data sharing. In addition, the framework pro-
vides only a lightweight encapsulation of the request, together with the context,
they provide the parameter basis for each Action mapped to the method to re-
duce the size of the context in the framework declaration cycle.

The startup process of the framework is mainly done by setting the frame
configuration file, making the framework started with the web container, and
calling the framework Boot Loader init method within which completes the
progress for other components of the framework to start. This is done by in-
itiating the framework’s Class Loader to load classes used in the other compo-
nents of the framework, static initialization block of these classes will be called in
the process. Specifically, first, the Class Loader loads the classes needed for the
various components of the framework and registers them to the bean container
(maintaining the mapping in BEAN_MAP). The dependency injector then scans
the entire BEAN_MAP and gets the individual beans and completes the depen-
dency injection. After that, the Controller Loader scans the BEAN_MAP and
obtains the Bean corresponding to the application processor and its corres-
ponding request path, and generates the mapping of the request path to the ap-
plication processor (maintains the mapping in the ACTION_MAP). At this
point, the framework is fully started.

After the request arrives at the framework, the request is distributed by the
pre-processor Dispatcher according to the requested Http method and the re-
quest path, and then the Class Loader is used to obtain the application processor
instance—Handler, that previously registered to the ACTION_MAP determined
by the path corresponding to the current request. If the acquisition is successful
(there is a registered application processor, otherwise does not respond), ask the
framework’s IOC container to obtain an instance of the application processor,
and further request parameters will be encapsulated, the relevant parameters of

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 125 Journal of Computer and Communications

the HTTP request is mapped to the processor method parameters, and then
through the reflection tool of the framework, the application processor is called
and processed. After the result is filtered by the result processor and the View
Selector, the method returns either the rendered view or the JSON data to the
client.

4. Experiment and Result Analysis

In order to verify the performance of the proposed lightweight MVC framework,
two Web projects were established, which respond’s to the client’s requests by
using the Struts 2 framework and the proposed lightweight MVC framework re-
spectively.

The server environment and configuration used in the experiment are as fol-
lows:

CPU: Intel(R) Xeon(R) E7-4820 v3 @1.90 Ghz
Mem: 64GB
OS: RedHat Enterprise Linux Server 6.5
Web Container: Tomcat 8.5
On the server, load the two projects into tomcat and start the tomcat. Then,

use Jmeter to simulate multiple clients to issue concurrent requests to Web
projects on the server. Jmeter configuration details are shown in Table 1.

Above these configurations, the number of threads requested and the number
of simulated clients is 100, the number of loops and the number of simulated
requests per client is 100, so that a total of 10,000 requests are sent for each Web
project. After configuring the test plan, Start the test plan and add listener to the
test plan, until the test plan is completed, we can go through the—Aggregate
Graph—to view the statistics of the response, the experimental results are shown
in Table 2, after averaging the number of tests.

In the test results, the statistical parameters related to the response in Aggre-
gate Graph of Jmeter are intercepted. Among them:

Samples: Indicates how many requests were made in the test, here we call the
total number of requests R, number of clients or number of threads CT, number
of visits V. Then we have R = CT*V. So, 100 clients were simulated to send 100
requests each.

Table 1. Jmeter’s configuration.

Items Values

Threads

Cycles

Server IP

Port Num

Protocols & Methods

Struts test access path

The proposed framework access path

100

100

10.134.3.3

8080

Http Get

/Struts 2Test/test

/Mason Framework/test

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 126 Journal of Computer and Communications

Table 2. Jmeter results.

Item Struts 2 Proposed Framework

Samples

Average (ms)

Median

90%Line (ms)

Min (ms)

Max (ms)

Throughput (KB/sec)

Received (KB/sec)

Sent (KB/s)

10,000

15

16

26

1

58

4046.1

1301.25

792.99

10,000

2

2

3

0.4

32

8038.6

3769.58

1593.59

Average: Average Response Time—By default, the average response time for

a single Request, when using the Transaction Controller, you can also display the
average response time in units of Transaction. Considering that the chance fac-
tor of a response is large, the average response time can better reflect the re-
sponse performance under the average state of the frame.

Median & 90% Line: The former is the median, which is the response time of
50% of users, the latter is the response time of 90% of users. Both reflect whether
the various clients can be responded in a timely manner.

Min: The minimum response time, that is, the response time under the best
conditions.

Max: The maximum response time, which is the worst-case response time
when the framework may have internal problems.

Throughput: By default, Request per Second reflects the ability of the frame-
work to handle the payload of the request. A higher value indicates that the
framework performs better under a large number of requests.

Received KB/sec: The amount of data received from the server per second,
reflects the ability of the framework to return data to each client.

Sent KB/sec: The amount of data that can be sent to the server per second re-
flects the amount of data that the server can accept at one time.

From the experimental results, it can be seen that the framework proposed in
this paper has an average response time W faster than that of Struts 2 with the
same request type and twice the throughput of Struts 2, with superior perfor-
mance and ability to handle a large number of client requests. From the response
time, throughput, data volume, processing power and so on the proposed
framework are better than Struts 2 framework.

5. Conclusion

The MVC framework plays an important role in the current Web applications. It
is the key to enhance the development efficiency and simplify the programming
complexity. Therefore, the improved architecture proposed in this paper is based
on the idea of code decoupling MVC framework, with good performance and a

https://doi.org/10.4236/jcc.2018.63009

G. L. Sun et al.

DOI: 10.4236/jcc.2018.63009 127 Journal of Computer and Communications

relatively clear code structure. This framework is used to build the laboratory
project (Online Shop for food, http://39.107.115.169:8080/shop), which greatly
enhances the development and operational performance. However, there are
some limitations of the present framework like lack of documentations and so
on. Finally, to further expand the functionality of the framework and enhance
the versatility of the framework is the direction for further study.

Acknowledgements

This work was partially supported by Tianjin Science and Technology Major
Project (2017ZXHLNC00100) and supported by Tianjin Rural Working Com-
mittee and Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Net-
work Technology.

References

[1] Wang, N., Li, L.M., Wang, Y.Z., Wang, Y.-B. and Wang, J. (2008) Research on the
Web Information System Development Platform Based on MVC Design Pattern.
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, WI-IAT’08, Sydney, 9-12 December 2008, 203-206.

[2] Cao, Y., Yang, L.N. and Yang, Y.L. (2008) Machine Tool Distributed Cooperative
Design System Based on Extended MVC-Based Web Application Framework and
XML Interoperable Information Model. International Conference on Internet
Computing in Science and Engineering, ICICSE’08, Harbin, 28-29 Jane 2008,
423-428. https://doi.org/10.1109/ICICSE.2008.67

[3] Chen, Y.E. (2015) Design and Implementation of Web Software System Develop-
ment Framework Based on MVC Pattern. Information Systems Engineering, 6,
37-37.

[4] Jiang, P.H. and Xu, J.M. (2017) Web Application Testing Framework Based on
MVC Model and Behavior Description. Modern Electronic Technology, 40, 71-74.

[5] Johnson, R., Hoeller, J. and Arendsen, A. (2008) Spring, Java/J2EE Application
Framework Documentation Version 1.2.8.

[6] Yu, Y.K. (2017) Construction and Improvement of Development Framework Based
on MVC Model. Strait Science and Technology and Industry, 5, 98-100.

[7] Li, Z.F. (2017) Web Software System Development Framework Design in the MVC
Model. Electronic Technology and Software Engineering, 8, 61-61.

[8] Cao, J., Li, M., Fu, H.R., et al. (2017) A Lightweight J2EE Framework Based on J2EE
Application. Electronic Technology and Software Engineering, 19, 153-154.

https://doi.org/10.4236/jcc.2018.63009
http://39.107.115.169:8080/shop
https://doi.org/10.1109/ICICSE.2008.67

	A Lightweight MVC Framework Based on Code Decoupling Principle
	Abstract
	Keywords
	1. Introduction
	1.1. Existing MVC Framework
	1.2. Existing Problems

	2. Design and Implementation of the Proposed Framework
	2.1. Overall Architecture
	2.2. Components

	3. Realization of the Framework
	4. Experiment and Result Analysis
	5. Conclusion
	Acknowledgements
	References

