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Abstract 
Recognizing digits from natural images is an important computer vision task 
that has many real-world applications in check reading, street number recog-
nition, transcription of text in images, etc. Traditional machine learning ap-
proaches to this problem rely on hand crafted feature. However, such features 
are difficult to design and do not generalize to novel situations. Recently, deep 
learning has achieved extraordinary performance in many machine learning 
tasks by automatically learning good features. In this paper, we investigate 
using deep learning for hand written digit recognition. We show that with a 
simple network, we achieve 99.3% accuracy on the MNIST dataset. In addi-
tion, we use the deep network to detect images with multiple digits. We show 
that deep networks are not only able to classify digits, but they are also able to 
localize them. 
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1. Introduction 

Text recognition from images is an important task that has multiple real-world 
applications such as text localization [1] [2], transcription of text into digital 
format [3] [4], car plate reading [5] [6] [7] [8], automatic check reading [9], 
classifying text from unlabeled/partially labeled documents [10], recognizing 
road signs and house number [11] [12], etc. Traditionally hand designed features 
are used to for image classification [13] [14] [15] [16] [17]. However, these tech-
niques require a huge amount of engineering effort, and often do not generalize 
to novel situations. 

Recent techniques in deep learning have allowed efficient automatic learning 
of features that are superior to hand designed features. As a result, we are able to 
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train classifier that is significantly more accurate compared to previous methods. 
In this paper, we investigate using deep learning to classify handwritten digits, 
and show that with a simple deep network, we can classify digits with 
near-perfect accuracy. 

We test our methods on the MNIST dataset [18]. This dataset consists of 
50,000 training digit images and 10,000 testing images and is an important 
benchmark for deep learning methods. Samples images from the dataset are 
shown in Figure 1. On this dataset, we achieve an accuracy of 99.3% on the test 
set. 

We also investigate classifying multiple digits, where more than one digit is 
present in an image. An example of this task is shown in Figure 2. We design a 
novel method of applying classifier of a single digit to an image with multiple di-
gits. Though the number of digits and their location is unknown a-priori, our 
method is able to accurately localize and classify all the digits in the image. 

2. Digit Classification with Deep Networks 
2.1. Supervised Learning 

A supervised learning task consists of two components, the input x and label y. 
For example, the input can be images of handwritten digits, or image of natural 
objects, and the label is the corresponding digit class or object class. The goal is 
to learn the correct mapping f from input x to label y. To accomplish this a 
learner is provided with examples of the correct mapping ( ), , 1, ,i ix y i N=  
where xi is an example input and yi is the corresponding label provided by hu-
man annotators. Ideally after learning, f should map each input in the dataset 
( ), , 1, ,i ix y i N=  to the correct label, i.e. f(xi) = yi. The hope is that the learner 
can learn the correct mapping between x and y based on these examples, so that 
on unseen data, the learner f can also correctly classify. 

Usually f is selected from a class of functions indexed by a parameter θ. For 
example, the class of functions can be quadratic functions 

( ) 2f x ax bx c= + +  
 

 
Figure 1. Samples from the MNIST dataset. 
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Figure 2. Classifying multiple digits. 

 

in this example, ( ), ,a b cθ =  are the parameters. We will denote the function 
selected by a parameter choice as fθ . 

To encourage the learner to select a fθ  that maps each ix  to the correct iy  
we define a loss function such as 

( )( )2

1

N

i i
i

f x yθ θ
=

= −∑  

In general any loss function that takes a smaller value when f(xi) is closer to yi 
can be used. For classification tasks we use a special class of functions fθ  that 
outputs a probability distribution. That is for each ix , ( )j

if xθ  is the probabil-
ity the input belongs to the j-th class. Then we can use the cross-entropy loss 

( ) ( )
1

log
K

j
i i

j
L I y j f xθ θ

=

= =∑  

where K is the number of classes, and ( ) 1jI y f= =  if iy j=  and equals to 0 
otherwise. 

To train the model, we use gradient descent on the loss function Lθ. This is 
described by the following process: 

1) We start from a random parameter θ that can be arbitrarily chosen. 
2) We compute the gradient of the loss function ∇θLθ. Computation of this 

gradient is discussed in the next section. 
3) We update the parameters by θ: = θ − α∇θLθ. This changes θ in the direc-

tion that minimizes the loss Lθ. α is the learning rate that controls the step 
size. The larger the step size, the faster θ changes. However, step size that 
is too large may lead to instability or even divergence. Therefore, the 
learning rate α is an important hyperparameter that is selected based on 
the specific problem. 

4) We repeat from Step 2 until θ stops changing. 
The above algorithm reduces Lθ during each iteration. The hope is that when 

Lθ is minimized, fθ(xi) will be close to yi, that is, the function fθ we selected can 
correctly predict the label yi given xi on the training set. 

However, even if fθ correctly predicts every example we provided, this does 
not mean that fθ will classify correctly on new data. For example, fθ may have 
only memorized the training dataset. Therefore we need additional examples 
(xj,yj), 1, ,j M=  that the learner has not seen during training. The learner 
should only be able to classify these new examples correctly if it has learned the 
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correct mapping between x and y. We can compute the testing accuracy by di-
viding the number of examples fθ correctly classifies by the total number of ex-
amples. This is the final measurement of performance that we use to evaluate 
our learner. 

2.2. Deep Networks 

In the previous section we left an open question: which class of functions { }fθ  
to select from during training. This section introduces an important function 
class of deep networks [19] [20] [21]. 

The key idea of deep learning is to compose very simple functions 
1 2

1 2, ,
d

dg g gθ θ θ  

into a very complex function ( ) ( )( )( )( )1 2 1

1 2 1


d d

d dx g g g xf gθ θ θθ θ−

−= . Each function 

i

igθ  is a simple function with parameters θi. Then the parameters of f is simply 

the combined parameters of all the layers ( )1, , dθ θ θ= . Common functions 
used in deep learning include 

1) Matrix multiplication g(x) = Ax + b where the parameters are matrix A and 
vector b. 

2) Rectified Linearity (ReLU) [22] 

( )
0
0

x x
g x

o x
>

=  <
 

This function does not contain a parameter. 
3) Softmax function: the softmax function “squashes” a n-dimensional vector of 

arbitrary real values to a n-dimensional vector of real values in the range [0, 1] that 
add up to 1. The function applied to an n-dimensional input vector z is given by 

( )
1

eSigmoid
e

j

k

z

n Zj

k

z
=

=
∑

 

Note that sigmoid naturally produces a distribution because the output sum to 
1 

( )Sigmoid 1j
j

z =∑  

4) Convolution [23] [24] [25] [26]: the convolution function takes as input an 
array z of size M × N × K and output an array o of size M × N × C. The first two 
dimensions can be interpreted as width and height, while the third is the number 
of “channels”. This function takes the input z, and applies a 2D-convolution op-
eration defined as 

, , , , , ,
0 0

,    1 , , , ,
S S

c
x y c i j k x i y j k

i i
o w z x y c M N C+ +

= =

= ∗ ∀ ≤ ≤∑∑  

where S is called the size of the filter map, and each cw  is an array of size S × S 
× K. All the cw  combined { }, 1, ,

c c Cw =  is the set of parameters of the 
convolution function. 

5) Pooling: Pooling is a process which reduces a M × N × K array into a 
smaller array, e.g. of size 2 2M N C× × . Usually we keep the number of 
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“channels” unchanged. For example, in the digit classification task, it can reduce 
the scale of a clearer picture into a more ambiguous one, making it easier to 
process in the later steps. 

We shall denote the output of ( )( )1

1


i

ig gθ θ  as ih . Then ( ) ( )1d

d
df x g hθ θ −= , 

( )
1

1
1 2d

d
d dh g hθ −

−
− −=  etc. Finally, we have ( )

1

1
1h g xθ= . Intuitively the network 

must map raw input images into highly abstract and meaningful labels, which is 
a highly complex mapping. The network accomplishes through a sequence of 
simple mappings composed together. Each function 

i

igθ  can be viewed as one 
“layer” of a network. This function igθ  processes the output of the previous 
functions hi−1 into higher level representations hi. The network therefore can be 
viewed as processing the input through a sequence of “layers” whose output be-
come increasingly more high level and abstract, until we finally reach the output 
layer, which corresponds to the labels. This intuition is illustrated in Figure 3. 

2.3. Computing Gradients 

Now that we have defined our model class, to implement the algorithm in Sec-
tion 2.1, we must be able to compute the gradient ∇θLθ. This is accomplished 
with the back-propagation algorithm [19] [20] [21]. 

The back-propagation algorithm sequentially computes  

1 1, , , .y hd hL L Lθ θ θ−∇ ∇ ∇  Intuitively, this tells us how each hidden layer must 
change to minimize loss Lθ. When all the 

i

igθ  are simple functions, we can 
compute ∇hi−1Lθ from ∇hiLθ analytically, and this can be computed automatically 
by software such as Tensorflow [27]. Given gradient ∇hiLθ over each layer hi, we 
can correspondingly compute the gradient ∇θiLθ over parameters θi analytically. 
This can also be automatically computed by Tensorflow. 

Intuitively the computation flows “backward” through the next (hence the 
name back-propagation). We compute gradient in the following sequence 

1 1 1 1, , , , , ,y d hd d hL L L L L Lθ θ θ θ θ θ θ θ θ− −∇ ∇ ∇ ∇ ∇ ∇  

2.4. Detecting and Localizing Multiple Digits 

In many real-world problems, such as car plate detection [5] [6] [7] [8] or house 
number recognition [11] there are multiple digits in the same image, and their 
location is unknown to us. Therefore, not only do we want to classify existing 
digits, we would also like to locate where the digits are, and how many there are. 
We show that based on the deep classifier we trained before we can design an 
algorithm to accomplish this. What we need is that given an image patch we 
must identify both whether there is a digit in the image patch, and what digit it 
is, if there is one. If we can accomplish this, then we may simply apply this me-
thod to each patch of our input image, and we will be able to localize and classify 
all the digits in the image. 

Previously we trained a classifier ( )f xθ  that takes as input an image, and 
outputs a probability distribution over all possible digits. We observe that when 
the input is an image that do not contain any digit, the output is a distribution  
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Figure 3. Illustration of a deep network. 

 
with high entropy, that is, the network is not highly confident that any digit has 
been observed. On the other hand, when presented with an image that contains a 
digit, the output is a distribution with low entropy, and the network generally 
outputs the correct digit with very high confidence. 

We can then take advantage of this property. We measure the difference be-
tween the highest probability score and the second highest probability score. If 
the image contains a digit, the top prediction should have high probability score 
compared to the second highest. If the image does not contain a digit, all the 
possible predictions should be assigned similar probability and there should not 
be a significant difference. We show that this approach works very well in prac-
tice and we are able to accurately discover digits in an image in the experiments.  

3. Experiment 
3.1. Experiment Setting 

We use 50,000 digit figures from the MNSIT training dataset to accomplish our 
training. Each example is a 28 by 28 single-color image. Our network architec-
ture is as follows 

1) A convolution layer with filter map of size 5 that takes as input the 28 × 28 
× 1 image and outputs a feature map of shape 28 × 28 × 32 

2) A pooling layer that reduces the size from 28 × 28 × 32 to 14 × 14 × 32 
3) A ReLU layer 
4) A convolution layer with filter map of size 5 and outputs a feature map of 

shape 14 × 14 × 64 
5) A pooling layer that reduces the size from 14 × 14 × 64 to 7 × 7 × 64 
6) A matrix multiplication layer that maps a vector of size 7 × 7 × 64 to 1024 
7) A ReLU layer 
8) A matrix multiplication layer that maps a vector of size 1024 to 10 
9) A softmax layer 
We train our network with gradient descent with a learning rate of 41e−  for 
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20,000 iterations. We also use a new adaptive gradient descent algorithm known 
as Adam [28] which has been shown to perform better on a variety of tasks. Be-
cause shifting a digit does not change its class, during training we also randomly 
shift the digit by up to 6 pixels in each direction to augment the dataset. This 
makes the network more robust to shifting of the digit and improves testing ac-
curacy. 

For multi-digit classification, we first extract all 28 by 28 image patches with a 
stride of 2. Then we run our classification network on all the patches, we take the 
most confident digit prediction in a region as our digit class prediction. 

3.2. Results 
3.2.1. Single Digit Classification 
After training our network, we use another 10,000 test data to test the accuracy 
of our network. We achieved a testing accuracy of 0.993, which indicates that the 
network only makes a mistake in 7 out of every 1000 digits. We show the train-
ing curve in Figure 4. It can be observed that accuracy improves very quickly in 
the first 5000 iterations, then improves gradually until we reach approximately 
99% accuracy on both the training set and testing set. No overfitting is observed. 

3.2.2. Multiple Digit Classification 
For the multi-digit classification, we show in Figure 5 the response of each digit 
detector at different locations of the sample input. The redder a region is, the 
more confident the classifier predicts that digit at that image patch. It can be 
seen that at correct digit locations, the detector shows consistently confident 
predictions throughout the region. This can be used to identify a region as con-
taining a digit. 

We also show in Figure 6 the confidence score that we computed. Redder 
color indicates presence of a digit. The location where the confidence score is 
high corresponds very well to where digits are present. 

4. Conclusions 

This paper applies deep networks to digit classification. Instead of hand designed 
features, we automatically learn them with a deep network and the back-propagation 
algorithm. We use a convolutional neural network with ReLU activations. In ad-
dition, we use pooling layers to remove unnecessary detail and learn higher level 
features. 

We train our network with stochastic gradient descent. Training progresses 
quickly, we are able to achieve 90% accuracy with only 1000 iterations. After 100 
k iterations, we achieve test performance of 99.3% on the MNIST dataset. 

We also study multi-digit classification and propose a method to detect digits 
in an image with multiple digits. We utilize the fact that our classifier produces a 
probability distribution. We observe that when the input contains a digit, the 
classifier produces a distribution with low entropy and high confidence on 
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Figure 4. Training Curve. On the x-axis we plot the number 
of training iterations in log scale. On the y-axis we plot the 
classification accuracy on the test set. It can be observed that 
accuracy improves very quickly initially, reaching approx-
imately 90% accuracy with only 1000 iterations. After that 
accuracy improves slowly. Eventually we reach an accuracy 
of 99.3% on the test set. 

 

 
(a)                                                          (b) 

Figure 5. Detection of Multiple Images. Left and right are two examples where our model is able to localize the digits in an image 
with multiple digits at random positions. We apply our classifier to each patch of the image, and the output of each classification 
label. Redder color corresponds to higher confidence of the presence of that digit, and blue corresponds to low confidence. 

 

 
Figure 6. Confidence score indicate the present of a digit. The score 
is higher (redder) where there is a digit and lower (bluer) when there 
is not. 
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the correct label. On the other hand, when the input does not contain a digit, the 
classifier produces an almost uniform distribution. We use this different to 
detect whether an image patch contains an image. We experiment on multiple 
digit detection and our method is able to successfully localize digits and classify 
them. 

Future work should further improve accuracy and handle different size of di-
gits in the multi-digit detection task. 
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