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Abstract 
A new variant of the Adaptive Method (AM) of Gabasov is presented, to mi-
nimize the computation time. Unlike the original method and its some va-
riants, we need not to compute the inverse of the basic matrix at each itera-
tion, or to solve the linear systems with the basic matrix. In fact, to compute 
the new support feasible solution, the simplex pivoting rule is used by intro-
ducing a matrix that we will define. This variant is called “the Pivot Adaptive 
Method” (PAM); it allows presenting the resolution of a given problem under 
the shape of successive tables as we will see in example. The proofs that are 
not given by Gabasov will also be presented here, namely the proofs for the 
theorem of the optimality criterion and for the theorem of existence of an op-
timal support, and at the end, a brief comparison between our method and the 
Simplex Method will be given. 
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1. Introduction 

As a branch of mathematics, linear programming is the domain that had the most 
successful in optimization [1] [2] [3] [4] [5]. Since its formulation from 1930 to 
1940 and the development of the Simplex method of Dantzig in 1949 [1] [6], re-
searchers in various fields have been led to formulate and solve linear problems. 

Although, the Simplex algorithm is often effective in practice, the fact that it is 
not a polynomial algorithm, as shown by Klee and Minty [7], has incited re-
searchers to propose other algorithms and led to the birth of the interior point 
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algorithms. 
In 1979, L. Khachiyan proposed the first polynomial algorithm for linear pro-

gramming [8]; it is based on the ellipsoid method, studied by Arkadi Nemi-
rovski and David B. Yudin, a preliminary version of which having been intro-
duced by Naum Z. Shor. Unfortunately, this ellipsoid method has a poor effi-
ciency. 

In 1984, N. K. Karmakar published an interior point algorithm which has a 
polynomial convergence [9], and this caused a renewed interest to interior point 
methods, as well in linear programming that in nonlinear programming [10] [11] 
[12] [13] [14]. 

Gabasov and Kirillova have generalized the Simplex method in 1995 [15] [16] 
[17], and developed the Adaptive Method (AM), a primal-dual method, for li-
near programming with bounded variables. As the Simplex method, the Adap-
tive Method is a support method, but it can start from any support (base) and 
any feasible solution and can move to the optimal solution by interior or boun-
dary points; this method was extended, later, to solve general linear and convex 
problems [18] [19] [20], and also optimal control problems [21]. 

In linear programming, several variants of the AM have been proposed. They 
generally address the problem of initialization of the method and the choice of 
the direction [22] [23]. 

In this work, a new variant of the adaptive method called “Pivot adaptive me-
thod” (PAM) is presented. Unlike the original method and its variants, we need 
not to compute the inverse of the basic matrix at each iteration [16], or to solve 
the linear systems with the basic matrix [23]. In fact, to compute the new feasible 
solution and the new support, we only need compute the decomposition of vec-
tors columns of the matrix of the problem in the current basis. For this compu-
tation we use the simplex pivoting rule [4] by introducing a new matrix 
GAMMA which allows to minimize the computation time. This new variant of 
adaptive method allows us to present the resolution of a given problem under 
the shape of successive tables (as is done with the Simplex method) as we will see 
in example. The proofs for the theorem of the optimality criterion and for the 
theorem of existence of an optimal support that are not given by Gabasov [16] 
will be presented here, and without giving too many details a brief comparison 
between our method and the Simplex method will be given at the end of this ar-
ticle. 

The paper is organized as follows. In Section 2, after giving the statement of 
the problem, some important definitions are given. In Section 3, we describe step 
by step the “Pivot Adaptive Method” and in parallel the proofs of the corres-
ponding theorems are given. In Section 4, an example will be solved to illustrate 
the PAM, and more details will be given to explain how present the resolution 
under the shape of successive tables. In Section 5, we give a brief comparison 
between the PAM and the Simplex Method by solving the Klee-Minty problem. 
Section 6, concludes the paper. 

https://doi.org/10.4236/ajor.2018.82008


S. Belahcene et al. 
 

 

DOI: 10.4236/ajor.2018.82008 94 American Journal of Operations Research 
 

2. Statement of the Problem and Definitions 

In this article we consider the primal linear programming problem with bounded 
variables presented in the following standard form:  

( )

( )1 2
1

1

max , , ,

,

, .

j n

n j j
j

j n

ij j i
j

j j j

F x x x c x

P a x b i I

d x d j J

=

=

=

=

− +


=


 = ∈


≤ ≤ ∈

∑

∑



                

(1) 

where: { }1, ,J n=   is the index set of the variables 1 2, , , nx x x , { }1, ,I m=   
is the index set of the parameters 1 2, , , mb b b  (corresponds to the constraints), 
put: B NJ J J=  , B NJ J =∅ , BJ m= , and introduce the vectors:  

• ( ) ( ) ( )1 2, , , , B
j n
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x
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, with:  

( ) ( ),B B j Bx x J x j J= = ∈ , ( ) ( ),N N j Nx x J x j J= = ∈ .  

• ( ) ( ) ( )1 2, , , , B
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, with:  

( ) ( ),B B j Bc c J c j J= = ∈ , ( ) ( ),N N j Nc c J c j J= = ∈ .  

• ( ) ( ) ( )T T
1 2, , , ,i mb b J b i I b b b= = ∈ = 

.  

• ( ) ( ) ( )1 2, , , , ; <j nd d J d j J d d d d− − − − − − −= = ∈ = +∞ .  

• ( ) ( ) ( )1 2, , , , ;j nd d J d j J d d d d+ + + + + + += = ∈ = < +∞ .  

and the ( )m n×  matrix  
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j J∈  ( ja : the jth column of the matrix A), and ( )T
1 2, , , ,i i i inA a a a i I= ∈

 
( T

iA : the ith row of the matrix A), ( )B NA A A= , ( ),B BA A I J= , 
( ),N NA A I J= .  

We assume that ( )rank A m n= < . Then the problem (1) takes the following 
form:  

( )
( ) Tmax F x c x

P Ax b
d x d− +

 =


=
 ≤ ≤                      

(2) 

Ax b=  are called the general constraints of (P). 
Denote the feasible region of (P) as: { }, ,nH x R Ax b d x d− += ∈ = ≤ ≤ .  

2.1. Definition 1 

Each vector of the set H is called a feasible solution of (P). 

2.2. Definition 2 

Any vector nx R∈  that satisfies the general constraints Ax b=  of the prob-
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lem (P) is called a pseudo-feasible solution. 

2.3. Definition 3 

A feasible solution 0x  is called optimal if: ( )0 T 0 Tmax
x H

F x c x c x
∈

= = . 

2.4. Definition 4 

For given value 0≥ , the solution x  is called an -optimal (or suboptimal) if: 

( ) ( )( )0F x F x− ≤  , where 0x  is an optimal solution for the problem (P). 

2.5. Definition 5 

The set of m indices BJ J⊂  ( BJ m= ) is called a support of (P) if the submatrix 
( ),B BA A I J=  is non-singular ( det 0BA ≠ ), then the set \N BJ J J=  of ( n m− ) 

indices is called non-support, BA  is the matrix support, and ( ),N NA A I J=  is 
the matrix non-support. 

2.6. Definition 6 

The pair { }, Bx J  formed by a feasible solution x and the support BJ  is called 
a support feasible solution (SF-solution). 

2.7. Definition 7 

The SF-solution { }, Bx J  is called non-degenerate if: ,j j j Bd x d j J− +< < ∀ ∈ . 
Recall that, unlike the Simplex Method in which the feasible solution x and 

the basic indices BJ  are related intimately, in the adaptive method there are 
independent. 

3. Optimality Criterion 

For the smooth running of calculations, in the rest of the article, we assume that 
the sets BJ  and NJ  are vectors of indices (i.e.: the order of indices in these 
sets is important and must be respected). 

3.1. Formula of the Objective Value Increment 

Let { }, Bx J  be the initial SF-solution of the problem (P), and 

( ) B

N

x
x x J

x
 

= =  
 

 an arbitrary pseudo-feasible solution of (P). We set 

B Nx x x x x∆ = ∆ + ∆ = − , then the increment of the objective function value is 
given by:  

( ) ( ) ( ) T T T T T
B B N NF x F x F x c x c x c x c x c x∆ = − = − = ∆ = ∆ + ∆        (3) 

and since:  

0B B N NA x A x A x Ax Ax∆ = ∆ + ∆ = − =                 (4) 

then  
1

B B N Nx A A x−∆ = − ∆                        (5) 
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Substituting the vector Bx∆  in (3) we get:  

( ) ( )T T 1
N B B N NF x c c A A x−∆ = − ∆

                   
(6) 

Here, we define the m-vector of multipliers y as follows:  

T T 1
B By c A−=                           (7) 

In [16], Gabasov defines the support gradient and noted it ∆ as: 
T T Ty A c∆ = − , but he also recognizes that for every Nk J∈ , the kth support de-

rivative is equal to T
k k kc y a−∆ = − , in fact, k−∆  is the rate of change of the 

objective function when the kth non-support components of the feasible solution 
x is increased and all the other non-support components are fixed, at the same 
time the support components are changed in such way to satisfy the constraints 
Ax b= . 

Then, in the pivot adaptive method, we define the n-vector of reduced gains 
(or support gradient) δ as follows:  

( ) ( )T T T T T T T T T T, , , where : 0, j B N B N N Bj J c y A c y Aδ δ δ δ δ δ= −∆ = ∈ = − = = = −
 

(8) 

To reduce the computation time in the adaptive method of Gabasov [16], we 
define the ( m n× ) matrix Γ as follows:  

( )1 1, , where: , B B N B m N B NA A I A A− −Γ = = Γ Γ Γ = Γ =           (9) 

which is the decomposition of the columns of the matrix A on the support BJ .  
We have: ( ) ( ), , ,N N ij NI J i I j JΓ = Γ = Γ ∈ ∈ , ijΓ  is the product of the ith row 

of the matrix 1
BA−  and the jth column of the matrix NA . Then the n-vector of 

support gradient given in (8) can be computed as follows:  

( ) ( )T T T 1 T T T T

T T T T

, , ,

where: 0, 

j B B B B N

B N N B N

j J c c A A c c

c c

δ δ δ δ

δ δ

−= ∈ = − = − Γ =

= = − Γ          
(10) 

We see that, to compute the quantity T 1
B Bc A A− , we begin to compute 1

BA A−Γ =  
and not T T 1

B By c A−= ; therefore we need not to compute the inverse of the basic 
matrix BA . 

From (6) and (10) we obtain  

( ) T

N
N N j j

j J
F x x xδ δ

∈

∆ = ∆ = ∆∑
                   

(11) 

3.2. Definition 8 

For an given support BJ , any vector ( ) B

N

J
χ

χ χ
χ

 
= =  

 
 of nR  that satisfies  

( )

( )
1

, if 0
, if 0

   
or , if 0

j j j

j j j
N

j j j j

B B N N
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d

j J
d d
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(12) 
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is called a primal pseudo-feasible solution accompanying the support BJ . 

3.3. Proposition 1 

A primal pseudo-feasible solution accompanying a given support BJ , χ, verifies 
just the general constraints of the problem (P), ie A bχ = . If more, the support 
components Bχ  of the vector χ verifies: B B Bd dχ− +≤ ≤ , then χ is feasible and 
optimal solution for (P). 

3.4. Theorem 1 (The Optimality Criterion) 

Let { }, Bx J  be an SF-solution of the problem (P), and Tδ  be the support gra-
dient computed by (10), then the relations  

( )
0, for
0, for    
0, for

j j j

j j j N

j j j j

x d
x d j J
d x d

δ
δ
δ

−

+

− +

 < =


> = ∈
 = ≤ ≤                

(13) 

are sufficient, and in the case of non-degeneracy of the SF-solution { }, Bx J  also 
necessary for the optimality of the feasible solution x.  

Proof 
1) The sufficient condition: 

for the SF-solution { }, Bx J , suppose that the relation (13) are verified, we must 
proof that x is optimal, it amounts to show that:  

( ) ( ) ( ), 0x H F x F x F x∀ ∈ ∆ = − ≥                (14) 

Let x H∈ , and x x x∆ = − , then: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
0 0 0

0 0

0

N

N N N
j j j

N N
j j

j j
j J

j j j j j j j j j
j J j J j J

j j j j j j
j J j J

F x F x F x x

x x x x x x

d x d x

δ δ δ

δ δ
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δ δ δ

δ δ

∈

∈ ∈ ∈
≤ ≥ =

− +

∈ ∈
≤ ≥

∆ = − = ∆

= − + − + −

= − + − ≥

∑

∑ ∑ ∑

∑ ∑

 

then x is optimal. 
2) The necessary condition: 
Suppose that { }, Bx J  an SF-solution non-degenerate, i.e.:  

,  B j j jj J d x d− +∀ ∈ < <                      (15) 

and that x optimal, i.e.:  

( ) ( ) ( ),  0.
N

j j
j J

x H F x F x F x xδ
∈

∀ ∈ ∆ = − = ∆ ≥∑
          

(16) 

Reasoning by absurdity: 
Suppose that the relations (13) are not verified, thus we have, at least, one of 

the following three cases: 
1) 0 andN k k kk J x dδ −∃ ∈ ≤ > . 
2) 0 andN k k kk J x dδ +∃ ∈ ≥ < . 
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3) 0 and orN k k j k jk J x d x dδ − +∃ ∈ = = = . 
Suppose then we have the first case, i.e.  

0 andN k k kk J x dδ −∃ ∈ ≤ >                   (17) 

(the proof uses the same reasoning for the second and the third cases). Construct 
the n-vector ( ) ( )( ) ( )( ) ( )( )( )1 2

, , ,
n

x x x xθ θ θ θ=   as follows:  

( )( ) { }

( )( )
( )( )

,          \

,     0,

,  

j Nj

k k kk

j jk Bj

x x j J k

x x x d

x x j J

θ

θ θ θ

θ θ

−

 = ∀ ∈

  = − ∈ −  


= + Γ ∀ ∈                

(18) 

where jkΓ  is the product of the jth row of the matrix 1
BA−  and the kth column 

of the matrix NA . Let 1 0k kx dθ −= − > . 
we have  

( ) ( )( ) ( )( ) 0B NB N
Ax A x A xθ θ θ= + =

              
(19) 

and  

( )( ), N j jj
j J d x dθ− +∀ ∈ ≤ ≤

                  
(20) 

For ( )( ),B j jkj
j J x xθ θ∈ = + Γ , then for have:  

( )( ), B j jj
j J d x dθ− +∀ ∈ ≤ ≤

                   
(21) 

a value of θ is chosen such that:  

, B j j jk jj J d x dθ− +∀ ∈ ≤ + Γ ≤                   (22) 

i.e.  

( )
0 , for 0
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j j
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jk
B

j j
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d x

j J
d x

θ

θ

+

−

 −
< ≤ Γ >

Γ
∈
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(23) 

Put: 2 0
min

jk
B

j j

jkj J

d x
θ

+

Γ >
∈

−
=

Γ
, 3 0

min
jk

B

j j

jkj J

d x
θ

−

Γ <
∈

−
=

Γ
. 

we have: 2 0θ > , 3 0θ > , because { }, Bx J  is non-degenerate. 
Let ( )*

1 2 3min , ,θ θ θ θ= , then  

( )*x Hθ ∈
                         

(24) 

or  

( ) ( )( )* * 0
N

j j k k k
j J

F x F x x xθ δ δ δ θ
∈

− = ∆ = ∆ = <∑
          

(25) 

then  

( )( ) ( )*F x F xθ >
                      

(26) 

contradiction with (16). 
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3.5. Definition 9 

The pair { }0 0, Bx J  satisfying the relations (13) will be called an optimal 
SF-solution of the problem (P). 

3.6. The Suboptimality Criterion 

Let 0x  an optimal solution of (P), and x a feasible solutions of (P). 
From (11) we obtained: 

( ) ( ) ( )

( ) ( )

( ) ( )

0

0 0

0 0

max

max max
N N

j j

N N
j j

x H

j j j j j jx H x Hj J j J

j j j j j j
j J j J

F x F x F x

x x x x

d x d x

δ δ

δ δ

δ δ

δ δ

∈

∈ ∈∈ ∈
> <

+ −

∈ ∈
> <

∆ = −

= − + −

≤ − + −

∑ ∑

∑ ∑

 

Let 

( ) ( ) ( )
0 0

,
N N

j j

B j j j j j j
j J j J

x J d x d x
δ δ

β δ δ+ −

∈ ∈
> <

= − + −∑ ∑
           

(27) 

( ), Bx Jβ  is called the suboptimality estimate of the SF-solution { }, Bx J  
since  

( ) ( )( ) ( )0 , BF x F x x Jβ− ≤
                  

(28) 

We have the following theorem of suboptimality. 

3.7. Theorem 2 (Sufficient Condition of Suboptimality) 

For a feasible solution x to be -optimal for given positive number , it is suffi-
cient of the existence of a support BJ  such that ( ), Bx Jβ ≤  . 

3.8. Proposition 2 

From (12) and (27) we deduce:  

( ) ( ) ( )T T, B N N Nx J x xβ δ χ δ χ= − = −               (29) 

3.9. The Dual Problem 

The dual of the primal problem (P) is given by the following linear problem  

( )
( ) ( ) ( )T TT

T

min , ,

, 0, 0.m

y v w b y d v d w

D A y v w c
y R v w

φ − + = − + − + =
 ∈ ≥ ≥           

(30) 

where 

T
1

T

T
n

a
A

a

 
 

=  
 
 

 , with j J∀ ∈ , T
ja  is the transpose of the jth column ja  of 

the matrix A. The problem D has n general constraints, and ( )2m n+  variables. 
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Like (P), the problem (D) has an optimal solution ( )0 0 0 0, ,y v wλ = , and 
( ) ( )0 0F x φ λ= , where 0x  is the optimal solution of (P). 

3.10. Definition 10 

Any ( )2m n+ -vector ( ), ,y v wλ =  satisfying all the constraints of the problem 
D is called a dual feasible solution. 

3.11. Definition 11 

Let BJ  be a support of the problem (P), and δ the corresponding support gra-
dient defined in (10), the ( )2m n+ -vector ( ), ,y v wλ =  which satisfies:  

( )

T T 1

, 0 if 0   
0, if 0

B B

j j j j

j j j j

y c A
v w j J
v w

δ δ
δ δ

− =


= − = ≤ ∈
 = = >                

(31) 

is called the dual feasible solution accompanying the support BJ . 

3.12. Proposition 3  

• A dual feasible solution ( ), ,y v wλ =  accompanying a given support BJ , is 
dual feasible, i.e.: T , 0, 0, mA y v w c v w y R− + = ≥ ≥ ∈ .  

• For any support BJ  we have  

( )Tc χ φ λ=                          (32) 

where λ and χ are respectively the dual feasible solution and an primal pseu-
do-feasible solution accompanying the support BJ .  

3.13. Definition 12 

Let y be dual feasible solution: T , 0, 0A y v w c v w− + = ≥ ≥ . The ( )2m n+ -vector 
( )* * *, ,y v wλ =  such that:  

( ) ( )
( ) ( )

( )
* * T T

* T * T

0,  if 0
   

, 0 if 0

j j j j j j

j j j j j j

v w c a y c a y
j J

v c a y w c a y

 = = − − ≥ ∈
= − − = − ≤         

(33) 

is called a coordinated dual feasible point to the m-vector y. 

3.14. Proposition 4 

The coordinated dual feasible point ( )* * *, ,y v wλ =  to y is dual feasible, i.e.: 
T * *A y v w c− + = , * 0v ≥ , * 0w ≥ . 

3.15. Decomposition of the Suboptimality Estimate of an 
SF-Solution { }, Bx J  

Let { }, Bx J  be a SF-solution of the problem (P), ( ), Bx Jβ  be its suboptimali-
ty estimate calculated by (27), ( ), ,y v wλ =  be the dual feasible solution ac-
companying the support BJ , χ the primal pseudo-feasible solution accompany-
ing the support BJ , 0x  be the optimal solution for the problem (P), 0λ  be 
the optimal solution for the dual problem (D). 
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From (9), (10), (29), (32), and proposition 1 we have: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

T T T T

T T T 1 T 1 T T

0 0

, B N N N B

B B B B

x J x x c c x

c c x c A A c A Ax c c x

F x F x F x

β δ χ δ χ χ

χ χ χ

φ λ φ λ φ λ

− −

= − = − = − Γ −

= − − + = −

= − = − + −

. 

then 

( ) ( ) ( ),   B Bx J x Jβ β β= +                    (34) 

where: ( ) ( ) ( )0
BJβ φ λ φ λ= −  is the degree of non-optimality of the support 

BJ , and ( ) ( ) ( )0x F x F xβ = −  is the degree of non-optimality of the feasible 
solution x. 

3.16. Proposition 5 

• The feasible solution x will be optimal if ( ) 0xβ = , and the support BJ  will 
be optimal if ( ) 0BJβ = , but the pair { }, Bx J  will be an optimal SF-solution 
if ( ) ( ) 0Bx Jβ β= = , so the optimality of the feasible solution x can be not 
identified if it is examined with an unfit support, because in this case there 
will be ( ) 0BJβ ≠ , and ( ), 0Bx Jβ ≠ .  

• As ( ) ( ) ( )0
BJβ φ λ φ λ= − , then the support BJ  will be optimal if its ac-

companying dual feasible solution λ is optimal solution for the dual problem 
D.  

3.17. Theorem 3 (Existence of an Optimal Support) 

For each problem (P), there is always an optimal support. 
Proof 
As (P) has an optimal solution, its dual (D) given by (30) has also an optimal 

solution, let ( ), ,y v wλ =  this solution, and define the sets: 

( ){ }T/ 0j jI j J c a y+ = ∈ − ≥ , ( ){ }T/ 0j jI j J c a y− = ∈ − ≤ , 

and 

( ) ( ){ }T T/ 0, and 0,m
j j j jC y R c a y i I c a y i I+ −= ∈ − ≥ ∀ ∈ − ≤ ∀ ∈ , 

we have y C∈ . 
Let y C∈ , and define the following linear problem:  

( )
( ) ( ) ( )T T Tmin j j j j j j

j J j J
m

y b y d c a y d c a y
D

y C R

ψ
+ −

+ −

∈ ∈

 = + − + −

 ∈ ⊂

∑ ∑

     

(35) 

We have ( ) ( ), ,y y v wψ φ= , where ( ), ,y v w  is the coordinated dual feasible 
point to the vector y, and y  is an optimal feasible solution of the problem ( D ). 

On the other hand, there exists a “vertex” *y  of the set C  that is an optim-
al feasible solution for ( D ), and this vertex is the intersection of at least m 
hyperplane ( )T * ,j ja y c j I I+ −= ∈  . 

Put ( ){ }T */B j jJ i I I a y c+ −= ∈ =  where BJ m= . 
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Then: ( )T *, B BA I J y c= , and so: * T 1
B By c A−= , further the coordinated dual 

feasible point to *y  is the dual feasible solution accompanying the support BJ , 
and its optimal feasible solution for the problem (D), then, according to the 
proposition (4), we conclude that BJ  is an optimal support for (P). 

4. The Description of the Pivot Adaptive Method “PAM” 

As the Simplex Method, to solve the problem (P), the adaptive method (and 
therefore also the pivot adaptive method) has two phases: the initialization phase, 
and the second phase, we will detail each one in the following. 

1) The initialization phase: 
In this phase an initial support feasible solution SF-solution { }, Bx J  will be 

determined, and thus the matrix Γ defined in (9). 
We assume that 0,ib i I≥ ∀ ∈ , and 0,jd j J− = ∀ ∈ . 

Remark 1 

Notice that each problem (P) can be reduced to this case, i.e.: 0,ib i I≥ ∀ ∈ , and 
0,jd j J− = ∀ ∈ , in fact: 

a) if 0
0 / 0

i
i I b∃ ∈ <  then both term of the corresponding constraint is mul-

tiplied by (−1). 
b) if / 0kk J d −∃ ∈ ≠ , then we do the change of variable: ( ) k kkx x d −′ = − , 

then:  

( )0 k kkx d d+ −′≤ ≤ −                       (36) 

and the general constraints Ax b=  of (P) will be write as:  

( )1 1 1 1 1 1 1 1k k k k k k k n na x a x a x a x d a x a x b−
− − + +′+ + + + + + + + = 

    (37) 

where j J∀ ∈ , ja  is the jth column of the matrix A, from this relation we ob-
tain:  

1 1 1 1 1 1 1 1k k k k k k n n k ka x a x a x a x a x a x b a d −
− − + +′+ + + + + + + = −       (38) 

in (36), if ( ) 0k kb a d −− <  we multiple the two terms by (−1). 
Then to determine an initial SF-solution to the problem (P), define the artifi-

cial problem of (P) as follows: 

( )
( )

1
max

,0

j m

j
j

F x x
P

Ax x b
d x d x b

=

=

− +


= −


 + =
 ≤ ≤ ≤ ≤

∑ 





                   

(39) 

where 0,ib i I≥ ∀ ∈ , and ( ) ( ) ( )1 2, , , ,i mx x J x i I x x x= = ∈ =     


 are the m artifi-
cial variables added to the problem (P). 

We resolve the artificial problem P  with the “pivot adaptive method” start-
ing with the obvious initial feasible solution: ( ), , 0 ,nR

x x x x b= =  , and the ca-
nonical support (determined by the indices of the artificial variables), and we 
take the matrix AΓ = . 

If H is not empty, at the optimum of P  0x = , Ax b= , and d x d− +≤ ≤ , 
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so x is a feasible solution of (P), and the optimal SF-solution of the problem P  
can be taken as the initial SF-solution for the problem P.  

2) The second phase: 
Assume that an initial SF-solution { }, Bx J  of the problem (P) is found in the 

initialization phase, and let Γ the correspondent matrix computed by (9), 0≥  
an arbitrary number, the problem will be solved with the pivot adaptive method 
that we describe in the following. 

At the iterations of the pivot adaptive method the transfer { } { }, ,B Bx J x J→  
from one SF-solution to a new one is carried out in such a way that:  

( ) ( ),  ,B Bx J x Jβ β≤                      
(40) 

the transfer will be realized as two procedures making up the iteration: 
i) The procedure of the feasible solution change x x→ : 
During this procedure we decrease the degree of non-optimality of the feasible 

solution: ( ) ( ) x xβ β≤ , and then improve the primal criterion ( ) ( )F x F x≥ : 
i.1) compute the support gradient δ by (10), and the suboptimality estimate by 

(27). 
i.2) If ( ), Bx Jβ ε≤ , then stop the resolution with: x is an -optimal feasible 

solution for (P) (P). 
i.3) If ( ), Bx Jβ ε> , we compute the non-support components Nχ  of the 

primal pseudo-feasible solution accompanying the support BJ  by (12), and the 
search direction ( ),B Nl l l=  with:  

N N N

B N N

l x
l l

χ= −
 = −Γ                         

(41) 

i.4) Find the primal step length 0θ  with: 

{ } ( )
0 0

0

, if 0;

min 1, , where : min ,
, if 0;

;        if 0.

B

j j
j

j

j j j j Bj jj J
j

j

j

d x
l

l

j Jd x
l

l

l

θ θ θ θ θ

+

−

∈

 −
>


= = = ∈−

<

∞ =  

(42) 

Let 00j  such that: ( )00 0BJ j j=  which is the position of 0j  in the vector of 
indices BJ . 

i.5) Compute the new feasible solution: 0x x lθ= + , and  
( ) ( ) ( )0 , BF x F x x Jθ β= + . 
i.6) If 0 1θ = , then stop the resolution with: { }, Bx J  is the optimal 

SF-solution of (P). 
i.7) If 0 1θ < , then compute: 

( ) ( ) ( )0, 1 ,B Bx J x Jβ θ β= −
                  

(43) 

i.8) If ( ), Bx Jβ ≤  , then stop the resolution with: { }, Bx J  is the -optimal 
SF-solution of (P). 

i.9) if ( ), Bx Jβ >  , then go to ii) to change the support BJ  to BJ . 
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ii) The procedure of the support change B BJ J→ :  
During this procedure we decrease the degree of non-optimality of the sup-

port: ( ) ( ) B BJ Jβ β≤ , and then improve the dual criterion ( ) ( )φ λ φ λ≥ , 
where λ  is the dual feasible solution accompanying the support BJ , and λ  is 
the dual feasible solution accompanying the support BJ . 

In this procedure there are two rules to change support: rule of “the short 
step”, and rule of “the long step”, the two rules will be presented. 

ii.1) to the 0j  found in (i.4), compute 
0 0 0j j jx lχ = + , and 

0 00 j jxα χ= − . 
ii.2) compute the dual direction t with:  

( )
{ }

0 0

0

T T

;

0, \ ;

.

j

j B

N B N

t sign

t j J j

t t

α = −
 = ∈


= Γ                      

(44) 

ii.3) compute:  

( )

, if 0;

0,   if 0, 0, ;

0,   if 0, 0, ;

,  in other cases.

j
j j

j

j j j jj N

j j j j

t
t

t d j J

t d

δ
δ

δ ξσ

δ ξ

−

+


>


 = < == ∈


= > =
∞            

(45) 

and arrange the obtained values in increasing order as:  

{ }
1 2

, , , 1, , .
p kj j j k N jj J k pσ σ σ σ≤ ≤ ≤ ∈ ≠ ∞ ∈ 

         
(46) 

As was said before, the change of support can be done with two different rules, 
to use the “short step rule” go to a), and to use the “long step rule” go to b). 

a) Change of the support with the “short step rule”: 
a.1) From (46) put:  

*1

0 min .
N

j jj j J
σ σ σ σ

∈
= = =

                    
(47) 

Let **j  such that: ( ) *
**NJ j j=  which is the position of *j  in the vector of 

indices NJ . 
Put: { }( ) { }*

0\B BJ J j j= 

, { }( ) { }*
0\N NJ J j j=  , then ( ) *

00BJ j j= , 

( )** 0NJ j j= . 

a.2) Compute:  

( ) ( )

0

0
0

, 

,  ,B B

t

x J x J

δ δ σ

β β σ α

= −

= +                   
(48) 

go to ii.4). 
b) Change of the support with the “long step rule”: 
b.1) for every { }, 1, ,kj k p∈   of (47) compute  

( )00k k k kj j j j jd dα + −∆ = Γ −
                    

(49) 

b.2) as *j  we choose qj  such that  
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1

1

0 0
1 1

0, 0
q k q k

k q k q

j j j j
k k

α α α α α α
−

= − =

= =

   
= + ∆ < = + ∆ ≥   
   

∑ ∑
         

(50) 

Let **j  such that: ( ) *
**NJ j j=  which is the position of 0j  in the vector of 

indices BJ . 
b.3) put: *

0
j

σ σ= , and { }( ) { }*
0\B BJ J j j= 

, { }( ) { }*
0\N NJ J j j=  , then 

( ) *
00BJ j j= , ( )** 0NJ j j= . 

b.4) Compute:  
• 0tδ δ σ= − .  

• ( ) ( ) ( )1 1
1

,  ,
k k k

k q

B B j j j
k

x J x Jβ β α σ σ
− −

=

=

= + −∑  where: 
0 0jα α= , 

0
0jσ = .  

Go to ii.4). ii.4) compute Γ  as follows:  

{ }

00
00

*
00

* 00 00

,  ;

,  \ , .

j j
j j

j j

ij ij j jij

j J

i I j j J

Γ
Γ = ∈ Γ
Γ = Γ −Γ Γ ∈ ∈               

(51) 

*
00j j

Γ  is “the pivot”. Go to ii.5). 
ii.5) Set: x x= , B BJ J= , ( ) ( ),  ,B Bx J x Jβ β= , δ δ= , and Γ = Γ . Go to 

i.2). 

5. The Pivot Adaptive Method 

Let { }, Bx J  be an initial SF-solution for the problem (P), Γ the matrix com-
puted by (9), and 0≥  are given. 

The “Pivot Adaptive Method” (rule of the “short step” and rule of “the long 
step” are presented) is summarized in the following steps: 

Algorithm 1 (The Pivot Adaptive Method)  
1) compute the support gradient Tδ  by (10), and ( ), Bx Jβ  by (27).  
2) if ( ), Bx Jβ ≤  , then STOP with: x is an -optimal feasible solution for (P).  
3) if ( ), Bx Jβ >  , then compute the non-support components Nχ  of the 

primal pseudo-feasible solution accompanying the support BJ  by (12), and the 
search direction l with (41).  

4) find the primal step length 0θ  with (42). Let 00j  such that: ( )00 0BJ j j=  
which is the position of 0j  in the vector of indices BJ .  

5) Compute the new feasible solution: 0x x lθ= + , and  
( ) ( ) ( )0 , BF x F x x Jθ β= + .  
6) if 0 1θ = , then STOP with: { }, Bx J  is the optimal SF-solution for (P).  
7) if 0 1θ < , then compute ( ) ( ) ( )0, 1 ,B Bx J x Jβ θ β= − .  
8) if ( ), Bx Jβ ≤  , then STOP with: { }, Bx J  is the -optimal SF-solution for 

(P).  
9) if ( ), Bx Jβ >  , then change the support BJ  to BJ .  
10) compute 

0 0 0j j jx lχ = + , and: 
0 00 j jxα χ= − .  

11) compute the dual direction t with (44).  
12) compute jσ , for Nj J∈  with (45), and arrange the obtained values in 

increasing order.  
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13) do the change of support by one of the rules: 
a) Change of the support with the “short step rule” as follows: 
a.1) compute 0σ  with (47), and set: { }( ) { }*

0\B BJ J j j= 

, 

{ }( ) { }*
0\N NJ J j j=  . 

a.2) compute ( ) ( ) 0
0,  ,B Bx J x Jβ β σ α= + . Go to (14). 

b) Change of the support with the “long step rule” as follows: 
b.1) for every { }, 1, ,kj k p∈   of (46) compute ( )00k k k kj j j j jd dα + −∆ = Γ − . 
b.2) as *j  we choose qj  such that (50) is verified.  
b.3) set: *

0
j

σ σ= , and { }( ) { }*
0\B BJ J j j= 

, { }( ) { }*
0\N NJ J j j=  . 

b.4) compute ( ) ( ) ( )1 1
1

,  ,
k k k

k q

B B j j j
k

x J x Jβ β α σ σ
− −

=

=

= + −∑  where: 
0 0jα α= , 

0
0jσ = . Go to (14).  

14) compute Γ  with (51) and 0tδ δ σ= − .  
15) set: x x= , B BJ J= , ( ) ( ),  ,B Bx J x Jβ β= , δ δ= , and Γ = Γ . Go to 

(2).  

6. Example 

In this section, a linear problem will be resolved with the Pivot Adaptive Method 
using the “short step rule”, and in parallel we will explain how to realize these 
calculations under the shape of successive tables as is given in Figure 1. 

Consider the following linear problem with bounded variables:  

( )
( ) Tmax

.

F x c x
P Ax b

d x d− +

 =


=
 ≤ ≤                     

(52) 

where: ( )T 65,115,0,0,0c = , ( )T
1 2 3 4 5, , , ,x x x x x x= ,  

5 2 15 2 1 0 0
1 8 1 8 0 1 0

35 2 10 0 0 1
A

 
 =  
 
 

, ( )T240,5,595b = ,  50
R

d − = ,  

( )T34,34,240,5,595d + = . 

Put { }1,2,3,4,5J = , 310−= . 
First phase (Initialization): 
Let { }1 1, Bx J  be the initial SF-solution of the problem (P) where; 

( )T1 11,27,10,1 4,265 2x = , { }1 3, 4,5BJ = , so: { }1 1, 2NJ = , ( )1
3 4 5 3, ,BA a a a I= = , 

( )1
1 2,NA a a=  then The matrix Γ is given by: ( ),B NΓ = Γ Γ  where: ( )1 3B IΓ = , 

( )1

5 2 15 2
1 8 1 8

35 2 10
N

 
 Γ =  
 
 

. 

Note that for the initial support we have chosen the canonical support, and for 
the initial feasible solution we took an interior point of the feasible region of the 
problem (P). 
 In the preamble part of the tables (Figure 1) which has four rows we put se-

quentially: Tc , ( )T
d − , ( )T

d + , 1x . The tables have 8 columns. 
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Second phase: 
Starting with the SF-solution { }1 1, Bx J , and the matrix Γ to resolve the prob-

lem (P) with the PAM using the short step rule. 
 In the first table of PAM (Figure 1) (represents the first iteration) there are 8 

rows, in the first 3 rows we have the matrix Γ (indicating the vector formed 
1
BA  in the first column of the tables), and in the rest rows we have sequen-

tially: δ, l, θ, x2, σ. 
The support gradient ( ) ( )( )T T T

1 1 1,
B N

δ δ δ=  where: ( ) 3
T

1 0
RB

δ = ,  
( ) ( )T

1 65,115
N

δ = , and ( )1 1, 2300Bx Jβ = >  . 
1) Iteration 1:  

• Change solution: we have: ( ) ( )1 34,34Nχ = , and ( ) ( )1 23,7Nl = ,  
( ) ( )1 110, 15 4, 945 2Bl = − − − , 0

4 1 15θ θ= = , ( )( )1 2 4BJ =  (4 is the second 
component of the vector of index 1

BJ ). 
 The case of 0θ  is marked by yellow in tables (Figure 1), it correspond at the 

second vector of 1
BJ  which is 4a  (which will come out of the basis. 

Then, 0 1θ < , the new feasible solution ( )2 188 15,412 15,40 15,0,101x = , 
and ( )2 1, 6440 3Bx Jβ = >  . 

• Change support (with the short step rule): 

4 7 2χ = − , and: 0 7 2α = − , the dual direction ( )T 1 8,1 8,0,1,0t = , 
0

1 520σ σ= = , then ( )( )1 1 1NJ =  (1 is the first component of the vector of 
index 1

NJ ). 
 The case of 0σ  is marked by green in tables (Figure 1), his row correspond 

to vector 1a  which will go into the basis. 
So { }( ) { } { }2 1 \ 4 1 = 3,1,5B BJ J=  , { }( ) { } { }2 1 \ 1 4 4,2N NJ J= = . 

 

 

Figure 1. Tables of the pivot adaptive method. 
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 For have the 2nd table (Figure 1), we applied the pivoting rule where the pivot 
is marked by red. The new support gradient ( ) ( )( )T T 0 T T

2 1 2 2,
B N

tδ δ σ δ δ= − =  
where: ( ) 3

T
2 0

RB
δ = , ( ) ( )T

2 520,50
N

δ = − , and  

( ) ( )2 2 2 1 0
0, , 980 3B Bx J x Jβ β σ α= + = . 

As ( )2 2, Bx Jβ >  , we go to another iteration, we compute then:

( ) ( )( )2 2 2,B NΓ = Γ Γ  where: 

( )2 3B IΓ = , ( )1

20 5
8 1
140 15 2

N

− 
 Γ =  
 − − 

. 

2) Iteration 2:  
• Change solution: we have: ( )0,34Nχ = , and ( ) ( )2 0,98 15Nl = , 

( ) ( )2 98 3, 98 15,49Bl = − − , 0
3 4 49θ θ= = , ( )( )2 1 3BJ =  (3 is the first 

component of the vector of indice 2
BJ ). 

Then, 0 1θ < , the new feasible solution ( )3 12,28,0,0,105x = , and 
( )2 1, 300Bx Jβ = >  .  

• Change support (with the short step rule): 3 30χ = − , and: 0 30α = − , the 
dual direction ( )T 0,5,1, 20,0t = − , 0

2 10σ σ= = , then ( )( )2 2 2NJ =  (2 is 
the second component of the vector of index 2

NJ ). 
So { }( ) { } { }3 2 \ 3 2 2,1,5B BJ J= = , { }( ) { } { }3 2 \ 2 3 4,3N NJ J= = . 

The new support gradient ( ) ( )( )T T 0 T T
3 2 3 3,

B N
tδ δ σ δ δ= − =  where:  

( ) 3
T
3 0

RB
δ = , ( ) ( )T

3 10,320
N

δ = , and ( ) ( )3 3 3 2 0
0, , 0B Bx J x Jβ β σ α= + = . 

Then { }3 3, Bx J  is the optimal SF-solution of the problem (P), and  
( )3 4000F x = .  

7. Brief Numerical Comparison between the PAM and the 
Simplex Method 

To realize a numerical comparison between the Simplex algorithm implemented 
in the function “linprog” under the MATLAB programming language version 
7.14, 0.739 (R2012a) and our algorithm (PAM), an implementation for the later 
with the short step rule, has been developed. 

The comparison is carried on the resolution of the Klee-Minty problem which 
has the following form [7]:  

( )

1 2
1 2 1

1

1 2

3 1 2 3

1
1 2 1

max 2 2 2
5

4 25
8 4 125

2 2 4 5
0

n n
n n

n n n
n n

x x x x
x

x x
P x x x

x x x x
x

− −
−

−
−

 + +…+ +


≤
 + ≤


+ + ≤


 + + + + ≤


≥





            

(53) 

where ( )1 2, , , nx x x x= 
. (P3) has n variables, n constraints and 2n vertices. 
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For a fixed n, to write (P3) in the form of the problem (P) given in (1), we 
added to each of the n constraints of (P3) a spread variable, and we found, for 
each of the 2n variables of the result problem, a lower born and an upper born. 
Then the problem (P3) can be done as a linear problem with bounded variables 
as follows: 

( )

1 2
1 2 1

1 1

1 2 2

1 2 3 3
4

1
1 2 1 2

1 2

1 2 2

max 2 2 2
5

4 25
8 4 125

2 2 4 5
0 5; 0 25; ;0 5 ;
0 5; 0 25; ;0 5 .

n n
n n

n

n

n

n n n
n n n

n
n

n
n n n

x x x x
x x

x x x
x x x x

P

x x x x x
x x x
x x x

− −
−

+

+

+

−
−

+ +

 + + + +


+ =
 + + =


+ + + =


 + + + + + =


≤ ≤ ≤ ≤ ≤ ≤
 ≤ ≤ ≤ ≤ ≤ ≤









           

(54) 

The Simplex algorithm chosen here takes as a starting solution the original, 
then in our implementation of the (PAM) we impose the same initial feasible solu-
tion. For the initial support we had taken the canonical one { }1, 2, , 2BJ n n n= + +  , 
then AΓ = . 

We have considered problems with matrix A of size n n× , where 
{ }3,5,7,10,12,15,17,20,23,25,27,30,33,35,37,40,42,45,47,50n∈ , for each size, 

we obtained the number of iterations, and the time of resolution, where the time 
is given into milliseconds. 

This results are reported in Figure 2, and in Figure 3, where “Simplex(it)”, 
“PAM(it)”, “Simplex(tm)”, “PAM(tm)” represent respectively the number of 
iterations of the Simplex algorithm, the number of iterations of the Pivot Adap-
tive Method, the time of the Simplex algorithm, the time of the Pivot Adaptive 
Method. The time is given into milliseconds. 

 

Size 
Simplex  

(it) 
PAM  
(it) 

Simplex  
(tm) 

PAM  
(tm) 

Size 
Simplex  

(it) 
PAM  
(it) 

Simplex  
(tm) 

PAM 
(tm) 

3 × 3 7 3 8.1 0.65 27 × 27 461 8 325.4 4.8 

5 × 5 15 3 15.2 0.65 30 × 30 647 3 467.4 0.83 

7 × 7 27 3 22.1 0.66 33 × 33 867 24 654 17.6 

10 × 10 51 3 36.6 0.66 35 × 35 1041 9 769.8 12.4 

12 × 12 69 3 47.8 0.71 37 × 37 1258 18 888.7 12.6 

15 × 15 103 5 75.6 2 40 × 40 1560 81 1095.8 77.9 

17 × 17 142 5 101.9 2 42 × 42 1721 367 1236.6 335 

20 × 20 204 10 147.1 5.5 45 × 45 1851 825 1346.7 734 

23 × 23 291 5 209.7 2.1 47 × 47 1993 1354 1442.1 1307 

25 × 25 371 5 268.8 2.2 50 × 50 2169 1185 1561 1211.1 

Figure 2. Number of iterations and time for Linprog-Simplex and PAM for Klee-Minty 
problem. 

https://doi.org/10.4236/ajor.2018.82008


S. Belahcene et al. 
 

 

DOI: 10.4236/ajor.2018.82008 110 American Journal of Operations Research 
 

 
Figure 3. Time comparison between Linprog-Simplex and PAM for the Klee-Minty problem. 

 
We remark that the (PAM) is better than the Simplex algorithm in computa-

tion time, and in necessary number of iterations to solve the problems. Recall 
that the optimal solution of the problem (P3) is given by ( )0,0, ,5nx =  . 

8. Conclusions 

The main contribution of this article is a new variant of the Adaptive Method 
that we have called “Pivot Adaptive Method” (PAM). In this variant, we use the 
simplex pivoting rule in order to avoid computing the inverse of the basic matrix 
in each iteration. As was recognized in this work, the algorithm saves our time 
compared to the original algorithm (AM), and allows us to present the resolu-
tion of a given problem under the shape of successive tables as seen in an exam-
ple. 

We have implemented our algorithm (PAM) ((PAM) with the short step rule, 
and (PAM) with the long step rule) using MATLAB, and we have done a brief com-
parison with the primal simplex algorithm (using linprog-simplex in MATLAB) 
for solving the Klee-Minty problem. Indeed, the (PAM) is more efficient in 
number of iterations, and in computation time. 

In a subsequent work, we shall do a more thorough comparison between the 
Simplex algorithm of Dantzig and the (PAM), and we shall extend the (PAM) to 
the problems with a large scale using the constraint selection technique. 
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