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Abstract 
In response to a stressful unexpected experience, the brain activates a complex 
stress system that involves the organism in an adaptive response to the 
threatening situation. This stress system acts on several peripheral tissues and 
feeds back to the brain. One of its key players is oxytocin hormone. The neu-
ropeptide, oxytocin (OT), has well-established roles during parturition and 
lactation. In addition to its peripheral actions, OT is released within multiple 
areas of the brain and influences behavioural and neuroendocrine responses 
to stress. Several studies suggest that oxytocin is implicated in the central con-
trol of responses to stress through modulation of corticotrophin releasing 
hormone (CRH). Intranasal OT application was associated with an inhibitory 
effect on adrenocorticotrophic hormone (ACTH) secretion and subsequent 
impairment of corticosterone secretion. This may be of importance for un-
derstanding and perhaps suggesting its utility to buffer stress. Synthesis and 
release of OT depend to a great extent on steroid hormones particularly on 
estradiol and corticosterone. Estrogens stimulate synthesis and release of OT 
and increase the number of OT receptors in some areas of the brain. However, 
the role of OT in mediating stress is variable and may also depend on gender 
and on external factors. 
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1. Introduction 

Stress is a phenomena associated with daily life. When people facing over-
whelming situations, they develop stress reaction. Stressors could be external 
events either positive or negative or may come from internal feeling that makes 
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the person angry or anxious. Stress could be beneficial when it motivates the 
person to become productive and energetic. However, too much stress is always 
injurious and results in many psychological and physical defects [1] [2]. Tran-
sient stress can elicit adaptive response, however, repeated activation of the 
stress system exerts deleterious effects on several organ functions including the 
brain, immune system and the viscera [3]. In facing stressful situations, the hu-
man body develops stress response, which involves interaction between different 
body systems to cope with the stressors. The stress response is a coordinated 
reaction to threatening stimuli, characterized by avoidance behavior, increased 
arousal, and stimulation of the sympathetic nervous system with cortisol release. 
Hypothalamus is centrally involved in coordinating the adequate humoral, vis-
ceromotor, and somatic motor responses [4]. 

2. Different Components of Stress Response 

The autonomous nervous system and the hypothalamic pituitary adrenal (HPA) 
axis are mainly the two systems reacting to stress; both systems activate each 
other in a positive feedback mechanism. Central stress response is mediated by 
activation of CRH, vasopressin (VP) and OT which in turn stimulate release of 
ACTH by the anterior pituitary gland [5]. Such OT induced ACTH secretion is 
inhibited by adrenal glucocorticoid hormones (GC), however regular HPA axis 
negative feedback, and ACTH secretion is not only induced by OT. ACTH re-
sponse to OT is variable; OT exerts a synergistic effect on ACTH secretion when 
applied with either CRH or VP [6]. Therefore, CRH and its functionally related 
peptides OT and VP are among the key mediators of the stress response whether 
adaptive or maladaptive depending on dose [3]. Knock out mice with inactiva-
tion of CRH receptors in certain brain regions with sparing of the hypothalamus 
and pituitary receptors showed reduced anxiety behaviour and normal basal ac-
tivity of HPA. However, their plasma ACTH and corticosterone response to 
stress were prolonged, reflecting loss of normal negative feedback regulation of 
HPA axis [7] (Figure 1). 

3. Oxytocin Hormone and Its Receptors 

OT was first described in 1906 by Dale who observed that extracts from the hu-
man posterior pituitary gland were able to contract the uterus of a pregnant cat. 
The name oxytocin came from the Greek words, meaning “swift birth” [8]. The 
neurohypophyseal nonapeptide OT and its associated neurophysin I (NP1) are 
mainly synthesized in magnocellular neurons of the paraventricular (PVN) and 
supraoptic nuclei (SON) of the hypothalamus [9]. OT or its associated NP1 are 
processed from a common precursor (Prooxytophysin). NP1 is thought to serve 
as a carrier protein during axonal projection to the posterior pituitary lobe, from 
which the peptide is secreted into the systemic circulation [10]. 

In addition to the established functions of OT as labor-inducing and milk-ejecting 
hormone, OT is also important as a central neurotransmitter, involved in the  
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Figure 1. Expression of oxytocin (OT) in the hypothalamic nuclei depends on systemic 
steroid hormones like glucocorticoids (GC) which are liberated from the adrenal medulla 
after stimulation by adrenocorticotropic hormone (ACTH) from the anterior pituitary 
lobe. Hypothalamic corticotropin releasing hormone (CRH) controls ACTH release via 
oxytocin and its receptors (OTR). Systemic bioavailability of GC depends on hepatic cor-
ticosteroid binding globulin (CBG), essential for maintaining systemic stress response, 
e.g. cardiac function. 
 
central stress response by modulating CRH expression in a dose dependent 
manner by affecting pituitary corticotrophs through oxytocin receptors (OTRs). 

The central actions of OT are mediated by OTRs distributed widely in the 
brain of different species. Areas containing OTRs exert different effects and there-
fore were classified into, regions involved in reproductive behaviours (hypotha-
lamic ventromedial nucleus: VMH, PVN), regions involved in maternal behaviours 
(PVN, substantia nigra, ventral tegmental area), regions involved in learning and 
memory (hippocampus) and regions involved in reinforcement (substantia ni-
gra, ventral tegmental area, lateral septum, caudate putamen, amygdaloid nuclei, 
and frontal cortices) [11] [12]. 

Synthesis and expression of OTRs as well as secretion of OT from hypotha-
lamic or non-hypothalamic source were found to depend in part on gonadal and 
adrenal steroid levels mediated through nuclear receptors and stimulated gene 
expression [13]. Systemic surge of estradiol is associated with labour induction 
and glucocorticoids able to block milk ejection. Oxytocin levels in the serum, 
and number of OT neurons in the hypothalamus are changed upon oestrogen 
treatment [14]. Measurable increase in OT levels was observed after estradiol in-
take in ovariectomized rats. The increased OT secretion in the brain occurred 
with pregnancy and lactation indicates the positive effect of estrdiol on OT re-
lease [15] [16]. 
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However, the release of OT from neuronal terminals upon changing steroid 
level is somewhat fast and cannot be attributed to the classic nuclear steroid re-
ceptors. It was found that most of the oxytocinergic neurons in hypothalamic 
nuclei are devoid of nuclear estrogen receptors, the same was observed for glu-
cocorticoid receptors [14] [17]. Therefore, non-genomic steroid actions through 
binding globulins or membrane receptors may play a role in such rapid re-
sponse. 

The presence of GCs binding in brain areas such as the amygdala, hippocam-
pus and hypothalamus has been reported by several authors [18] [19]. Immuno-
cytochemical double labelling revealed that numerous glucocorticoid receptor 
(GR) positive neurons surround OT neurons in rat hypothalamic nuclei, but 
coexistence of both antigens occurs only rarely, supporting the idea that known 
rapid GC effects on OT neurons may be non-genomic [17]. We have presented 
evidence of extensive co-localization of corticosteroid binding globulin (CBG) 
and OT in the hypothalamus [20] [21] [22]. Although there are high levels of 
CBG in serum, which is of liver origin [23] [24]. This 52 kDa glycoprotein is un-
likely to cross the blood-brain barrier. Central CBG is clearly produced in neu-
rons of the PVN and SON, as demonstrated using RT-PCR. Indeed, CBG is 
found in a large number of PVN and SON oxytocinergic cells, suggesting intrin-
sic expression within hypothalamic nuclei [25]. Brain CBG may be involved in 
membrane actions of GC. 

4. Effects of Endogenous and Exogenous OT on the Social 
Behaviour 

Evidence from rodent models suggests that both acute and chronic administra-
tion of OT reduces physiological and behavioral stress responsiveness [26] [27] 
[28] [29]. Intranasal administration of OT to alter certain stress response was a 
matter of intense investigation in many species. Intranasal route of administra-
tion has the advantage of direct entry to cerebrospinal fluid by passing the blood 
brain barrier, thus avoiding undesired hormone like side effects [30]. Intranasal 
OT is suggested to reach target brain areas such as olfactory bulb and brainstem, 
which give output to the amygdala [31]. Intracerebroventricular (ICV) injections 
of OT may reveal similar effects but involve surgical manipulations which per se 
are stressful. Moreover, it exerted a significant increase in hippocampal neuro-
trophins and synapsin 1 with enhancement of object recognition [32]. 

Although it was reported that intranasal OT is able to exert anxiolytic effects 
in stressed rats and to enhance social interaction [33]. Such effects were found to 
depend on gender and context, in contrast to male mice. Steinman et al. studied 
the effect of intranasal OT on behavior in both sexes. 

They reported variable effects on stress response in males and females: OT 
application seemed to induce more anxiogenic reactions in unfamiliar experi-
mental settings and more anxiolytic effects in familiar contexts. 

Intranasal OT, had no effect on social interaction behavior in stressed female 
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mice [34]. Such observation led to the conclusion that oxytocinergic functions 
could be estrogen dependent in both sexes [14] [35]. It has been demonstrated 
that estrogen receptors can directly regulate OT and VP mediated stress path-
ways due to their anatomical colocalization with these neuropeptides in the PVN 
[36] [37] [38]. 

Cohen et al. had reported initial elevation of the basal corticosterone levels af-
ter OT infusion in the hippocampus in a rat model of PTSD. However, 2 hours 
after stress exposure, corticosterone levels were normalized. Additionally, the 
behavioral response was attenuated at 16 days post-injection of OT, demon-
strating a long-lasting effect. Elevation of hippocampal OT was found to atte-
nuate anxiety behavior after predator scent stress (PSS). OT through a feedback 
mechanism was able to suppress HPA axis thereby terminating the neuroendo-
crine stress response. GC, on the other hand, were shown to suppress both HPA 
axis and oxytocinergic system [39] [40]. Although the underlying physiological 
mechanisms are still a matter of discussion, it seems safe to conclude that OT 
affected the HPA axis in these experiments. 

Winslow et al. reported deficient CSF OT level and agonistic behavior in male 
monkeys with maternal deprivation at birth [41]. Decrease in OT receptors 
binding in the amygdala following repeated maternal separation or decreased 
maternal contact have been reported by several researches [42] [43]. 

Emotional stress, using the social defeat paradigm in male rats, increased OT 
release from the SON and anterior ventrolateral hypothalamus [44]. Additional-
ly, OT is liberated upon chronic stress through elevated GC levels as a result of 
the activated the HPA axis [45]. Steroids are capable of crossing the blood brain 
barrier. They are therefore ideal peripheral mediators of central events. The 
forced swim test model of stress in rats increased both VP and OT expression in 
the magnocellular PVN neurons but not in the SON [46]. While the PSS model 
of PTSD increased hippocampal OTR, mRNA expression and plasma OT levels 
were similar to high-dose corticosterone and norepinephrine treatment [39]. 
Again, these results are comparable to previous studies, demonstrating that cor-
ticosterone increases OTR binding and function in the rat hippocampus [47] 
[48]. 

In humans, endogenous OT has a great role in various behaviours including 
social recognition, bonding, maternal behavior and positive communication [49] 
[50]. It was found that persons with lower baseline OT levels had higher level of 
distrust [51]. Furthermore, it was found that healthy males who received intra-
nasal OT prior to stressor showed less increase in cortisol level compared to in-
dividuals without prior OT treatment [52]. Intranasal OT was found to protect 
against social stress and to suppress amygdala hyper-responsiveness to emotion-
al stimuli [52] [53]. 

OT decreased GR expression and increased MR expression in most areas of 
the hippocampus of the rats, as reported previously [54]. This suggests that the 
long-term effects of OT are mediated through decreased expression of GR in the 
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hippocampus. Both MR and GR receptors showed different localization in the 
brain, MR receptors are mainly found in the limbic areas, amygdala and ex-
pressed intensely in the hippocampus. GR is expressed mainly in PVN and all 
fields of hippocampus except its cornu ammonis-3 (CA3) region that mainly ex-
press MR [55]. MR has high affinity for corticosterone even in absence of stress, 
GR, on the other hand, has much lower affinity for corticosterone and becomes 
active only after exposure to stress. GR activation and subsequent corticosterone 
secretion exerts negative feedback on HPA axis through genomic and 
non-genomic action [56]. Hippocampus exerts a negative control of HPA axis by 
inhibiting CRH from PVN [57]. Oxytocin was unable to attenuate the increase 
in glucocorticoid receptors in the CA3 region. This is consistent with both the 
limited adaptiveness of the GC system in the CA3 region to other steroids [58], 
and the gross atrophy of the CA3 region associated with PTSD in humans [59]. 

However, blockade of endogenous OTR by ICV administration of an OT an-
tagonist failed to reverse the inhibition of HPA axis activity observed during 
parturition [60]. Moreover, in adult male rats, central administration of an OT 
antagonist did not modify plasma ACTH responses to acute immobilisation 
stress [61]. Therefore, the effect of OT on HPA axis activity may depend on the 
physiological or experimental conditions. OT is known to potentiate CRH ef-
fects on the anterior lobe. 

OT exerts effects also on the adrenal medulla. It was shown that chronic OT 
treatment leads to increased epinephrine and norepinephrine the rat adrenal 
medulla [62]. Moreover, it exerts bidirectional effects on the adrenal cortex 
where increased corticosterone levels were associated with acute OT administra-
tion. On the other hand, chronic OT treatment was able to decrease volumes of 
all cortical subregions and parenchyma [63] [64]. Since the adrenal medulla is 
mostly devoid of OTR, these effects may be indirect, mediated through the sym-
pathetic nervous system. This assumption is supported by the fact that OT 
knockout mice [65] and OTR knockout mice [66] did not show altered stress 
response while sexual, maternal or social behaviors were greatly affected in such 
animals. 

5. Conclusion 

The existence OT has been known for over 100 years; however, there are still 
many unanswered questions regarding its effects. Oxytocinergic functions are 
controlled by steroid hormones. Details on functional properties of steroids in 
the neuroendocrine system are still unknown to a large extent. This is especially 
true for rapid steroid effects on the neuronal membrane, which apparently are 
essential for OT release, synapse formation, axonal sprouting and neuronal de-
velopment. Reproductive functions, mood, behaviour but also central and sys-
temic stress response, depend on the various oxytocinergic systems projecting to 
the limbic system, to the hypophyseal portal system or to the posterior pituitary 
lobe. Vegetative functions and their control through gonadal and adrenal stero-

https://doi.org/10.4236/ojemd.2018.83010


A. E. Dief et al. 
 

 

DOI: 10.4236/ojemd.2018.83010 99 Open Journal of Endocrine and Metabolic Diseases 
 

ids may also depend directly or indirectly on OT. Given this extensive level of 
interaction, it is difficult to conceive how the oxytocinergic system can function 
in humans. Steroids dramatically affect OT systems in rodents. Chances are that 
the same is true for other mammalian species. It seems likely that they have sim-
ilar influences also in humans. This may be of importance for understanding 
and perhaps also for therapy of stress related human health conditions including 
cardiac dysfunctions or affective disorders. 
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