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Abstract

In this research article, we investigate the stability of a complex dynamical
system involving coupled rigid bodies consisting of three equal masses joined
by three rigid rods of equal lengths, hinged at each of their bases. The system
is free to oscillate in the vertical plane. We obtained the equation of motion
using the generalized coordinates and the Euler-Lagrange equations. We then
proceeded to study the stability of the dynamical systems using the Jacobian
linearization method and subsequently confirmed our result by phase portrait
analysis. Finally, we performed MathCAD simulation of the resulting ordi-
nary differential equations, describing the dynamics of the system and ob-
tained the graphical profiles for each generalized coordinates representing the
angles measured with respect to the vertical axis. It is discovered that the
coupled rigid pendulum gives rise to irregular oscillations with ever increasing
amplitude. Furthermore, the resulting phase portrait analysis depicted spiral
sources for each of the oscillating masses showing that the system under in-
vestigation is unstable.
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1. Introduction

The dynamics of coupled bodies and oscillators is significant in mechanics, en-
gineering, electronics as well as biological systems. They are mostly represented
as nonlinear dynamical systems [1]. One of the most important stages in the
analysis of any mechanical model is to establish and find the solution of the dy-
namical equations which are referred to as equations of motion [2]. The equa-

tions of motion are often derived by the Euler-Lagrange equations. The funda-

DOI: 10.4236/am.2018.93016 Mar. 22, 2018 210 Applied Mathematics


http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2018.93016
http://www.scirp.org
https://doi.org/10.4236/am.2018.93016
http://creativecommons.org/licenses/by/4.0/

0. S. Maliki, V. O. Anozie

mental idea of the Lagrangean approach to mechanics is to reformulate the equ-
ations of motion in terms of the dynamical variables that describe the degree of
freedom, and thereby incorporate constraint forces into the definition of the de-
grees of freedom rather than explicitly including them as forces in Newton’s
second law. Of importance is the notion of stability of a given dynamical system,
where we would be concerned with the stability of some critical point of the sys-
tem. Indeed stability plays a central role in system engineering, especially in the
field of control system and automation, with regards to both dynamics and con-
trol.

Chutiphon [3] suggested Lyapunov stability as a general and useful approach
to analyze the stability of nonlinear systems. It has two approaches: indirect and
direct methods. For the second method of Lyapunov (indirect method), the idea
of system linearization around a given point is used and local stability within
small stability regions is possibly achieved. Seyrania and Wang [4] studied the
stability of periodic solutions of the harmonically excited Duffing’s equation
with the direct application of the Lyapunov theorem. The damping coefficient
and excitation amplitude are assumed to be small. The approximate methods
were used to find the periodic solutions. They derived the stability conditions
and found stable and unstable region on the frequency response curve.

Maliki and Nwoba [5] studied a mathematical model of a coupled system of
harmonic oscillators using the generalized coordinates and Euler-Lagrange equ-
ation. Laplace transform was also used to get the analytical solution of the sys-
tem. The stability analysis of the system was investigated by the direct method
and it was observed that the coupled system is asymptotically stable for the
strictly negative roots and strongly unstable for the positive roots.

Maliki and Okereke [6] investigated the stability analysis of certain third order
linear and nonlinear ordinary differential equations. They employed the method
of phase portrait analysis and showed, using simulation that the Hart-
man-GroPman theorem is verified, for a second order linearized system, which

approximates the nonlinear system, preserving the topological features.

1.1. Statement of the Problem

We consider the problem of analyzing the dynamics of a triple pendulum as
shown in Figure 1. Despite the complexity of the system we will obtain, with the
help of the Euler Lagrange (E-L) equations, the equation of motion of each of the
individual masses (assumed to be equal). The system is coupled and joined by
three rigid rods of equal lengths, hinged to each of the masses.

1.2. Model Formulation

From the figure below we choose 6,6, and 6@, as our generalized coordi-
nates.

To compute the Lagrangean of the system, we first compute the total kinetic
energy (K.E) and potential energy (P.E) of the system. However, we require the

following expressions.
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Figure 1. A triple pendulum.

X, =l sing, (1)

y, =—l, cosg, (2)

X, =l sing, +1,sin6, (3)

y, =—l,cosg, -1, coso, (4)

X; =1;sing, +1,sin 6, +1,sin 6, (5)
Yy, =—l, cos@, -1, cosb, -1, cos b, (6)

Differentiating the above coordinates with respect to time, we get;

% =16, cos6, (7)

y, = L6 sing, (8)

%, = 1,6, cos @, +1,6, cos b, )

¥, =1,6,sin6, +1,0,sin 6, (10)

%, = 1,6, cos 6, +1,0, cos 6, + 1,0, cos 6, (11)
¥, =16,sin6, +1,6,sin 6, +1,0,sin 6, (12)

The square of the velocities for each mass is given by;
v, =X+ Y = (16, cosel)z +(1é;sin 91)2 =126? (13)
Similarly,
) 5 2 . . 2 .o . 2
V3 =% + Y3 = (16, cos 6, +1,0,c0s0, ) + (L6, sin 6, +1,6,sin 6, )

=1702+1265 + 21,1,6,0, cos (6, - 6,)

(14)

Finally,
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2 2 .o . . . 2
V3 =%+ Y5 =(1,6, cos 6, +1,6, cos 6, + 1,6, cos 0, )
+(10,5in6, +1,6,5in6, +1,0,5in6, )’

After some algebraic manipulations, we get
V2 =127 +126% + 1262 +2[Illzélézcos(91—62) 5
+1,1,0,6, cos (6, — ;) +1,1,6,0; cos (6, - 6, )}

The total kinetic energy of the pendulum is then:
T =%m1vl2 +%m2v§ +%m3v32

:%mllféf +%m2 [1267+1265 + 211,60, cos (6, - 6,) |

+%m3 (126241262 1262+ 2[11,6,0, cos (6, ~ 0,) (16)

+11,0,6; cos (6, — 6,) +1,1,6,0; cos (6, - 6, )})

=T =M 4 0]+ 03 + ]+ ik 4 md:
+m,L,1,6,6, cos (6, - 6,) + myl,1,6,0, cos(6; - 6,) (17)
+myl1,6,0, cos (6, - 6, ) + m,,1,6,6; cos (6, — 6,)
The total potential energy of the pendulum is the sum of the potential energy
of each mass;
V =m,gy, +mM,qy, + M;9y,
=V =-mgl, cos 6, +m,g (-l cosé, -1, cosb,)

(18)
+m,g (I, cosd, 1, cos6, —1,cosb,)

Recall that the Lagrangean is givenby L=T -V .
1 o 1 o 1 o1 L1 L1 .
s L= Eml|12¢912+5m2|12912+5m2|229§ +Em3|1265+§m3|229§ +Em3|326§
+m,11,6,6, cos (6, — 6, ) +myl,1,6,6, cos (6, - 6,) + myl, 16,6, cos (6, - 6;) (19)
+myl,1,6,6; cos (6, — 6, ) + m,gl, cos 6, +m,gl, cos b,
+m,gl, cos 8, + m,gl, cos 6, + m,gl; cos 4,
We now employ the E-L equations to obtain the equations of motion, 7e;
d| oL oL .
—| — |-—=0, j=12.3 (20)
dt{ 00, ) 00,
For the first generalized coordinate j= 1, we have;
L . . . .
5—9 =m0, + m,176, + m,1,6, cos(6, — 6, ) + m,l26,
1
+myl,1,6, cos (6, — 6, ) +myl,1,6; cos(6; — 6,)
oL

=7 176, (m, +m, +my) +1,1,6, (m, + m,)cos (6, - ,)
1

+myl,1,6, cos(6; — 6,)
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Lafe =176, (m, +m, +m;) +1,1,6, (m, + m,)cos (6, - 6,)
dt| 06,

+myl,1,6; cos (6, — 6;)

Furthermore

% =-m,L,1,6,6,sin (6, - 0,) —m,1,1,6,6,sin (6, - 6,) —m,l,1,6,0, sin (6, - 6;)

1
—m,gl, sing, —m,gl, sin & —m,gl, sin 6,

= % =-1,1,6,6,(m, + m;)sin (6, —6,) - m,l,1,6,6, sin (6,-6,)

1
— gl sing, (m +m, +m,)

d( oL oL o :
5[6_91]_6_91 =126, (m,+m, +my)+11,6,(m, + m;)cos(6,—6,)
+myl 1,6, cos (6, - 6,) +1,1,6,6, (m, +m,)sin(6,-6,) (21)

+myl1,6,0,sin (6, - 6,) + gl sin 6, (m, +m, +m,) =0

For the second generalized coordinate j= 2 in (1.20), we have;

%‘ =m,I70, + m,L1,6, cos(6, - 6,) + m,126,
2

+myl,1,6, cos (6, -, ) +m,l,1,6; cos(6, — 6,)

=126, (m, + m, ) + 11,6, (m, +m, ) cos (6, - 6,) + myl, 1,6, cos(6, - 6;)

d( oL . .
= E(%J =176, (m, + m,)+1,1,6, (m, + m;)cos(6, - 6,)
+myl 1,0, cos (6, — 6,)
Also,
oL L L
— =-m,,,6,6,sin(6, - 6,)—myl,1,6,6,sin (6, - 6,)
2
—myl,1,6,0, sin (6, — 6,) — m,gl, sin 6, —m,gl, sin 6,
:%: —1,1,6,0, (m, +my)sin (6, — 6,) — myl,1,0,0,sin (6, - 6;)

2
—gl,sind,(m, +m;)

d( oL oL .. .

E(G_HZ]_B_QZ =176, (m, + m,)+1,1,6, (m, + m;)cos(6, - 6,)
+myl,1,0; cos(6, — 6,) +1,1,6,6, (m, + m,)sin(6, - 6,) (22)
+myl,1,6,0,sin (6, —6,) + gl, sin 6, (m, +m,) =0

For the third generalized coordinate j= 3 in (20), we have;

% =m,I26, + m,1,1,6, cos (6, — 6, ) + myl, 1.6, cos(6, — 6,)
3
d( oL i : .
aenbyall myl;6; + myl 1,6, cos (6, — 6, ) + myl 1,6, cos(6, - 6;)
3
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Furthermore,

% =-m,l,1,6,,sin (6, - 6,) — myl,1,0,0,sin (6, — 6,) — m,gl, sin 6,

3

d( oL oL - : :
= E(G_HJ o0, =myl36; + myL 1,6, cos (6, — 6, ) + myl 1,6, cos (6, — 6;)

+mL1,0,6;sin (6, - 6,) + mL1,0,0,sin (6, - 6,)  (23)
+m,gl,sing, =0
Therefore, the equations of motion are;

176, (m, +m, +my) +1,1,0, (m, +m,)cos(6, - ,)

+myl,1,0; cos (6, — 6,) +1,1,6,6, (m, +m,)sin (6, - 6,) (24)

+m,l1,6,0,sin(6, - 6,)+ gl, (m, +m, +m,)sin g, =0

176, (m, +m,)+1,1,6, (m, +my)cos (6, - 6,)

+myl,1,6; cos(6, —6,) +1,1,67 (m, +m,)sin (6, - 6,) (25)

+myl,1,6,6,sin (6, — 6,)+ gl, (m, +m, )sing, =0

M, 126, +m,1,1,6, cos (6, — 6, )+ myl,1,6, cos (6, — ;)

L. A . (26)
+m;L1,6,6;sin (6, - 6,)+ m,1,1,6,0; sin (6, — ) + m,gl, sin 6, =0
Assuming equal masses and equal lengths of rods, ie, |, =l,=I,=1,
m=m,=m,=m.
The equations become respectively;
3126,m+21°6,mcos (6, — 6, )+ ml*6; cos(6, —6,) -
+21°6,0,msin (6, - 6,) +ml*6,6,sin (6, — 6, )+ 3gimsin g, =0
21%6,m + 21°6,mcos (6, - 6, ) + mI*6, cos(6, — 6;) 03
+21°07msin (6, - 0,) + mI*6,6,sin (0, — 6, ) + 2glmsin 6, =0
mlI*6;, + ml?6, cos(6, — 6, )+ ml*6, cos(6, - 6,) 09)
29

+ml*6,6,sin (6, - 6,) + mI*6,0,sin (6, — 6, ) + mglsin 6, =0

We assume the generalized coordinates 6,,6,,0; representing the angular

displacements are small so that;
. . 1 2
sing, ~ 6, sin(6,-0,)~6, -0, cos(6, —Hj)zl—E(ei -0;) Vi# |
The equations of motion for the coupled rigid body then become;
36, + 26, {1—%(91 —92)2}9'3 [1—%(91 —93)2}
.. .. 3g
+26,0,(6,—6,)+6,6,(6, —93)+T91 =0
=36, +26,+6,-6,(6,-6,) —%93(91 -6,)
3 (30)
+20,6,(6,-6,)+6,6,(4, —93)+|—g91 -0

Following the above procedure, we have for Equation (28)
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26, + 26, [1—%(91 —92)2} +6, [1—%(92 —93)1
5 .o 2g
+207(6,-6,)+6,6,(6,-6,)+ =76, =0

1. 1

= 20,+260,+6,-=6,(6,-6,)" -=6,(6,- 8,
2 2 31)
+2éf(.91—92)+.9'293(92—93)+2|—992=o
Similarly for Equation (29) we have;
é3+6’1[1—%(91—6’3)2}+9{1—%(6’2—6’3)2}
+9193(91—93)+.9'29'3(92—93)+%93:0
.1 , 1. )
:93+01+03—56’1(01—03) —56’3(92—6’3)
(32)
+9’193(91—93)+929'3(92—93)+|g93=0
The model equations for the given problem are summarized as;
914-582 +§93—§92(91—92) —693(91—93)
2 .. 1.. g
+§Hl6’2(6'1—6’2)+§¢916’3(91—6’3)+T91=0
.. .1 . 1. 2 1. 2
0, +6,+=6,-=6,(6,-6,) -=6,(6,-6,)
2 4 4 (33)

+9’f(91—92)+%9'293(92 —0,)+30,=0

,+0,+0,-~0,(6,-0,) -

1.3. Stability Analysis

For the purpose of stability analysis we must vectorize the above coupled system
of differential equations.
Let u;=6,u,=6,,u; =6, and U, =u,,U, =Ug,U; =Ug, hence

U, =u,,U, =Ug,U,; =Us Thus the vectorized system of equations for the coupled

pendulums is;

U, =u, (34)
U, = U (35)
Uy = Uy (36)
2 1 2 2
Uy = =5 U5 =l + 2 Us (U =) +=ug (U, —uy)
(37)
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1
u5——u4—5u6+—u4(ul U, ) + =g (U, —u, )’
(38)
_ui(ul uz) usue(uz ua)_%uz
Ug =—U, —Us +=U, (U, u3)2+ Ug (U, ug)2
(39)

—U,Ug (ul _Ua)_usue (uz _us)_%us

We shall investigate the stability of the pendulum at the critical point, where
U, =U,=U;=U,=U;, =U; =0. This implies that u, =0,u; =0,u; =0 and by
substitution our critical point is (0,0,0,0,0,0) .

Equations (34)-(39) can, for convenience) be written simply as;

u = fl(ulv""us)
: (40)
Ug = fo (U, Ug)
where the f;(u;,-+-,Ug),i=1-,6 represent the RHS of the system.
The Jacobian of the system is written

Jf(u){%]

Computing the entries and evaluating at the critical point, we get

(41)

0
0
0

0
0
0

0
0
0

1
0
0

-1

0

0

The eigenvalues of the matrix Jare given by |J ¢ —Al | =0.

-1

This simplifies to give;

A° +(—3a —%]/14 +

0

0

2

1 0
0 1
0 O

0
0
1

5/13 +(30:2 —ga]l—as =0

(42)
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D(t,Y)=

where a =-g/I. For simplicity we take |=1, and naturally g=9.8.

We now employ the POLYROOT algorithm in MathCad [7] to solve the po-

lynomial Equation (42).

Define a vector vof the coefficients beginning with the constant term, Ze.:

T
v=|-a® 0 (3a2+§aj 2 [—Sa—gj 01
2 3 2

[~0.703-3.051i|
~0.703+3.051i
0.282+3.118i
0.282-3.118i
0.421-3.102i
| 0.421+3.102i |

. polyroots(v) =

(43)

(44)

Clearly not all the eigenvalues have negative real parts, we therefore conclude

that the critical point of the system is unstable.

2. Simulation of the System of ODEs

In MathCAD we define the vector of derivatives, viz.;

2 1 1 1 1

2
Fre-3¥ersY (Y=Y, )’ 5% (Y=Y, )’ -V, (Y —Y,) -3%% (Y=Y, )’ —%YO

1 1 2 1 1

-y, —EY5 +ZY3 (Y, —Y,) +ZY5 (Y=Y, = (Ya) (Y —\(1)—5\(4\(5 (Y,=Y,)-

1 1

-Y;-Y, +ZY3 (Yo =Y, )2 +EY5 (Y1 =Y, )2 =YY, (YO —YZ)—Y4Y5 (Y, —Yz)—%Y2

Additional arguments for the ODE solver are
t, =0 Initial value of independent variable

t ;=10 End value of independent variable
0.01

0

Vector of initial function values

o O O o

num:=1x10° Number of solution values on [£, #]

Solution Matrix

S1:= Rkadapt(Y,,t,,t,,num, D)
t=51" Independent variable values
U = $1% First solution function values

u, = 51% Second solution function values

g
o
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Uy = $1° Third solution function values
u, = 51/ Fourth solution function values
Ug = $1® Fifth solution function values

Ug = $1° sixth solution function values

3. Discussion

Table 1 is the MathCad solution matrix for the system of differential equations
describing the dynamics of the coupled pendulums. This solution matrix is ob-
tained using the Runge-Kutta algorithm. Figures 2(a)-(c) depict the graphical
profiles of the solution curves. We recall that the variablesu, =6,,u, =6,,u, =6,
are actually the generalized coordinates, representing the angular displacements
from the vertical position, while their derivates with respect to time
U, =Uu,,U, =Ug,U; =U, are the angular velocities.

The graph of 6,(t) (Figure 2(a)) starts from the origin, then performs irre-
gular oscillations with increasing amplitude over time. Figure 2(b) and Figure
2(c) depict a similar variation for 6,(t) and 6,(t).

Figure 2(g) is the profile of the combined graph of 6,(t), 6,(t) and 6,(t)
against time. This is important because although the coupled pendulum per-
forms irregular oscillations, at specific times the oscillations for each mass inter-
sect, meaning they all pass through the same point. Furthermore, we observe
that the respective amplitudes for each generalized coordinate is increasing.
Figures 2(d)-(f) depict respectively the variation of the angular velocities

Table 1. Solution matrix for the ODE.

0 1 2 3 4 5 6
0 0 0.01 0 0 0 0 0
1 0.0l 9.995x107° 1.631 x 10 1.637 x 10® —9.799 x 10™* 4.891 x 10°® 4.915x 10°°
2 001 9.98x107 1.131x107 1.313x 107 -1.959 x 10 1.952x 107° 1.972x 10°°
3 0.01 9.956x10° 4.39x 107 4.439x 107 -2.936 x 10 4.381 x 10° 4.448 x 10~°
4 001 9.922x107° 1.038x10° 1.054 x 10° —3.911 x 107 7.768 x 10 7.924 x 107°
5 0.01 9.878x107° 2.024 x 10° 2.062 x 10™® -4.882x 10 1.21x10™* 1.24x10™*
6 0.01 9.824x107° 3.489 x10™° 3.569 x 107® —5.849 x 10 1.736 x 10™* 1.789 x 107*
7 0.01 9.761x 107 5527 x10™° 5.674x10°° —6.811 x 10 2.354 x 10™* 2.438 x 10™*
8 0.01 9.688x107° 8228 x10° 8.478 x 10°® -7.767 x 10~ 3.062 x 10™* 3.187 x 10™*
9 0.01 9.605x107° 1.168 x 10~ 1.208 x 10° -8.716 x 10~ 3.859 x 10™* 4.036 x 10™*
10 0.1 9.514x107 1.597 x 107 1.658 X 107 —9.657 x 107> 4.741 x 10™* 4.983 x 10™*
11 0.11 9.412x107 2.119x 107 2.208 X 107° -0.011 5.708 x 10™* 6.029 x 10™*

12 0.12 9.302x 107 2.742x107° 2.867 X 107° -0.012 6.756 x 107" 7.172 x 10™*

13 0.13 9.182x 107 3.473x107° 3.645%x 10°° -0.012 7.884x 107 8.41x10™*
14 0.14 9.053x 107 4.321x107° 4.552x10°° -0.013 9.088 x 10 9.743 x 10™*
15 0.15 8.916x 107 5.597 x 10™° 5.597 x 10°° 1.037 x 107*
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Figure 2. (a) Graph of u, against time; (b) Graph of u, against time; (c) Graph of u; against time; (d) Graph of u, against time; (e)
Graph of u; against time; (f) Graph of u; against time; (g) Graph of u;, u, and u; against time.
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0.2

u3

(©)

Figure 3. (a) Graph of u, against ul; (b) Graph of u; against wu,; (c) Graph of i against u,.

6,(t)=u,, 6,(t)=u, and 6,(t)=u,. These velocities are clearly oscillatory
and irregular with increasing amplitude.

Figures 3(a)-(c) are respectively the phase portrait for 6, (t) =u, against
6, (t)=u,, 6,(t)=usagainst 6,(t)=u, and 6,(t)=u, against 6,(t)=u, .
For each of the phase portraits we obtain a spiral source.

4. Conclusions

Coupled oscillators in general, are useful in the study of vibrations and as such
computing the specific modes of vibration for oscillating systems is very impor-
tant from a practical point of view, particularly in engineering. The study of
coupled systems is useful in mechanics, electronics as well as biological systems.
It is also pertinent for the biomechanical analysis of animals, humans or robotic
systems. An early application of mathematical modeling in biological systems
was first pioneered by Van der Pol in 1928. The Van der Pol oscillator [8] was
used to explain some normal and pathological rhythms of the heart.

Our research work has clearly demonstrated the power of mathematical mod-
eling, where the behaviour of a complex mechanical system can be captured in
the form of a system of ordinary differential equations. Furthermore, with versa-
tile mathematical software such as MathCAD, the system can be analyzed in de-
tailed graphical format to give a deep understanding of the inherent dynamics as

well as its stability properties.
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