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Abstract 
 
In this paper we propose methods for detecting the number of pores based on dynamic optimization tech-
niques. An illustration is provided and the results are discussed based on Government’s objectives and con-
trol variables. 
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1. Introduction 
 
How poverty is measured is a central topic in economic 
and policy analyses. However, recently, it has clearly 
appeared that it is not only the determination of particu- 
lar poverty levels at particular instants (based on several 
indices available in the literature) that matter the most. 
The paths of poverty levels over time are also critical and 
crucial indicators in assessing the efficiency of poverty 
measures (Ciarlet, 2006 [1]).  

This paper adds to the literature on this topic by pro-
viding methods for measuring poverty in dynamic envi- 
ronment (Dia and Popescu, 1996 [2]). The proposed ap-
proach answers the following question: How important 
are dynamic optimization techniques for poverty meas-
ure and analysis? 

The remainder of the paper is organized as follows: In 
Section 2, we address the problem of poverty measures 
in a dynamic context based on optimal control. An illus-
tration is provided and discussed in Section 3. Finally, 
some concluding remarks appear in Section 4. 

 
2. Dynamic Poverty Measures 

 
In the context of dynamic optimization, time does matter 
and the paths of poverty indexes are important. 

 
2.1. The Problem in Discrete Time 

 
Consider 0 an initial instant. We assume that a static 
model has been used to determine the number of pores in 
a given population based on a given poverty line. Let  

be the time index, 

t

t

*Q
tY  , the vector of revenues of 

the  pores who have been identified at time . Let Q t
p

t , be the vector of the control variables which 
represent the set of commands. The objective is to meas- 
ure the performance of the system. To this end, we con- 
sider an objective function to optimize subject to some 
constraints. The above problem can be formalized as 
follows (Rustagi, 1997 [3]) 
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where the second equality represents the constraints on 
the state vector which is the vector of revenues t , t  
the objective at each period of time  and t  the con-
trol variables. The problem now is to choose the best 
control vector t , at each period of time, according to 
available resources, such that the above system is satis-
fied (Rustagi, 1997 [3] and Mart, 1997 [4]). In this type 
of problem, it is the final stage which is the most impor-
tant since the objective is to reduce or eliminate poverty. 
This of course depends on intermediary objectives. More 
specifically, the dynamic optimization problem can be 
set up as a minimization problem of 

Y a
t u

u

J  (Troutman, 
1980 [5]), 
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How to justify the choice of the function  
? In the above problem, it is the final revenue 

( ,k Y ,t ta
,tu t)
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which is the most important, i.e., 1T . In fact, the ob-
jective is to get the individuals in the vector of revenues 

1T out of poverty. Therefore, intermediary objectives to 
be reached and any set of decisions at time  should 
be such that, , where 

Y 

Y 

1T 
,  t

iY Z i  Z is the poverty line. 
From a mathematical point of view, at 1T  , the 
Euclidian norm of , i.e., 1Ta  1  T   must be at least of 
the same order as , the poverty line of the popula-
tion under consideration. To this end, it suffices to prove 
that, 
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where o is the Landau notation. 
Equation (4) has an immediate solution 
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In addition, another constraint is that when , 
the level of richness of the individual , , must be in 
adequacy with the poverty line if not higher i.e., i must 
be higher than the poverty line. Therefore the constraint 
on the final objectives must be such that, 
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Regarding the system to control,  , ,Y u1t t

1 1T 

t tY g  

0 1  for simplicity, we consider a linear 
system. Therefore, 
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where tA  is a square matrix of order , i.e.,  Q
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B b . These matrices can be  

identified using economic theory. Summarizing the dis- 
crete time problem we have (Troutman, 1980 [5]), 
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2.2. The Problem in Continuous Time 
 
Based on the above developments, by analogy and with 
some minor modifications, in continuous time, the dy- 
namic problem can be formalized as follows, 
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Set G J   and 
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2.3. Solution 
 
To conserve space, the solution given here is related only 
to the continuous case. Deduction of the discrete time 
solution is then straightforward.  

Let 0 be the maximal value of the objective function. 
It is easy to verify that, 
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Let us assume that is differentiable in  and Y . 
Then, 
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with  and where 0  Y

V

Y


 


 and where is the  

gradient operator. Dividing by and letting , we 
get the Hamilton-Jacobi-Bellman partial derivative equa-
tion of the form, 
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We then have the following theorem: 
Theorem 1 
Assuming there exists a differentiable function  :V

 0 , Qt T     which satisfies (12).  
Assuming that:  0: , Qt T    p  with   a 

continuous function in t and Lipschitz in Y and satisfying, 
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Then, is a control optimal feedback for problem 
(13), i.e., is the minimum of 


V J .  

Proof: (See the Appendix). 
In the continuous case, by analogy to the discrete case, 

the general model proposed here is, 
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The specific model proposed is, 
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 ia T


 is defined and is a square integrable function on 
0 ,t T  and such that 
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where  iY T Z ,  1, ,i Q   ,   pu t   with ju  
a continuous step function 1, ,j p   . 

Theorem 2 
Under the assumption of controllability of the above 

system, the problem of minimization admits an optimal 
solution. Paths and optimal controls are obtained by 
resolving the following system, 
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where  t  is the vector of Pontryagin multipliers and 
  TfT Y  the space containing conditions on the Pon-

tryagin multipliers.   fT Y T  is defined in the Appen-
dix.  

Proof: (See the Appendix). 
 

3. A Parametric Illustration  
 
As an illustration we consider a general problem faces by 
a Government in determining dynamic poverty measures 
over time. To get a more interesting case, we consider a 
parametric problem. 
 
3.1. The Problem 
 
Consider a parametric dynamic optimization problem 
where government authorities have some flexibility on 
intermediary objectives as well as the control variables. 
The parametric dynamic optimization problem can be 
formalized as follows, 
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where a functional such that  ia t   2

0
d

T

ia t t   ,  

 ,Q QA M   and  ,Q pB M   and where for sim- 
plicity we assume that the coefficients of A  and B are 
not time dependent. For the sake of flexibility, the objec- 
tives as well as the control variables are parameterized so 
as to account for possible changes during the implement- 
tation of Government economic policies; 1 2,m m  .  

 
3.2. Solution 
 
Using the Pontryagin principle, we get the following 
optimality system, 
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The above differential system can be written as, 
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The differential system is now equivalent to, 
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where is a constant of integration. and  1c
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2c being a constant of integration as well. Since,  
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The optimal control is given by  u t    
2

1

2
u t t

m
  .  

We now discuss several cases.  
 
3.3. Discussion 
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intermediary objectives and control variables be realistic 
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Poverty can be gradually improved if intermediary 
objectives are reachable and control variables reasonably 
selected.  
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Realistic intermediary objectives and well chosen con-
trol variables may result in positive impacts in terms of 
poverty alleviation. 

Case 5:  fixed and fixed. 1
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Fixed objectives can be beneficiary for poverty im-
provement but many control variables can negatively 
affect the system. 

Case 7:  and . 1m  2 0m 
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4. Final Remarks 
 
How important are dynamic optimization techniques for 
poverty analysis? In dynamic settings, the paths of in- 
comes are essential and the paper provides methods ac- 
cordingly. It remains to establish optimality and stability 
criteria for the characterization of the various paths in a 
future research. 
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Appendix: Theorems and Proofs 
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We then conclude using the Hamilton-Jacobi-Bellman 

equation and the fact that    *
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At the optimum, we have 
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2) If 0 0p  , then . By assumption we 

have, 
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controllability is equivalent to  
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We claim that if the system is controllable, then 0 0p  , 

otherwise from         t0
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Hence, 
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   0T 0t    , which is one condition 

since and 0p  t
0p
 cannot both be equal to zero at a 

time. Therefore, 0 . We can now normalize the 
system by setting 0p 1 . The path and optimal control 
are obtained by solving the following system, 
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