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Abstract 
 
This paper approaches the problem of the potential for complex-valued solutions within linear macroeco-
nomic models with rational expectations. It finds that these problems are associated with a specific solution 
method for the underlying model. The paper establishes that the danger of complex-valued solutions always 
can be eliminated by forcing those solutions to fulfill additional constraints. These constraints are essentially 
restrictions on the degrees of freedoms in indeterminate solutions. 
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1. Introduction 
 
Within the solution of dynamic economic models with 
rational expectations regularly some kind of matrix de- 
composition technique is employed in order to separate 
the stable (generalized) eigenvalues from the unstable 
(generalized) eigenvalues. Examples are the eigen de- 
composition, the Schur decomposition or the generalized 
Schur decomposition. All these decompositions share the 
property that for real matrix polynomials it is sometimes 
less costly to compute complex decompositions than real 
decompositions. This raises the question whether we can 
nevertheless assert real-valued solution paths. [1] shows 
for the case of the eigen decomposition that this can be 
achieved by choosing appropriate constants associated 
with each eigenvalue. This paper discusses the same 
question for the case of the generalized Schur decompo- 
sition. It shows that while the structural properties of the 
decomposition methods support real-valued solutions, 
they do not always suffice to assert such solution paths. 
In particular, the structural properes of the generalized 
Schur decomposition can not assert real-valued solution 
paths for the case that the model’s expectational error is 
explained as a function of the exenous shocks to the 
model as e.g. in [2]. Hence, in order to get a real-valued 
solution of the model for this case, it is necessary to in- 
troduce additional conditions to force the solution to the 
real domain. 

The paper develops such conditions. Of course this 
requires some degrees of freedom within the solution of 

the model, since a unique solution does not allow for the 
development of additional conditions. Therefore the pa- 
per applies to solutions of rational expectations models 
which are characterized by indeterminacy. Within this 
solution it attempts to use the available degrees of free- 
dom to solve for a constellation, in which the coefficients 
of endogenous and exogenous variables are forced into 
the appropriately dimensioned real spaces . If 
such a constellation exists, the entire solution of the 
model is a real-valued one. To this purpose this paper 
uses the fact that the product of two complex matrices 
generates an imaginary part which consists in the sum of 
the products of the real part of one matrix and the imagi- 
nary one of the other matrix. Within this imaginary part 
eventually complex-valued exogenous components can 
be balanced by the imaginary part of the components 
containing the degrees of freedom. Thus the product’s 
imaginary part is set to zero. Applying this to the coeffi-
cient mentioned it can be guaranteed that the coefficient 
is a real-valued matrix. 

mn

The conditions obtained are sufficient conditions for 
the existence of a real-valued solution. These conditions 
built on the model’s transversality condition, which is 
integrated into the model’s solution in a specific way that 
does not allow any complex values for the model’s en-
dogenous variables. Thus, if necessary, the conditions 
restrict the degrees of freedom available in the solution 
further beyond the scope of restriction already obtained 
by the mere integration of the transversality condition in 
[3]. For the case that the transversality condition does 
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only imply real solutions, no further conditions beyond 
the fact that all degrees of freedom must be restricted to 
the real domain, are needed. 

The paper is organized as follows. After this section’s 
introduction section 2 presents the general method to be 
employed. In sections 3 and 4 separate algebraic condi- 
tions are developed which need to hold simultaneously in 
order to guarantee a pure real-valued solutions. Section 5 
concludes. 

 
2. General Method 

 
According to the solution algorithms for linear dynamic 
models involving rational expectations, i.e., 
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presented in [4,5,6-10], among others, any solution to 
this type of models can be written in form of a VAR(1)- 
process 
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Herein  denotes the vector of endogenous 
variables in period , while  is an exogenous shock 
vector realized in period . 1t

 T T
t tv w

t tz
t    is the vector of expec-

tational errors in the endogenous variables denoting the 
difference between the unconditionally expected values 
based on information available in period  and the val-
ues actually realized in period . The shock vector 

t  might display some autocorrelation which explains 
the appearance of expected future shock terms in Equa-
tion (2). In addition, the model in Equation (1) might be 
required to fulfill the transversality condition 
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Herein t  denotes the operator for the unconditional 
expectations based on information available in t . As 
pointed out in [9] this requirement, if not guaranteed by 
appropriate initial conditions, essentially restricts the 
growth of the model’s unstable exogenous variables. 

E

Depending on the characteristics of the used solution 
method the coefficients 1  are defined as spe-
cific functions of the original coefficient matrices. The 
central idea of asserting a real-valued solution starts with 
the fact that often some of the coefficients are real by 
construction. This claim will be discussed in the next 
section for coefficients associated with the endogenous 
variables and the expectational error terms. Afterwards it 
will be analyzed with respect to the coefficient of the 
exogenous shock term in the subsequent section. For any 

coefficient for which this claim does not hold, we will 
use any available degrees of freedom within that coeffi-
cient in order to force it into the real domain. Thus the 
indeterminacy allows to guarantee a purely real-valued 
solution for the model. Therefore such a coefficient 

( , , ) 

  
will be decomposed into potentially complex,  , and 
real, i.e.  , factors. The product of this factors has the 
form 

      ( ( ) ( )) = ( ) ( )i      i    

i 1
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where  denotes the square root of , while   ( ) 
denotes the real (imaginary) part of its argument. When-
ever the last summand contains enough degrees of free-
dom in order to be forced down to zero, the entire coeffi-
cient will take on values from the set of real numbers. 
Thus the entire solution of the macroeconomic model 
will not include any complex numbers. 

As already indicated the paper restricts the analysis on 
the case of solution methods based on the generalized 
Schur decomposition. Nevertheless, similar arguments 
could be obtained for the case of solution methods based 
on eigenvalue decompositions, Jordan decompositions 
and ordinary Schur decompositions. This paper focuses 
on the generalized Schur decomposition, because models 
which can be solved by those methods nest all models 
solvable by the mentioned alternative decompositions. 

In addition the paper distinguishes two approaches to 
balance the distorting influence of expectational errors 
appearing within any rational expectations model. The 
first approach has been presented in [8] and [10]. Herein 
the mentioned distortion is eliminated by explaining the 
expectational error’s influence on the model’s stable part 
as a function of it’s influence on the model’s unstable 
part, which itself is forced to be zero by the initial condi-
tions. On the other hand [5] explains the expectational 
error directly as function of the exogenous shock term. 
As shown in [2] this does not exclude sunspot solutions 
because expectations might be driven by an additional 
component which do not contribute to the model’s un-
stable part. For both approaches we also separate be-
tween the cases in which either a microfoundated trans-
versality condition is explicitly integrated into the solu-
tion as presented in [3] or the transversality condition is 
only used in the traditional manner, e.g. [4], by forcing 
the non-state variables to take on appropriate initial val-
ues. 
 
3. Real-Valued Coefficients for Endogenous 

Variables and Expectational Errors 
 
In order to prove the claim that the coefficient of the en-
dogenous variables as well as those of the expectational 
errors do not include complex numbers, some properties 
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of the generalized Schur decomposition of the matrix 
pencil  will be used. This decomposition takes 
the form 

( , )H G

=HRSP G                  (5) 

= ,HRTP H                 (6) 

where  and  are unitary matrices and T  is an 
upper triangular matrix. Depending on the exact form of 
the decomposition  is either upper triangular or upper 
Hessenberg. The details of the computation of this de-
composition are discussed in [11]. For the purpose of the 
present paper just one characteristic of this algorithm is 
needed. So long as  is only transformed up to upper 
Hessenberg form, i.e. the socalled real generalized Schur 
decomposition, the operations involved will secure that 
for any real-valued initial matrix-pencil both  and T  
are real-valued matrices, while the matrices  and P  
will be potentially complex-valued1. In order to exploit 
these facts, the decomposition in Equation (6) is premul-
tiplied by the factor 
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 associated with the 
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 ( ), while ij  denotes essentially a block of 
 after partitioning the latter according to the criterion 

of stable and unstable eigenvalues. Symmetric notations 
hold for matrices  and .  denotes the pseudo- 
inverse of any matrix , while 

= 1i
S
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HX  symbolizes the 
conjugate transpose of that matrix. 

For the solution methods based on generalized Schur 
decompositions [5] shows that the coefficients 1  and 
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in which the matrix depends on the specific solution 
technique chosen and e question whether a transversal-
ity question is integrated or not2. Subs
(7) and the expressi obtained for  and  into 
these coefficients an plifying yields: 

Φ  
 th

ons 
d sim

tituting Equation 
1

11
S 22T

1 1 1 1 1 1 1 1 2=   H H H H P P G R H P P G R ΦR H    (10) 

2 1 12 2 1 2 2 2

1
2 2 2 2

=1

= (  (   ) )

          ( ) .

R

H H H
q

H q H

q

 



 

 



G R S P G R ΦR G I P P

P P H GP P H C


(11) 



Because the product of any set of columns of a
factor of the generalized Schur decomposition with its 
pseudoinverse, i.e. with its conjugate transpose, is a 
real-valued matrix by construction3 and the expre

 unitary 

ssion 

1 12 2
HR S P  can be proven to be real-valued as well, the 

two expressions in Equations (10) and (11) are real-val-
ued matrices iff the expression 1 2

HR ΦR  is real-valued. 
For the solution along the lines proposed in [10] the 

expression 1 2
HR ΦR  is a zero matrix,4 if there exists an 

olution, while for any indeterminate solution 
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needs to hold. Herein B  denotes the matrix = B I  
GG  . Thus real-val oefficients require ued c 1 12 2

HR T R  
pres-to be real

sion can 
-valued. Acco g to Equation (6
be rewritten as 

rdin ) this ex

1 1 2 2
H HR R HP P

that both 
, which is 

truction. This pro  and 
real by 

2 qcons ves 1   are 
purely real-valued coefficients. 

e solution for Φ  in the method proposed ] 
again depends on the question whether it satisfies an ex-
plicit transversality condition or not. [3] reveals that in 
the second case there are no additiona  conditions on Φ  
except for the fact that it does need to e of ap riate 
dimensions. Hence any matrix

1If the result of the generalized Schur decomposition is presented as a 
pair of triangular matrices and the appropriate pair of unitary matrices, 
the real-valued upper Hessenberg form can be reconciled by simple 
unitary transformations. 
2Details on this topic can be found in [5], [8] and [10]. 
3This fact stems from the possibility presented in [11] to express both 
unitary matrices as a product of symmetric orthogonal factors. 
4[10] finds a solution for Φ  by solving 2 1 . If no 
consistent solution exists, the model is supposed to have no solution at 
all. 

=
H H

ΦR G R G

Th  by [5  

l
 b prop

 which produces a real  

1 2
HR ΦR , qualifies as a solution. Due to the fact that 1R  
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has full column rank and 2
HR  has full row rank, any 

solution involving nullspaces reduces to the trivial solu-
tion =Φ 0 . Additional solutions are given by any m
trix of the form 1 2

HR ΨR  where Ψ  is an arbitrary 
quadratic matrix in n n . On the other hand an explicit 
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T is a arbitrary matrix of appropriate dimen- 
sions with at least the same rank as the factor with which 
it is postm plied, while is arbitrary, but of appro- 

lutions discussed the 
coefficients 

ulti E  
priate dimensions. For all three so

1  and 2 q  are purely real-valued coef-
ficients. 

Hence, we can conclude this section by emphasizing
that the structural properties of the generalized Schu
composition guarantee the existence of real-valued coef-
ficients for any solution obtained by the method of [10], 

r solut
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r de- 

while fo ions derived along the arguments of [3,5] 
those properties are not sufficient, because the solution’s 
degrees of indeterminacy allow for complex-vaued coef-
ficients as well. In order to avoid those, the degrees of 
freedoms need to be restricted in the sense that the inde-
terminacy is ited to ar subspaces, which render the 
mentioned coefficients to real-valued matrices. Never-
theless, the existence of a real-valued solution is in any 
case asserted by the possibility of the trivial solution for 
J , which holds under any circumstances. 

 
4. Conditions for a Real-Valued Coefficient 

of the Contemporary Shock Variables 
 

In the process of establishing the conditions for a real- 
valued coefficient of the contemporaneous shock vari-
ables the paper follows the same classification as used in 
the last section. Thus again the solution are decided into 
one balancing the expectational errors within the unsta-
ble part of the model and one explaining those as func-

ns of the shock terms. In addition in
methods the cases in which the transversality condition i
or is not used explicitly are distinguished as well. 

The first method produces the coefficient 

2 1 1 1 1 2( ) .H H H P P G R R ΦR C       (15) 

This coefficient appears to be real-valued whenever 
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1 2
HR ΦR  is real. According to the results of the last sec- 

tion this condition holds always. Hence, the model’s so- 
lution is real-valued by construction and no further con-
ditions are required. 

For the second method the coefficient 2  has the 
general form 
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ving  F  

 
( )

= ker ( ) ( ) ,
 

  
F

Ξ Ξ E  
( ) F

where E  is arbitrary, but real-valued and of appropriate 
dimensions. Thus the solutions for F  are gi

   = i ker ( ) ( ) . F I I Ξ Ξ E    (19) 

finally Z

stan

a real-valued coefficient 2 . Aga , sim arly as in the 
last section, it should be pointed out that Equation (17) 
can be fulfilled independently of the rank f Ξ  by the 
trivial solution for F . Hence 

r an2  
 

unde s. 

5. Conclusions 
 
In this paper we have established the conditions for

path to any 
linear rational expectations model wh h is based on the 
generalized Schur decom sition. For solutions, which 
explain the influence of the expectational error on the 
model’s stable part as a function of its influence on the 
model’s unstable part, the structural properties of the gen- 
e lized Schur decomposition suffice to guarantee that the 
e
explaining the expe
ous shock term those n

exclude complex-valued solution paths. Nevertheless, 
existing degrees of freedom allow to establish additional 
constraints which force the solution paths into the real 
domain. The paper shows also that the trivial solution for 
the degrees of freedom generate a real-valued solution 
path under any circumstances. Thus the existence of at 
least one of those paths is asserted. 

These results imply that a direct explanation of the 
expectational error by the exogenous shock term gener-
ates the potential of complex-valued solutions. Certainly 
this can be interpreted as a disadvantage compared to the 
methods which force the unstable variables to balance 
each other and use those to explain the expectational 
error’s influence on the stable part. On the other hand the 
first approach allows for a solution of models which have 
been unsolvable with the second approach. Since it is 
always possible to find solutions obtained by the first 
approach which take one pure rea

ncludes that the mentioned disadvantages of this ap-
proach are balanced by its advantages. Hence this paper 
supports a more wide-spread application of the method 
presented first in [5] for the solution of macroeconomic 
models. 
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