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Abstract 
Radiative decay of heavy ground state vector meson V  Pγ is treated 
semi-classically in the scalar strong interaction hadron theory. The treatment 
successfully employs the new wave function of the vector meson updated here. 
The ratio of the available J/ψ and D*± decay rates agrees with prediction. The 
values of the predicted rates are also in order of magnitude agreement with 
measurements. These agreements are the only ones directly computed from a 
first principles’ theory. 
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1. Introduction 

Radiative decay of heavy ground state vector meson V  Pγ has been treated 
earlier [1] and Section 6.4 of [2], hereafter denoted by I, in the scalar strong in-
teraction hadron theory [3]. The dimensional approximation used was unsatis-
factory and the results disagreed with later data [4]. Further, the meson wave 
functions used in these earlier works have recently been updated [5]. The pur-
pose of this paper is to provide a revised treatment of the decay V  Pγ taking 
into account these two developments as well as including a new gauge field 
component ignored earlier. 

This paper is divided into two following sections. In Sec. 2, the wave function 
for pseudoscalar mesons at rest I (4.3.2) is replaced by [5 (8a)] and that of the 
vector meson I (4.3.3) by a corrected wave function in (1.6) below. The wave 
functions of heavy, slowly moving pseudoscalar mesons treated in I Section 3.5 
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are replaced by new ones in §2.3 below. These results are then used in the new 
approach in Sec. 3 to evaluate the V  Pγ rates semi-classically. 

2. Meson Wave Functions 

The scalar strong interaction hadron theory allows inherently for two types of 
quark-antiquark interactions, a Coulomb type and a harmonic oscillator type [3, 
§7], I (3.2.8). When the theory was initially being developed in the early 1990’s, 
data suggested that the confining potential is of Coulomb plus linear type [6] [7]. 
Since a linear confinement at large quark separations is inherent in the theory [3, 
§7], I (3.2.19) the Coulomb type of potential was, somewhat indiscriminatingly, 
chosen. 

Such a potential could rather successfully account for ground state meson 
spectra [8], I Section 5.3-4, but failed to account for the excited meson spectra I 
Section 5.5-7. This was largely remedied by replacing the Coulomb potential by 
the harmonic oscillator type [5]. Here, a correction to the ground state vector 
meson wave function in [5] will be made. 

In §2.1, the updated ground state meson wave function is given. The wave 
equations of a nonrelativistic pseudoscalar meson are given in §2.2 and the wave 
functions for heavy mesons are derived in §2.3. 

2.1. Wave Functions of Ground State Mesons at Rest  

For ground state singlet mesons, I (3.4.1) or [5 (4)] with J = 0 holds. The up-
dated and normalized pseudoscalar meson wave function using the harmonic 
type of potential reads [5 (8b) with J = 0]. 

( )
3 4

2 3 2
00 00 00

1 exp , 0.0577 GeV , 0
2 π

h hd dr r Jψ α α   = − = = =   Ω    
  (1.1) 

in which dh = 0.07 GeV2 of [5 (11)] has been used.  
For ground state triplet mesons, I (3.4.3) or [5 (4)] with J = 1 derived from I 

(3.2.11a) is incorrect in two signs and is replaced by 

( ) ( ) ( )
22

2 2 210
0 1 1 12 2

2 2 0,
4m h m

Ed d r M r r r
r r r r

ψ ψ χ
 ∂ ∂

− + + − + − = = ∂ ∂ 
   (1.2) 

The nonlinear potential Φc1 there has been dropped in the linearized (1.2) 
which, like (1.1), has a harmonic oscillator type of solution [5 (8a)] 

( ) 2
10 0

0

1 exp , 0, 0, 0, 2
2

n
sh

h odd r
dr r a r d a a n nν

ν
ν

ψ +

=

 = − > ≠ = = Ω  
∑   (1.3) 

where nr is the radial quantum number. An extra subscript 0 has been added to 
indicate that ψ10 is of zeroth order in later perturbational calculations. Following 
[5 (9)], the series terminates when 

( )( )
( )( )

22
10 0

2

1 12
2 4 0, 1 or 2

2 1 2

h p r m

n n

d s n E m m d
a a s

s n s n+

 + − − − + − 
 = = =

+ + + − +
   (1.4) 
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These gives the vector meson mass E10,  

( )22
10 0

1 1 5 , 1, 2
4 4 p r m hE m m d d s n= + − + = =              (1.5) 

Here, the lowest allowed s and n values have been chosen. The choice n = 0 
would lead to a mass E10 < E00, the mass of the corresponding pseudoscalar 
meson, contrary to data. Therefore, the next lowest value n = 2 is chosen. This 
relation is the same as [5 (10)] with J = 1 and n = 0 for vector meson so that the 
spectra found in [5] remain unchanged. The only difference is that the wave 
function [5 (8b) with J = 1] is replaced by the updated, normalized wave func-
tion for a vector meson obtained from (1.3) 

( ) ( )2 2 3 5 2
10 10 10

1 1 2 exp , 2.44 10 GeV
2

h
h

dr r d r rψ α α − = − − = × Ω  
    (1.6) 

2.2. Wave Equations for Nonrelativistic Pseudoscalar Mesons  

The starting point is I §3.5.1 which introduces the small parameter  

0 00 1K Eε =                           (1.7) 

where K is the momentum of the nonrelativistic pseudoscalar meson. Expand 
the meson energy EK in I (3.1.6) and the wave functions in I (3.1.7a), suppressing 
the relative time factor in I (3.1.9), in the form 

( ) ( ) ( ) ( )0 0 , , ,i i K J i
i i i

x x x x E Eψ ψ ψ ψ ψ χ= = → =∑ ∑ ∑       (1.8) 

where i denotes the ith order in ε0. Only freely moving mesons are considered so 
that the nonlinear potential Φc in I (3.2.8) drops out according to (1.1, 3) where 
Ω  ∞. Therefore, Φm of I (3.2.8a) is independent of the meson wave functions 
(1.1, 3). 

To zeroth order in ε0, I (3.5.8) goes over to I (3.2.10b) and 

( ) ( ) ( ) ( )00 00 0 0 000
, 0, Kr r r r E E Eχ ψ χ ψ= − = = = =         (1.9) 

To first order in ε0, I (3.5.8), (3.2.8) with the potentials replaced by those in 
(1.2) leads to  

01 01 010, 0, 0Eχ ψ= = =                    (1.10a) 

( ) ( ) ( )2 2 2 2
00 1 1 00 1 0 1

00 00 00

4 2

1
2

m h mE E d d r M

E K K

χ χ χ ψ

χ χ

−∆ + ∂ ∂ + ∂× + − −

= − ×∂
    (1.10b) 

( ) ( ) ( )2 2 2 2
00 1 1 00 1 0 1

00 00 00

4 2

1
2

m h mE E d d r M

E K K

ψ ψ ψ χ

ψ ψ

−∆ + ∂ ∂ − ∂× + − −

= + ×∂
    (1.10c) 

To second order in ε0, the singlet part of I (3.5.8) becomes 

( ) ( )
( )

2 2 2 2
00 02 0 02

2
1 00 02 00 00 1

4

1 1 1
2 4 2

m h mE d d r M

K E E K E K

χ ψ

χ χ χ

+ ∆ − − −

 = −∂ × − + + 
 

         (1.11a) 
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( ) ( )
( )

2 2 2 2
00 02 0 02

2
1 00 02 00 00 1

4

1 1 1
2 4 2

m h mE d d r M

K E E K E K

ψ χ

ψ ψ ψ

+ ∆ − − −

 = ∂ × − + + 
 

         (1.11b) 

The spherical symmetry present in the ε0 = 0 limit is broken by the momen-
tum K so that separation of variables in the relative space x cannot be carried 
out. This renders that each of (1.10, 11) consists of two coupled second order 
partial differential equations containing eight dependent variables and cannot be 
readily solved analytically. 

2.3. Approximative Heavy Meson Wave Functions 

For heavy mesons, the last term is small next to the first term on the right sides 
of (1.10b, 10c) when  

00 2 0.529 GeVhE d ≈                       (1.12) 

Here, the magnitude of ∂  in (1.10) is dhr according to (1.1) where r has been 
replaced by some mean value 0 1 hr d≈ . This inequality holds roughly for 
mesons containing b or c quarks but not for kaon and pion. In these cases, an 
approximate solution can be found. Let 

( )0,0,K K=                            (1.13) 

The approximation consists of making the simplifying ansatz  

( ) ( )1 1x xχ ψ= −                          (1.14) 

in (1.10b, 10c). Addition and subtraction of thee two equations yields  

( ) ( )2 2 2 2
00 0 1 00 00 1

14 2
2h m mE d r d M E Kψ ψ ψ−∆ + − + = − ∂ ∂       (1.15a) 

00 1 00E Kψ ψ− ∂× = ×∂                      (1.15b) 

The ansatz (1.14) thus leads to that these two equations determine only one 
unknown 1ψ ; there has to be an inconsistency. Solving (1.15b) with (1.13) gives 

( ) ( ) ( )( )1 00 1 0
00

0,0, z
Kx r x

E
ψ ψ ψ= =                 (1.16) 

which shows that 1ψ  is of order ε0. Inserting this expression into (1.15a) using 
(1.1) gives 

( ) ( ) ( ) ( )2
00 00 00 00 00

00

1 1 2 1
2 2 h h

KE K r E K r d zzd r r
E

ψ ψ ψ= + −        (1.17) 

The last term comes from the last term in (1.15a) and causes that (1.17) can-
not be satisfied and is inconsistent with (1.16). 

However, the last term in (1.17) will be small for heavy mesons having large 
E00 so that (1.17) and the solution (1.16) both hold approximately. Replacing r by 
the mean value r0 above and putting 1 3zz =  in anticipation of later angular 
integration, the criterion is that the ratio between the two terms on the right side 
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of (1.17) be small. This gives another requirement for heavy meson approxima-
tion 

2 2
00 00

8 0.187 1
3

hd
E E

≈                          (1.18) 

This ration is 9.6 for pion, 0.762 for kaon, 0.054 for D, and 0.0067 for B 
meson. Thus, (1.18) is well satisfied by mesons with b or d quark but again not 
by kaon or pion. This inequality agrees roughly with that given by (1.12). There 
is however no great loss here; pions as decay products often move relativistically 
so that the first order (1.10) no longer holds in the first place. 

The last terms in (1.15a) will also introduce a correction to (1.16). As an esti-
mate, let the corrected (1.16) be an average of (1.16) and (1.17) multiplied by 

2
002 E  and generalized to include the x and y components of the last term in 

(1.15a); 

( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 0 1 1, ,x y z zx x x x xψ ψ ψ ψ ψ= +             (1.19) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
1 1 00 1 1 003 3

00 00

2
1 1 003

00

2 2,

2 1

x h y h

z h h

K Kx xzd r r x yzd r r
E E
Kx d zzd r r

E

ψ ψ ψ ψ

ψ ψ

= − = −

= −

  



     (1.20) 

The second order Equations (1.11) are treated analogously. Subtraction and 
addition of (1.11a) and (1.11b) leads to 

( ) ( )02 02x xχ ψ= −                        (1.21a) 

2 2
00 12 2 200 00 02

0 02 004 2 4 2h m m

E KE E E Kd r d M
ψ

ψ ψ
   

+ ∆ − + − = − + +   
  

  (1.21b) 

( )1 0K ψ∂ × =                         (1.21c) 

The last equation is satisfied for 1ψ  given by (1.16). It is slightly violated by 
(1.19, 20) but the violations contain odd powers of the angles r  I (3.1.7b) and 
will vanish upon integration over the angles later. The left operator of (1.21b) is 
the same as the linearized ones in I (3.4.1) and vanishes for ψ02 ∝ ψ00; ψ02 can be 
absorbed into the zeroth order ψ00 and put to 0. Thus, 

2
00 1 00 02 00 02 02

1 1 1 , 0
2 2 4

E K E E Kψ ψ ψ χ = − + = = 
 

        (1.22) 

Inserting (1.16) into the first of (1.22) leads to 
2

02 002E K E=                         (1.23) 

3. Radiative Decay of Heavy Vector Meson V  Pγ 

In this section, the wave functions found in Sec. 2 above are applied to the decay 
of a heavy ground state vector meson V into the corresponding pseudoscalar 
meson P and a photon γ. The treatment is semi-classical; the electromagnetic 
field is not quantized. This is in accord with the quantum mechanical nature of 
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the present theory, which cannot be quantized. 
Such decays have been treated earlier [1] and I Section 6.4. The estimated D*± 

decay rate turned out to be too small compared to subsequent measurement. 
This section follows basically [1] with two main differences. Firstly, the assump-
tion that the U(1) gauge field is limited to the two component photon field is 
removed. Secondly, the Coulomb form of wave functions of the ground state 
mesons adopted in [1] and I (4.3.2-3) is replaced by harmonic oscillator form 
(1.1.6). Consistently, the approximative wave functions of I §3.5.3 are replaced 
by those in §2.3 above. 

Eugene Wigner once said: “Once the equation of motion is known, the rest is 
engineering”. In this sense, the present treatment may be such an “engineering” 
and assumes no “model”, as in the literature [9]. 

The formalism of I Section 6.4 is largely taken over here. 

3.1. Wave Functions of Decaying Meson 

For a free meson, the meson Equations I (2.3.22) with Φc = 0 in I (3.2.8a) hold. If 
an electromagnetic field A is introduced on the quark level, I (2.3.22) is replaced 
by I (6.1.10). The magnitude of the difference between these two sets of equa-
tions is small, of the order of quark charges. Therefore, the associated decay V  
Pγ can be formulated as a first order perturbational problem. The wave function 
of the decaying meson is taken to be a modified form of I (3.1.5, 6, 9) with I (3, 
5.6), 

( ) ( ) ( )( ) ( )
( ) ( )

0

1 0

, exp ,abab ab
JK JK JK JK J

K

JK JK JK

X x b x x iE X iK X

b a a X

ψ δ ψ σ ψ ψ χ= − − + →

= +

∑


 

 (2.1) 

The subscript J = 0, 1 refers to pseudoscalar and vector mesons, respectively. 
aJK is unity here but is in a quantized case in §3.4 below to be elevated to an an-
nihilation operator annihilating an initial meson of spin J and momentum K. 

( ) ( )1 0
JKa X  is a small first order amplitude that varies slowly with time and, in the 

quantized case in §3.4, becomes an operator that “slowly” transforms the initial 
vector meson to some intermediate state. It is zero at X0 = −∞. Similarly, JKa∗  
enters ψ*; the complex conjugate of ψ, is also unit and is to be elevated to a crea-
tion operator creating a final state with the same J and K. ( ) ( )1 0

JKa X∗  is the com-
plex conjugate of ( ) ( )1 0

JKa X  and, in the quantized case, becomes an operator 
that “slowly” creates the same final state as that created by JKa∗ . These quanti-
zation assignments are phenomenological and rudimentary. 

In V  Pγ, ( ) ( )1 0
JKa X  is caused by the qA terms in (2.3) below and is hence 

of first order in quark charge. Picking out only one J value and one K value in 
the summations of (2.1), it leads to the simplified form 

( ) ( ) ( )( )1 0
0 1 1 0, ,ab ab ab ab ab

JK JKX x a X aχ χ χ χ χ= + =
                (2.2) 

where the subscripts 0 and 1 denote orders in quark charge. 0
abχ   is simply (2.1) 

with ( ) ( )1 0 0JKa X = . 
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3.2. U(1) Gauge Field 

The photon is observable and the electromagnetic field is thus introduced on the 
meson level similar to that in [1 (2.1)] and to the U(1) gauge field in I (6.2.3-4). 
The equivalent of I (6.1.10a) becomes 

( ) ( ) ( ) ( )

( )( ) ( ) ( )2

1 1 ,
2 2

, 0

ab ab fe fe
I p II r pr bf

ae
m m pr

i q A X i q A X X x

M x X x

χ

ψ

  ∂ + ∂ −  
  

− −Φ =

 

 





        (2.3) 

where I (3.1.3a) and the transition of I (2.3.23) to (3.1.11) have been used. Here, 

I∂  and II∂  operate on χ only. Putting the time component A0 to 0 and expand 
A(X) in plane waves, as in [1 (3.3)], 

( ) ( ) ( ) ( )01 exp . . , ,
2 T r r X Y ZK T

r

A X ea K iE X iK X c c e e e e
Eγ γ= − + + =
Ω

∑ ∑   

(2.4) 

where Eγ and Kγ are the energy and momentum of the photon and Ω a large 
normalization box. aT(K) is the analog of aJK in (2.1) and is set to a unity here but 
is elevated to an annihilation operator in the quantized case below. 

In [1] and I, the unit vector ( ) ( ), 0 , , 0T Z X Y Ze e e e e e= = = =  for  

( )0,0,K Kγ γ=  representing the photon field associated with the both transverse 
modes T = 1, 2. The assumption is removed here and eZ ≠ 0 is allowed here even 
if it is not part of the photon field. 

3.3. First Order Relations 

Inserting (2.2) into (2.3), multiplying it by eaχ∗


 and integrating over X and x, 
the first order part reads 

( ) ( )

( )

4 4 2
0 11 0

0

1d d
2

1 0
2

fe ae ab feab
ea II m m p III bf bf

ab fe
r I bf

X x M i q A X

i q A X

χ χ ψ χ

χ

∗  ∂ − −Φ + ∂∂
− ∂ =

∫




  

 









     (2.5) 

Applying I (6.1.3) and the second of (2.2) and noting that ( ) ( )1 0
JKa X  can with 

good approximation be moved to the left of I∂  or II∂  because it varies slowly 
over X0, (2.5) becomes 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) }

14 4 0
0 00 0

0 00 0

1 0 2
0 0 00

1d d
2

1 1
2 2

0

fe ab feab
I JK JK ea II p ea IIbf bf

ab fe ab fe
r I ea r I eabf bf

ab fe ae
JK JK I ea II m m eabf

X x a X a i q A X

i q A X i q A X

a X a M

χ χ χ χ

χ χ χ χ

χ χ χ ψ

∗ ∗

∗ ∗

∗ ∗

 ∂ + ∂∂


+ ∂ − ∂

 − ∂ ∂ + −Φ = 

∫




 

 

 

 

 

 

 



 



 

  (2.6) 

The ( ) ( )1 0
JKa X  factor multiplying the brackets in (2.6) can with good ap-

proximation be moved outside the integral sign because it varies slowly with X0. 
Substituting I (6.1.3) once more into (2.6), it is seen that the surface term asso-
ciated with the first term on the right of I (6.1.3) vanishes upon integration. The 
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remaining terms in the bracket also drop out by virtue of the equation of motion 
I (2.3.22) for steady state mesons. The next to last terms in (2.6), the IIr Iiq− ∂  
term, is also a surface term and vanishes after integration, noting that A(X) is 
real and satisfies periodic boundary conditions at large Xμ as in (2.4). Equation 
(2.6) can now be written as 

mAd mAsS S′ ′=                            (2.7) 

( ) ( )( )14 4 0
0 0d d feab

mAd JK JK ea III bfS X x a X a χ χ∗ ′ = ∂∂ ∫








           (2.8) 

( ) ( ) ( ) ( )4 4
0 0 00

1 1d d
2 2

ab fe bf ea
mAs p ea II r Iabbf feS i X x q A X q A Xχ χ χ χ∗ ∗    ′ = ∂ − ∂    ∫

 

 

 

 

  

(2.9) 

The last relation has been extracted from (2.5) directly.  

3.4. Rudimentary Quantization and Decay Amplitude 

The semi-classical treatment mentioned in the beginning of this section is 
analogous to the treatment of time-dependent problems in quantum mechanics. 
A justification is that the energies involved here are low so that typical 
field-theoretical effects such as vacuum polarization and self energy are small. 

The following rudimentary quantization procedures are accordingly adopted. 
Let 0  and 0  denote vacuum states, one has conventionally,  

0 0 0, 0 0 1f i i f f f= = = = =              (2.10) 

( ) ( ) ( )1 0 , , Ti V K f P K Kγγ= = =               (2.11) 

where V denotes a vector meson at rest which decays into a pseudoscalar meson 
P with momentum K and photon γT with momentum Kγ. 

Insert (2.2) into (2.8) and sandwich it between f  and i . a10 in χ oper-
ated on the initial state i  picks out the zeroth order initial vector meson at 
rest, 

( ) ( )0
10 100

ˆ expbf bfi r r iE Xχ σ χ→ −
 

                 (2.12) 

where (2.1) and I (3.2.4a, 5b) have been used and χ10 = ψ10 is given in (1.6). Since 
(2.8) does not contain the final state photon A(X), χ* operating on the final state 

f  becomes equivalent to the complex conjugate of the initial state (2.12). 
Using I (3.1.4, 10a) and (3.5.6), letting the a’s considered below (2.1) be elevated 
to operators according to the interpretations there and integrating over X0 leads 
to 

( )3 4 2
10 10

1 d d
4mAd fif S i i E S X x rχ′ = − ∫ ∫               (2.13) 

( ) ( )1 0
fi JK JKS f a a X i∗= →∞                    (2.14) 

Sfi corresponds to the conventional S-matrix element and is interpreted as the 
decay amplitude via the assignments of the a’s below (2.1).  

Next, place (2.9) between f  and i  of (2.11) and elevate aJK and JKa∗  to 
annihilation and creation operators, respectively, so that they are on the same 
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level as aT(Kγ) in (2.4). Here, (2.12) is applicable. ( )Ta Kγ
∗
′  in c.c. part of (2.4) 

picks out a final state photon of polarization T with momentum Kγ. The final 
state meson operator 0χ

∗  operating on f  picks out a pseudoscalar meson 
having a momentum K with the wave function 

( ) ( )( ) ( )* * 0
0 0 0 0expea ea K K Keaf x x iE X iKXχ δ χ σ χ∗ → + −
 



        (2.15) 

where K stands for KJ in (2.1) for J = 0. Insert (2.4, 12, 15) into (2.9), apply I 
(3.1.4, 10a) and (3.5.6) and integrate over X. The result reads 

( ) ( ) ( )4 0
0 102π d

2mAs K r q
r

if S i E E E K K x I
E γδ δ′ = + − +
Ω ∫      (2.16) 

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

3 * *
0 10 10 0 10

*
10 0 10

1ˆ ˆd
2

1 ˆ
2

q p r K K

p r K

I x q q e x r r E x e r r

q q i E er x r

χ χ χ χ

χ χ

  = + ∂ + ×   
− − 

∫
 (2.17) 

in which only one of T = 1 or 2 in (2.4) has been included. The 0χ
∗  wave func-

tions obey I (3.5.8) which has not been solved, as was indicated in I §3.5.3.  
For the heavy mesons containing b or c quark, I Table 5.1 shows that the 

masses of the vector meson and the associated pseudoscalar meson are close to 
each other so that the latter moves slowly in a radiative decay of the former. For 
these mesons, the criteria (1.7, 12, 18) are satisfied and approximative solutions 
have been given by (1.9, 10a, 14, 16, 19, 20) where χ00 stands for 0Kχ∗  and 1χ  

for 0Kχ∗  in (2.17). Inserting these results together with (1.1, 6) into (2.17) and 
carrying out the angular integrations, terms with odd powers of r̂  vanish, and 

( )

( ) ( )
0

2 2 2 2 4 2
00 10 2

0

2 14π d 1 1 1 7 2 exp
3

q p r Z dh
K

h
dh h h h h

K

KI q q e I
E

dI rr d r d r d r d r
E

α α

= +

  = + − − + −  
  

∫
 (2.18) 

Let the photon be directed along the Z axis consistent with (1.13) and put 

( ) ( )0,0, 0,0,K K K Kγ γ= = − = −                   (2.19) 

the iKγX term in (2.4) and the −iKX term in (2.15) cancel out in (2.9) and the 
last δ function in (2.16) drops out. Equating (2.13) to (2.16) with (2.18, 19) ac-
cording to (2.7), the decay amplitude becomes 

( )( )0 10
10

4 1 2π
2fi K r p r Z dh

r

S E E E q q e I
E E

δ= − + − +
Ω

        (2.20) 

in which the integrals over the relative time x0 and the laboratory space X have 
been cancelled out and I (4.2.8) has been consulted. 

3.5. Decay Rate 

The decay rate is  

( ) 2 2

final states fi d fi dT KV P S T S TγΓ → = =∑ ∑ ∑          (2.21) 
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where Td is a long time during which decay takes place and ΣT = 2 for the both 
photon polarizations mentioned below (2.4). Further, 

( ) ( )
3 2

3 3d 4π d
2π 2πK

K KKΩ Ω
= →∑ ∫ ∫                (2.22) 

With (2.19) and Er = Kγ, one finds 

( ) ( ) ( )( )2 2
0 10 00 10 0 0 101K rE E E E K K E K K K Eδ δ δ+ − = + + − = − −  (2.23a) 

( )2 2
0 10 00 102K E E E= −                      (2.23b) 

This δ function in (2.20) will be squared in (2.21). Using (2.23a), this square 
becomes 

( ) ( )
2

2 0
0 10 0

10

1
2π

d
K r

K TE E E K K
E

δ δ
 

 + − = − −  
 

          (2.24) 

Combining (2.20-22, 24) leads to the decay rate 

( ) ( ) ( )
23 2 2 20 0

2 2 2
1010 00 0

16 1
π p r Z dh

K KV P q q e I
EE E K

γ
 

Γ → = − + 
+  

      (2.25) 

Here, eZ is not fixed here but is a parameter < 1. This is as far as the present 
semi-classical treatment can carry. Perhaps a quantized version of the present 
treatment, if possible to be devised, can fix this eZ. 

eZ is the third, longitudinal, component of the unit verctor e in the photon 
field (2.4) and balances off the momentum K0 of the pseudoscalar meson. Its ab-
sence in the earlier treatment [1] and I led to the assumption that higher order 
effects were responsible for such radiative decays. This is now seen not to the 
case. eZ, being separate from the photon associated with the transverse compo-
nents eX, eY in (2.4) is responsible for the decays. 

The first order (2.9) can be complemented to include second order terms 
containing the square of the photon field A(X). The coefficient for this square 
representing the mass of the photon contains only odd powered r̂  terms and 
vanishes after integration over the relative space x. This verifies that the photon 
remains massless. 

Finally, it is remarked that (2.25) remains unchanged if the employed equa-
tion for χ (2.2) were replaced by an equivalent equation for ψ analogous to I 
(6.1.10b). This is due to that I (6.1.10a, 10b) originate from I (2.2.4a, 4b) which 
are invariant under the interchanges χ ↔ ψ and I ↔ II. The last one leads to a 
sign change of the relative coordinate x in I (3.1.3a) but does not affect the decay 
amplitude (2.20). 

3.6. Comparison with Data 

Table 1 gives the V  Pγ decay rate for some heavy mesons most of them listed 
in I Table 5.1. 
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Table 1. Decay rate Γ(V  Pγ) for some heavy mesons. The meson momentum K0 is 
given by (2.23b). The expansion parameter ε0 is defined in (1.7). qp and qr are the quark 
charges. The predicted decay rate Γ(V  Pγ) is given by (2.25) which holds only for non-
relativistic and heavy pseudoscalar mesons satisfying 0 1e   of (1.7) and (1.12, 18). 
Only the mesons with b or c quark qualify. Equation (2.25) does not apply to K*. This is 
indicated by the parentheses around the so-obtained decay rates. eZ is the longitudinal 
polarization vector in the unit vector e in (2.4) and should be < 1 but is not fixed in the 
present nonquantized treatment. The underlined entries are the only ones available for 
direct comparison with predictions. 

 K0 (GeV) 0 0 00K Eε =    p rq q+  ( ) 2
ZV P eγΓ →  

keV 
Γ (data) [4] 

keV 

( )1 bY S γη→  0.07 0.0075 2/3 7 × 10−4 no data 
0 0

s sB Bγ∗ →  0.0459 0.009 2/3 2.2 × 10−3 dominant 
0 0B Bγ∗ →  0.0454 0.0086 2/3 1.2 × 10−4 dominant 

B Bγ∗± ±→  0.0451 0.0086 1/3 3 × 10−5 dominant 

vJ ψ γη→  0.1114 0.037 4/3 1.02 1.58 ± 0.37 

s sD Dγ∗± ±→  0.139 0.0706 1/3 0.6 <1776 
0 0D Dγ∗ →  0.137 0.0735 4/3 11.65 <741 

D Dγ∗± ±→  0.136 0.0726 1/3 0.69 1.33 ± 0.33 
0 0K Kγ∗ →  0.31 0.623 2/3 (1707) 116 

K Kγ∗+ ±→  0.309 0.626 1/3 (436) 50.3 

 
For mesons with b quark, there is no data available. The K* decay rates are put 

inside parentheses to indicate that Γof (2.25) is not applicable. This is due to 
thatε0 is too large and does not satisfy the criteria (1.7) and the kaons are too 
light so that (1.12, 18) are violated. Further, the effect of the singularity asso-
ciated with lighter mesons mentioned above §5.7.2 has not been investigated and 
may impact upon the validity of the approximations leading to (2.25). Still the 
predictions of (2.25) for kaons are included to indicate the trend that, as the 
mesons get lighter and move faster; the decay rates increase. Here, they are 10 - 
15 times too high. 

For mesons containing c quark, J/ψ and D*± rates from (2.25) can be com-
pared to data. The ratio between these two measured rates is 1.58/1.33 = 1.19 
and can be 0.73 up to 1.95 within error limits. The predicted value 1.02/0.69 = 
1.48 lies well within these limits. This agreement can hardly be any coincidence 
inasmuch as the ratio between their (qp + qr)2 values is 16.  

Putting eZ = 1, the measured rates are greater than the predicted ones by a 
factor of 1.5 - 1.9. Since eZ < 1 in the present semi-classical treatment, this factor 
is actually still greater. Nevertheless, the predicted values and data are of the 
same magnitude and may be regarded to be in basic agreement with each other. 
Consider that the mass ratios of K*, D* and B* are 0.44:1:2.86 while the ratios of 
predicted decay rates are 632:1:4.3 × 10−5, the above discrepancy of a factor of 1.5 - 
1.9 or greater is negligible. The approximations introduced in (1.19, 20) can 
however only lead to a correction of ±10% for D* in (2.25). 
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These results indicate that the harmonic oscillator type of meson wave func-
tions (1.1, 6) is useful not only for meson spectra but also for decay problems. 
They provide further support to the scalar strong interaction hadron theory. No 
other first principles’ theory can make a prediction of this kind. 

If the present semi-classical treatment can be quantized and eZ can be fixed, a 
wholly new problem, a more precise prediction may be found. 
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