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ABSTRACT 

In the study, position and velocity values of a geostationary satellite are found. When performing this, a MATLAB algo-
rithm is used for Runge-Kutta Fehlberg orbit integration method to solve spacecraft’s position and velocity. Integrated 
method is the solution for the systems which mainly work with a single station. Method provides calculation of azimuth, 
elevation and range data by using the position simulation results found by RKF. Errors of orbit determination are ana-
lysed. Variances of orbit parameters are chosen as the accuracy criteria. Analysis results are the indicator of the 
method’s accuracy 
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1. Introduction 

Orbit determination accuracy improvement for geosta-
tionary satellite with single station antenna tracking data 
is investigated in [1]. In this study, an operational orbit 
determination (OD) and system for the geostationary 
satellite (Communication, Ocean and Meteorological Sat-
ellite (COMS)) mission requires accurate satellite posi-
tioning data to accomplish image navigation registration 
on the ground. Ranging and tracking data, which is pro-
vided by a single ground station, is used to determine the 
orbit of geostationary satellite in normal operation. 
However, the orbital longitude of geostationary satellite 
is so close to that of satellite tracking sites that geometric 
singularity affects observability [2]. Applying an esti-
mated azimuth bias using the ranging and tracking data 
provided by two stations is a method to solve the azi-
muth bias of a single station in singularity. Velocity in-
crements of a wheel offloading maneuver, which is per-
formed twice a day, are fixed by planned values without 
considering maneuver efficiency during OD. Using only 
single-station data with the correction of the azimuth bias, 
OD is succeed to achieve three-sigma position accuracy 
on the order of 1.5 km root-sum square. 

In [3] comparison of Extended Kalman Filter (EKF) 
and Unscented Kalman Filter (UKF) for spacecraft lo- 
calization via angle measurements [3] is performed. In 

the study, performances of two nonlinear estimators are 
compared for the localization of a spacecraft. It is as-
sumed that range measurements are not available, and 
the localization problem is tackled on the basis of an-
gle-only measurements. A dynamic model of the space-
craft accounting for several perturbing effects, such as 
Earth and Moon gravitational field asymmetry and errors 
associated with the Moon ephemerides, is employed. The 
measurement process is based on elevation and azimuth 
of Moon and Earth with respect to the spacecraft refer-
ence system. Position and velocity of the spacecraft are 
estimated using both the extended Kalman filter (EKF) 
and the unscented Kalman filter (UKF). The behaviour 
of the filters is compared on two sample missions: 
Earth-to-Moon transfer and geostationary orbit raising. 

Localization of spacecraft is usually very accurate 
when GPS measurements are available [4]. The problem 
becomes more challenging when GPS signals are not 
available, like in high-Earth orbits or in long range mis-
sions such as Earth-to-Moon transfers. In these cases 
spacecraft navigation is often handled by ground-based 
tracking stations, thus making it unfeasible for low-cost 
spacecraft missions. In order to make spacecraft fully 
autonomous, it is necessary to devise self-localization 
and navigation algorithms relying on measurements pro-
vided by onboard sensors. In the study, the problem of 
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spacecraft self-localization is addressed using angular 
measurements. First a dynamic model of the spacecraft is 
formulated, which takes into account several perturbing 
effects such as Earth and Moon gravitational field 
asymmetry and errors associated with the Moon ephe- 
merides. It is assumed that the navigation system is able 
to estimate the spacecraft attitude (by using a star tracker 
sensor), and the spacecraft is equipped with line-of-sight 
sensors providing measurements of elevation and azi-
muth of Moon and Earth with respect to the spacecraft 
reference system. Range measurements, which are often 
difficult to obtain or are not sufficiently reliable, are not 
required. Then, position and velocity of the spacecraft 
are estimated by employing both the classical extended 
Kalman filter and the recently developed unscented 
Kalman filter [5]. Comparisons between EKF and UKF 
have been proposed in several contexts, ranging from 
target tracking [6], to positioning systems and virtual 
reality. The filters have been tested on simulated data 
concerning two different missions. The resulting local-
ization errors [7] and the associated confidence intervals 
show that the proposed algorithms provide reliable esti-
mates, whose accuracy is sufficient for autonomous 
navigation in the considered class of missions. In general, 
for the orbit determination purpose the Kalman filtering 
technique is used. Accuracy of the Kalman filter depends 
on the accuracy of the measurement devices significantly. 
Therefore, it is important to investigate the improvement 
of the accuracy of measurement instruments. 

In the study, a geostationary satellite’s orbit is deter-
mined and error analysis of the orbit determination is 
performed. Runge-Kutta Fehlberg Orbit Integration 
Method is applied to equation of motion of a satellite. 
Position and velocity equations are provided via RKF 
application. Position and velocity are calculated in 5000 
points with 20 seconds time interval between every step. 
Application of the integrated method to the results is the 
most important subject of this study. It is necessary to be 
careful about the transformation of ECI coordinates to 
topocentric coordinates. This type of transformation is 
applied because of the Earth’s rotation. When, space-
craft’s position changes at every point, ground station’s 
coordinates also change due to Earth’s spin. Therefore, 
ground station’s coordinates are calculated in 5000 points 
by using sidereal time and latitude. First, satellite’s posi-
tion is calculated in ECI coordinates. Then, it is trans-
formed to the topocentric coordinates and range, azimuth, 
elevation angles are calculated. Error and variance can be 
analyzed after the explained procedure. Variances of the 
orbit parameters are chosen as the accuracy criteria. 
Their changes and effects of these changes are investi-
gated. 

Study’s operation concept can be defined as (Figure 1). 

2. Orbit Integration by Runge-Kutta 
Fehlberg Method 

The equation of motion of a satellite is a second order 
vector differential equation (see Appendix A). 

Method can be applied for orbit integration. The solu-
tion of first order differential equation system can be 
obtained according to Babolian (1994) [8]. The follow-
ing algorithm is very similar to the described algorithm 
of RKF. However, this algorithm includes many coeffi-
cients to be computed. 36 coefficients are calculated in 
every step of the 5000 iterations. 

First, the initial step size h is selected, and then the 
RKF coefficients (Appendix B., Equation B.4) are cal-
culated via initial conditions [9]. 

Position and velocity of the satellite are calculated by 
the following formulas (1), after obtaining the coeffi-
cients [9].  
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3. Determination of the Accuracy of the 
Spacecraft’s Coordinates 

3.1. Determination of the Satellite’s Coordinates 
by Single Station Antenna Tracking Data 

Measurement of angle and measurement of range meth-
ods are used at the same time in the integrated method 
[10]. Integrated method is usually used in radiolocation 
systems and it determines D range to the satellite, azi-
muth angle   and elevation angle  . When this 
method is used, the coordinates of the satellite is deter-
mined as the intersection point of the sphere state surface 
(D = constant), cone state surface (   = constant) and 
vertical plane suitable for   = constant state surface. 
Satellite coordinates are determined with single antenna 
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Figure 1. Operation diagram. 
 
(ground station) by integrated method. Method does not 
need any difficult calculations. 
Advantages of the Integrated Method: 
 Single station is sufficient to measure the coordinates. 
 Coordinates are calculated as simple. 
 Method provides the needed accuracy in whole mea- 

surement intervals. 
 Information processing is easy in system. 

Following formulas are used to calculate satellite co-
ordinates; 
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Dsin
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

             (2) 

where D is the range of the satellite,   is the azimuth 
angle and   is the elevation angle, x,y,z are the coor-
dinates of the range between the station and satellite 

The method is applied to position and velocity calcu-
lated by RKF method. The procedure is followed as 
shown below: 

The station must be denoted to satellite vector of the 
topocentric frame using a coordinate transformation [11,12]. 

The total range between satellite and ground station; 
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where; 

Topocentric
EcefC  is the transformation matrix from ECEF 

coordinates to topocentric coordinates. 

antennax  is the x coordinate of the antenna’s position. 
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z

 is the y coordinate of the antenna’s position. 
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Calculation of azimuth and elevation angles by total 
range and range components; 

 is the z coordinate of the antenna’s position. 
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Figures which present range, azimuth and elevation 
simulations are distributed in Figures 4 and 5. 

3.2. Variance Analysis of the Satellite’s 
Coordinates 

Characteristics of the position data error depend on the 
type of ground station, location of ground station, and 
measurement accuracy of navigation parameters [10]. It 
is possible to establish ground stations optimally and 
choose the most accurate region to determine range via 
necessary calculations. However, calculations are some-
times difficult and some great preparations are necessary. 
In this case, approximate accuracy values of the coordi-
nates are used to determine the accuracy of range data. 
Because, x, y, z coordinates of the spacecraft’s range are 
non-linear function of three parameters measured by an-
gle-range measurement method, the variances of coordi-
nates’ calculation errors are determined as (Equation (5)); 
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where 2
x , 2

y  and 2
z  are variances of the calculated  

coordinates’ errors. 
ia

2  is the variances of the naviga-
tion parameters’ measurement errors.  

Let’s derive the equations which evaluate the accuracy 
of the coordinates determined via integrated method [10]. 
The coordinates of the spacecraft are calculated by for-  
mulas; D cos cosx   , Dcos siny   , Dsinz   

in this method.  
Some equations can be written by assumption of that 

navigation parameters’ measurement errors are independ-
ent; 
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Single station antenna which is used for measurements 
has position data distributed as (Table 2). 

     (6) 1) Simulations for Position and Velocity 
The position and velocity values are calculated in 

5000 points (Table 3) with initial conditions in Table 1 
and the step size h = 20 by calculating RKF coefficients 
(Equation B.4). Their simulations are also distributed in 
Figures 2 and 3. 
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Xrk is the x position coordinate of the satellite. 
Yrk is the y position coordinate of the satellite. 
Zrk is the z position coordinate of the satellite. 
Vxrk is the x velocity coordinate of the satellite. 


    (7) 

Vyrk is the y velocity coordinate of the satellite. 
Vzrk is the z velocity coordinate of the satellite. 
Velocity simulations for x, y and z coordinates are 

shown in Figure 2. 
Position simulations for x, y and z coordinates are 

shown in Figure 3. Spherical standard deviation is used as the value of the 
accuracy of spacecraft’s position. It can be written as 
below;  

2) Simulations for Azimuth, Elevation and Range 
The simulation of the range between spacecraft and 

antenna is shown in Figure 4. 2 2 2
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      (8) As it can be seen, range generally decreases up to 

2500th step. Then, it shows an increase. For example: 
 

4. Simulations Table 1. Initial position and velocity value. 

Position X(m) Y(m) Z(m) 

Initial Conditions –27,829,408.38 –31,684,615.8 3477.99

Velocity Vx (m/s) Vy (m/s) Vz (m/s)

Initial Conditions 2309.78 –2028.7 –1.92 

Satellite’s initial position and velocity data are distrib-
uted (Table 1). Firstly, satellite’s velocity and position 
values are calculated in 5000 points. It is done by 
Runge-Kutta Fehlberg Orbit Integration method. Then, 
range, azimuth and elevation angle data are obtained via 
integrated method. Their new values are calculated by 
addition of some noises and standard deviations. Errors 
between initial range, azimuth and elevation values and 
new values are determined and their standard deviation is 
analyzed. Finally, variance analysis and spherical stan-
dard deviations of the results are found and the results 
are compared. Initial conditions are shown as (Table 1).  

 
Table 2. Location of ground station. 

Position 
Longitude 

(deg) 
Latitude 

(deg) 
e 

Ground Station Antenna 127.36 east 36.4 north 0.00014142
 

Table 3. Position and velocity values. 

Values 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Xrk (m) 2.88E + 05 2.83E + 07 4.19E + 07 3.42E + 07 9.11E + 06 –2.06E + 07 –3.99E + 07 –3.89E + 07 –1.81E + 07 1.19E + 07

Yrk (m) –4.22E + 07 –3.13E + 07 –4.44E + 06 2.46E + 07 4.12E + 07 3.68E + 07 1.37E + 07 –1.64E + 07 –3.81E + 07 –4.05E + 07

Zrk (m) –1.49E + 04 –2.58E + 04 –2.35E + 04 –9.30E + 03 9.65E + 03 2.37E + 04 2.57E + 04 1.46E + 04 –3.88E + 03 –2.04E + 04

Vxrk (m/s) 3.07E + 03 2.28E + 03 323.8212 –1.80E + 03 –3.00E + 03 –2.68E + 03 –996.689 1.19E + 03 2.78E + 03 2.95E + 03

Vyrk(m/s) 21.3198 2.06E + 03 3.06E + 03 2.50E + 03 664.3382 –1.51E + 03 –2.91E + 03 –2.83E + 03 –1.32E + 03 868.3936

Vzrk (m/s) –1.6024 –0.4704 0.9012 1.8146 1.8049 0.8771 –0.4965 –1.6174 –1.9159 –1.2403 
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Figure 2. Velocity simulations of the satellite. 
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Figure 3. Position simulations of the satellite. 
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Figure 4. Total range simulation. 
 
think the point which symbolizes the time which is a day 
later from starting point. This point is between the 4000th 

- 4500th step interval. If this point is examined, range is 
nearly the same with the starting point. It can be said that, 
range is nearly constant for a day period for geostation-
ary satellites. 

Simulations for azimuth and elevation angles are shown 
in Figure 5. 

There is a little differentiation from the initial value in 
both of the angles. These changes are insignificant chan- 
ges. 

3) Simulations for Variance Analysis 
The variances, variances components’ analysis and 

spherical standard deviation results according to inte-
grated method results applied to RKF are shown in Ta-
ble 4. Their graphics are also shown in Figures 6-10. 

The value of the mean spherical standard deviation is 
7.83E + 03. 
Where, 

VARxrk is the variance of x position coordinate. 
VARyrk is the variance of y position coordinate. 
VARzrk is the variance of z position coordinate. 
VARxDrk is the variance of x coordinate error due to 

range uncertainties.  
VARxbetark is the variance of x coordinate error due 

to elevation angle uncertainties.  
VARxalfark is the variance of x coordinate error due 

to azimuth angle uncertainties.  
VARyDrk is the variance of y coordinate error due to 

range uncertainties.  
VARybetark is the variance of y coordinate error due 

to elevation angle uncertainties.  
VARyalfark is the variance of y coordinate error due 

to azimuth angle uncertainties.  
VARzDrk is the variance of z coordinate error due to 

range uncertainties.  
VARzbetark is the variance of z coordinate error due 

to elevation angle uncertainties.  
SP.SDEVrk is the spherical standard deviation of the  
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Figure 5. Angles simulation.  
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Table 4. Variance analysis. 

Values 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

VARxrk  
(m^2) 

2.31E + 07 2.31E + 07 2.31E + 07 2.31E + 07 2.31E + 07 2.32E + 07 2.32E + 07 2.32E + 07 2.31E + 07 2.31E + 07

VARyrk  
(m^2) 

1.91E + 07 1.91E + 07 1.91E + 07 1.91E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.91E + 07 1.91E + 07

VARzrk  
(m^2) 

1.91E + 07 1.91E + 07 1.91E + 07 1.91E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.91E + 07 1.91E + 07

VARxDrk  
(m^2) 

45.1566 45.1866 45.1816 45.1441 45.0933 45.0549 45.0486 45.0776 45.1271 45.172 

VARxbetark  
(m^2rad^2) 

2.31E + 07 2.31E + 07 2.31E + 07 2.31E + 07 2.31E + 07 2.32E + 07 2.32E + 07 2.32E + 07 2.31E + 07 2.31E + 07

VARxalfark 
(m^2rad^2) 

1.13E + 04 1.11E + 04 1.12E + 04 1.14E + 04 1.16E + 04 1.18E + 04 1.17E + 04 1.14E + 04 1.11E + 04 1.08E + 04

VARyDrk  
(m^2) 

0.0268 0.0264 0.0265 0.027 0.0276 0.0279 0.0277 0.0271 0.0263 0.0256 

VARybetark  
(m^2rad^2) 

1.37E + 04 1.35E + 04 1.36E + 04 1.38E + 04 1.42E + 04 1.43E + 04 1.43E + 04 1.39E + 04 1.35E + 04 1.31E + 04

VARyalfark  
(m^2rad^2) 

1.91E + 07 1.91E + 07 1.91E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.91E + 07

VARzDrk  
(m^2) 

54.8166 54.787 54.7919 54.8288 54.8791 54.9172 54.9236 54.8953 54.8467 54.8024 

VARzbetark  
(m^2rad^2) 

1.91E + 07 1.91E + 07 1.91E + 07 1.91E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.90E + 07 1.91E + 07 1.91E + 07

SP.SDEVrk 
(m) 

7.83E + 03 7.83E + 03 7.83E + 03 7.83E + 03 7.82E + 03 7.82E + 03 7.82E + 03 7.83E + 03 7.83E + 03 7.83E + 03

 
position. 

Variances for x, y and z positions are distributed in 
Figure 6. 

Variances simulations depend on the change of the 
spacecraft’s position coordinates. Variance changes in 
only small intervals on orbit operations. As it can be seen, 
x variance has the biggest value. The biggest amount of 
change (between peak point and minimum point) is 
around 10 km for all of the x, y and z variances. Change  
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Figure 6. Variances of coordinates x, y, z. 

of variances depend on the satellite’s on-orbit action. These 
changes can take significant values for some parameters 
such as range, azimuth and elevation. This is an impor-
tant output since the statistical characteristics of orbit de-
termination errors are generally assumed to be constant. 

Components of x coordinate variance are shown in 
Figure 7. 

The components of x, y and z variances are also ex-
amined to find how range, azimuth and elevation ele-
ments affect the results. It is obvious that elevation angle 
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Figure 7. Components of Variance of x coordinate. 
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affects mostly the X variances. It has higher values than 
the elevation and range values. Range component has the 
weakest effect on variation. 

Components of y coordinate variance are shown in 
Figure 8. 

Components of Y variance are investigated to under-
stand their effects. Azimuth angle is more dominant in 
the Y variance. It has higher values than the elevation 
and range values. Range component has the weakest ef-
fect on variation. The components have insignificant 
variations. 

Components of z coordinate variance are shown in 
Figure 9. 

Components of Z variance are investigated to under-
stand their effects. Elevation angle is effective in Z vari-
ance. It has higher range value. Z variance components 
also have some insignificant changes. 

Spherical standard deviation of the position is shown 
in Figure 10. 

Spherical standard deviation changes according to the  
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Figure 8. Components of variance of Y coordinate. 
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Figure 9. Components of variance of Z coordinate. 
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Figure 10. Spherical standard deviation of the satellite posi-
tion. 

 
spacecraft’s position. It has some insignificant changes. 
The amount of the biggest change is around 5 meters. It 
makes a peak around 7828 m and its minimum value is 
around 7823 meters. 

5. Conclusions 

In this study, the errors of orbit determination of geosta-
tionary satellite with single station antenna tracking data 
are analyzed. Variances of orbit parameters are chosen as 
the accuracy criteria. The orbit determination is evalu-
ated via RKF. 

Range is nearly constant for a day period of geosta-
tionary satellites. There are some small changes when 
compared with the initial value in azimuth and elevation 
angles. They changes insignificantly. It can be said that 
the RKF method gives accurate results by means of 
logical measurement results for geostationary satellite. 

The components of x, y and z variances are also ex-
amined to find how range, azimuth and elevation ele-
ments affect the results. It is obvious that elevation angle 
affects mostly the X variances. It has higher values than 
the elevation and range values. Except elevation, azimuth 
angle is more dominant in the Y variance. Elevation an-
gle is effective in Z variance. Generally, variances re-
main nearly constant in results. Range component effect 
is very small. They have the weakest effects on varia-
tions. Spherical standard deviation also shows some in-
significant changes. According to very small changes, it 
can be thought as constant. 
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The Kepler Equations 

Kepler equations system is one of the systems which can 
define elliptic orbits of spacecrafts. This equations sys-
tem includes 3 equations in differential form: 
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In the equations; 
After that, 6 equations are obtained; (A.3-A.4) 

Kepler constant; 
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Mass of the Earth;  245.976 10 kgM  
Range between spacecraft’s center of mass and earth’s 

center of mass; r  
Cartesian coordinates of the spacecraft;  , ,x y z
Write the equations in type of the first order differen-

tial equations as; 
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The range between spacecraft and ground station; 
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Appendix B 

Runge-Kutta Fehlberg Integration Method 

The Runge-Kutta-Fehlberg integration method [8] is simi-
lar to the normal Runge-Kutta method. It is designed to 
solve the first order differential equations of the follow-
ing form (Equation B.1) 
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Initially, initial step size h is selected. Then the fol-
lowing algorithmic solution is used (Babolian, 1994), 
(Equation B.2) [9]. 
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The following equation is applied to obtain the values 
in the next iteration; 
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RKF coefficients are described as presented below 
(B.4) [8]. 
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