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ABSTRACT 

Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically 
needed in industries to prevent the machinery system’s performance degradation, malfunction, or even catastrophic 
failures. The challenge for reliable fault diagnosis is related to the analysis of non-stationary features. In this paper, a 
wavelet spectrum (WS) technique is proposed to tackle the challenge of feature extraction from these non-stationary 
signatures; this work will focus on fault detection in rolling element bearings. The vibration signatures are first ana-
lyzed by a wavelet transform to demodulate representative features; the periodic features are then enhanced by 
cross-correlating the resulting wavelet coefficient functions over several contributive neighboring wavelet bands. The 
effectiveness of the proposed technique is examined by experimental tests corresponding to different bearing conditions. 
Test results show that the developed WS technique is an effective signal processing approach for non-stationary feature 
extraction and analysis, and it can be applied effectively for bearing fault detection. 
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1. Introduction 

Rolling element bearings are widely used in rotary ma-
chinery. A reliable bearing fault diagnostic technique is 
critically needed in a wide array of industries to prevent 
machinery performance degradation, malfunction, or ev- 
en catastrophic failures [1]. Bearing condition monitoring 
usually involves two sequential processes: feature extrac-
tion and fault diagnosis [2]. Feature extraction is a proc-
ess in which health condition related features are extra- 
cted by appropriate signal processing techniques, wher- 
eas fault diagnosis is a decision-making process to esti-
mate bearing health conditions based on the extracted 
representative features. Therefore, feature extraction pla- 
ys the key role for bearing health condition monitoring, 
whereas non-robust features may lead to false alarms (i.e., 
an alarm is triggered by some noise instead of a real 
bearing fault) or missed alarms (i.e., the monitoring tool 
cannot recognize the existence of a bearing defect) in 
diagnostic operations [3]. 

Several techniques have been proposed in the literature 
for bearing fault-related feature extraction, in which the 
analysis can be performed in the time domain, the frequ-  
ency domain, or the time-frequency domain [4-6]. In 

time-domain analysis, for example, a bearing fault is det- 
ected by monitoring the variation of some statistical in-
dices such as root-mean-square value, crest factor or ku- 
rtosis. A bearing is believed to be damaged if the mon- 
itoring indices exceed predetermined thresholds; howev- 
er, it is usually challenging to determine robust threshol- 
ds in real-world applications. Frequency-domain analysis 
is based on the transformed signal in the frequency do-
main. The advantage of frequency-domain analysis over 
time-domain analysis is its capability to easily identify 
and isolate certain spectral components of interest [7]. 
Bearing health conditions are assessed by examining the 
fault related characteristic frequency components in a 
spectrum or in some extended spectral expressions such 
as bispectrum or cepstrum maps [8,9]. Frequency-based 
techniques are usually supplemented with certain signal 
analysis methods to enhance representative spectral com- 
ponents, which include frequency filters, envelope analy-
sis, and modulation sidebands analysis [10]. Frequency- 
domain techniques, however, are not suitable for the an- 
alysis of non-stationary signatures that are generally rela- 
ted to machinery defects. Non-stationary or transient sig- 
natures can be analyzed by applying time-frequency do- 
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main techniques such as the short-time Fourier transform 
(FT) [11], Wigner-Ville distribution [12], spectral kurto- 
sis [13], cyclostationary analysis [14], or wavelet trans- 
form (WT) [15]. In bearing fault diagnosis, the WT is a 
favorite technique, because it does not contain such cross 
terms as those in the Wigner-Ville transform, while it can 
provide a more flexible multi-resolution solution than the 
short-time FT. According to signal decomposition para-
digms, the WT can be classified as the continuous WT, 
discrete WT, wavelet packet analysis, and those WT with 
post-processing schemes [16-19]. 

If a bearing is damaged, the generated vibration sig-
natures could be either stationary or non-stationary. It is 
relatively easier to analyze the stationary signatures using 
some classical fault detection techniques [20]. However, 
it still remains a challenging task to extract robust repre- 
sentative features from the non-stationary vibration sig-
nals (e.g., those generated from a fault on bearing rotat-
ing components), particularly in real-world industrial ap- 
plications. This is because: 1) a bearing is a system in- 
stead of a simple mechanical component, which consists 
of inner/outer rings as well as a number of rolling elem- 
ents; 2) slippage often occurs between the rolling elem- 
ents and rings in operations; and 3) the machinery opera-
tion conditions are usually noisy. Correspondingly, the 
objective of this paper is to develop a wavelet spectrum 
(WS) technique to tackle this challenge in which the rep-
resentative periodic features will be enhanced by an inte-
gration process over several contributive wavelet bands. 

2. The Wavelet Spectrum (WS) Technique 

Whenever a fault occurs on a bearing component, impa- 
cts are generated in operation, which in turn excite the 
bearing and its support structures. The resulting resona- 
nce signatures are usually amplitude modulated by the 
bearing defect [2]; therefore, the analysis of these reso- 
nance signatures plays a key role in vibration-based 
bearing fault detection. Figure 1(a) shows part of a typi-
cal acceleration signal, measured from the housing of a 
tested bearing with an inner-race defect when the shaft 
speed tf  = 35 Hz. When a defect occurs on a bearing 
rotating component, the modes and magnitudes of the 
resulting resonances often vary over time due to the 
variation in angular position of the impacts [20]; this 
non-stationary characteristic of condition-related signa-
tures makes bearing fault detection still remain a very 
challenging task in both research and industrial applica- 
tions. In this work, a WS technique is proposed to invest- 
tigate the characteristics of these non-stationary reson- 
ance signatures for the purpose of bearing fault detection. 
The WS technique involves five steps for signal process- 
ing, as discussed as follows. 

The first step is to apply the WT to demodulate the 
resonance vibration signatures, both stationary and non- 
stationary, over a series of wavelet bands. Given a cont- 
inuous signal  x t , the wavelet coefficients are deter- 
mined by 

      *, dW t s x s w s t 




           (1) 

Where  *w t  denotes the complex conjugation of mo- 
ther wavelet function  w t ; s and t are the scale and 
time variables, respectively, which produce dilation and 
translation [20]. The choice of an appropriate mother 
wavelet depends on the signal properties and the purpose 
of the analysis. By testing and comparison, Morlet 
wavelet is selected as the mother wavelet for the signal 
analysis in this work, which is a modulated Gaussian 
function: 
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where 0  is the spread of the Gaussian function and 0b f  
is the center frequency of the pass-band of the mother 
wavelet. As 0 0  increases, the duration of the wavelet 
expands, and the time resolution will decrease corre-
spondingly. As a result, the obtained mother wavelet 

b f

 w t  may not be suitable to analyze fast-decaying tran-
sient signatures. To solve this problem, the product of the 
spread and the scaled center frequency is kept as a con-
stant in this work, i.e., 
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where 0 02π 2 ln 2b f    was given in [20]; is  
represents the ith selected scale; ib  and if  are the 
corresponding ith spread and center frequency, respec-
tively. Based on the relation between i  and ib f  as in 
Equation (3), the mean of the obtained mother wavelet 
 w t  will be kept less than 10–12 in this case, and the 

effective support will vary with the scaled center frequ- 
ency to accommodate the variation of the signatures of 
interest. At each wavelet scale is , the magnitude of 
wavelet coefficient function  , isW t  that represents 
the demodulated envelope signal is normalized by its 
standard deviation, that is 
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where l = 1,2, ···, L, and L is the total number of samples; 
i = 1,2, ···, I, and I is the number of wavelet scales; 

 ,l iW t s  is the lth sample of  , iW t s . To reduce the 
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interference effects from the low-frequency noisy com-
ponents, in this work, the overall frequency band of in-
terest is chosen as  , 2.56t sZf f , where tf  denotes the 
shaft rotation speed, Z is the order of shaft harmonics, 

tZf  represents the lower bound frequency for feature 
extraction (Z = 35 is used in this case); sf  is the sam-
pling frequency, and the constant 2.56 is selected to 
avoid aliasing effects. The centre frequencies of the 
wavelet should be deployed properly to implement the 
WT over this designated frequency band  , 2.56ft s , 
without the overlapping between the wavelet frequency 
bands. Based on the FT of the dilated wavelet 

Zf

 w st , 
the 3-dB bandwidth i  for the ith centre frequency BW

if  is derived as follows:  1 ,BW f1i i    , where 
ln 2 2π   is a constant. Beginning with the lower 

bound frequency t , the centre frequencies Nf if  can be 
recursively calculated and positioned as: 
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where I is the number of the wavelet scales ( 7  in 
this case). Figures 1(b)-(h) show the respective normal-
ized wavelet coefficients  , iW t s  over seven wavelet 
bands, which are determined based on the vibration sig-
nal as shown in Figure 1(a). It can be seen that the reso-
nance signatures in Figure 1(a) are usually demonstrated 
in several consecutive wavelet bands (Figures 1(b)-(h)) 
due to the variation of the transient modes. 

The second step to implement the proposed WS tech-
nique is to cross-correlate the wavelet coefficients from 
the neighboring wavelet bands to enhance the de-
fect-related periodic features, that is, 

     ,*
1,X l E W t l s i iW t s i           (7) 
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where  E   denotes the expectation function;  iX l  
are the cross-correlation sequences that are normalized 
by their standard deviation i  around the mean i . In 
estimating the correlation sequence, the method adopted 
here is slightly different from the commonly used Pear-
son’s approach. Pearson product-moment correlation est- 
imation limits  i
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Figure 1. (a) Part of an acceleration signal generated by a 
bearing with an inner-race defect; (b)-(h) The normalized 
wavelet coefficients obtained from the vibration signal over 
seven wavelet bands (i =1, 2, ···, 7). 
 
marked by arrows. From a physical perspective, each 
time as a bearing incipient fault encounters its mating 
components, an impact is generated, which in turn in-
duces the resonance of the local structure. Corresponding 
to each impulse, the resonant response usually occurs 
over consecutive frequency bands in a random nature. 

Figures 2(a)-(f) illustrate the  iX l  array deter-
mined from six pairs of neighboring wavelet bands. It is 
seen that some periodic features are prominent (e.g., in 
Figures 2(b), (e), and (f)) whereas others are less pro-
nounced (e.g., in Figures 2(a), (c), and (d)). Corre-
spondingly, another key process in bearing incipient fault 
detection is how to properly choose the more contrib-
utive wavelet bands to integrate cross-correlation coeffi-
cient functions to highlight the periodic features. 

X l  to the range of [-1 1] whereas the 
proposed one can prevent such a restriction. It is also 
noted that the cross-correlations are performed on the 
neighboring wavelet bands; this is because the demodu-
lated features from the resonance signatures are usually 
reflected on the adjacent wavelet bands. An example is 
illustrated in Figure 1 where the extracted features are  

Each periodic feature with high amplitudes will mod-
ify the distribution of correlation sequence and cause the 
distribution more skewed and/or tailed, which could be 
detected by the Jarque-Bera (JB) statistic [21,22]. In this 
work, the correlation coefficient from each pair of neigh- 
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boring wavelet bands is treated as a discrete random 
variable, and its probability distribution is examined. As 
an example, Figures 2(a’)-(f’) show the probability dis-
tributions of the correlation sequences in the corre-
sponding Figures 2(a)-(f). It is seen that the properties of 
the tails of the distribution function vary with respect to 
the bandwidth. To characterize this effect, a JB statis-
tic-based performance index iJ  is proposed as: 

 2

2 31

6 4
i

i i

K
J S

 
 
  

                 (9) 

where i  and iS K  are, respectively, the skewness and 
kurtosis that are estimated by using a large number of 
samples (L = 327,680 in this case). In bearing fault de-
tection, a larger iJ  is expected when the bearing is 
faulty, since it indicates that the periodic features are 
highlighted (i.e., with higher magnitudes). Accordingly, 
the third step in the implementation of the WS technique 
is to choose more contributive bandwidths in which the 
correlation sequences could bring about larger iJ . 

The fourth step of the proposed WS technique is to in-
tegrate the correlation coefficients from the contributive 
bandwidths to achieve a 1-D feature representation. In 
 

-4

0

4
(a)

-5

0

5
(b)

-4

0

4

N
or

m
al

iz
ed

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
s

(c)

-4

0

4
(d)

-4

0

4
(e)

0 1000 2000 3000
-6

0

6

Sample points

(f)

0

0.02
(a')

0

0.02
(b')

0

0.02
(c')

R
el

at
iv

e 
fr

eq
ue

nc
y

0

0.03
(d')

0

0.03
(e')

-1 0 1
0

0.06
(f')

Normalized wavelet coefficients  

Figure 2. (a)-(f): The zero-mean normalized correlation 
sequences determined from six pairs of neighboring wavelet 
bands. (a’)-(f’): The probability distribution functions of 
the resulting cross correlation sequences corresponding to 
six pairs of neighboring wavelet bands. 

this work, a J-weighted function is suggested for the in-
tegration process: 

 
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             (10) 

where C is a subset of {1,2,···,I – 1}.The selection of the 
members of C depends on applications; in this case, C 
takes the top half of the members of {1,2,···,I – 1} whose 
corresponding correlation sequences generate greater iJ . 
Figure 3(a) shows some examples of the integrated cor-
relation sequence  H l  derived using Equation (10). It 
is seen that the periodic features, carried by the vibration 
signal in Figure 1(a), can be clearly recognized. These 
periodic features are spaced by an interval of 118 sam-
ples, or with the repetition rate of approximately 173 Hz 
(i.e., the inner-race defect frequency) for a 20480 Hz 
sampling frequency. 

Once the integrated cross correlation sequences are 
obtained, the fifth and final step is to examine the char-
acteristic defect frequencies (i.e., the inner race defect 
frequency idf , the outer race defect frequency odf , and 
the rolling element defect frequency edf  [8]) by con-
structing the averaged autocorrelation spectrum. This 
autocorrelation spectrum analysis involves two processes 
[20]: performing the autocorrelation on  H l  to further 
enhance the involved periodic features, and conducting 
the spectral analysis (FT) for periodic feature extraction. 
Specifically, 

     *r E H l H l              (11) 
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where  F   denotes the FT, = 0,1,2,···,L – 1. 
In implementation, the spectra obtained by Equation 

(13) from P segments of measured signals (P = 5 in this 
case) should be normalized and then averaged to reduce 
the effects of random noise, 
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where u  is the observation upper-bound frequency that 
should be larger than the maximum bearing characteristic 
frequency, and u  = 300 Hz in this case. Bearing health 
conditions are estimated by analyzing the related charac-
teristic frequency components (i.e., id , od , and ed ) 
in the resulting spectra. Figure 3(b) shows the resulting 
spectra determined by applying the proposed WS tech-
nique on the vibration signal shown in Figure 1(a). It is 
seen that the defect frequency (approximately 173.17 Hz) 

f

f

f f f
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can be clearly detected; in this case, the defect occurs on 
the bearing’s inner race, that is,  =173.17 Hz when 
the shaft speed  = 35 Hz. 

idf

tf

3. Performance Validation 

A number of tests have been conducted to verify the ef-
fectiveness of the proposed WS technique in bearing 
fault detection; the experimental setup that is employed 
for these tests is shown in Figure 4. The shaft is driven 
by a 3-hp induction motor. The motor speed ranges from 
20 rpm to 4200 rpm, which is manipulated by a speed 
controller. An optical sensor is used to provide a one 
pulse per revolution signal for rotation speed detection 
and advanced signal processing applications. A flexible 
coupling is employed to damp out high-frequency vibra-  
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Figure 3. (a) The integrated correlation sequence H(l); (b) 
the processing results of the bearing inner-race fault detec-
tion by using the WS technique. 
 

 

Figure 4. The experimental setup: (1) speed control; (2) 
motor; (3) optical sensor; (4) tested bearing housing, (5) 
accelerometer set; (6) bearing position adjustment device; 
(7) dynamic load system; (8) static load disc; (9) acceler-
ometers. 

tions generated by the motor. The rolling element bearing 
under examination is press-fitted into the left bearing 
housing, and the vibration signals are measured by two 
accelerometers (ICP-IMI, SN98697) installed on the 
housing along both the horizontal and vertical directions. 
Radial loads are applied by two pairs of disks. A data 
acquisition board (NI PCI-4472) is employed for signal 
collection. 

In the tests, four bearing health conditions are exam-
ined: healthy bearings, bearings with outer race defects, 
bearings with inner race defects, and bearings with roll-
ing element faults. Each bearing is tested under seven 
shaft speeds (900, 1200, 1500, 1800, 1920, 2100, and 
2400 rpm) and two load levels, respectively. The sam-
pling frequency sf  is set at 20480 Hz. 

The performance of the proposed WS technique will 
be compared with two related classical methods, the 
one-scale WT [19] and the frequency-domain analysis 
using envelope demodulation and FT as the supplemen-
tary signal processing tools [9], to verify its effectiveness 
in non-stationary feature extraction and bearing incipient 
fault detection. In this comparison study, the classical 
methods are applied on both structural resonance fre-
quency bands and optimally-selected frequency bands. In 
resonance frequency band investigation, the one-scale 
WT is employed with the wavelet center frequency at 
2000 Hz; the frequency-domain analysis is conducted 
with the signal that is band-pass filtered around the reso-
nant frequency [1500 2500] Hz of the bearing and hous-
ing [20]. The analysis of these two classical methods is 
also based on the corresponding averaged autocorrelation 
spectra. 

In frequency-based analysis, the bearing fault is de-
tected by checking if there exists a pronounced spectral 
component in the resulting spectra that corresponds to 
one of the bearing characteristic defect frequencies. If the 
frequency-based fault detection technique cannot en-
hance the bearing health condition-related spectral com-
ponents (i.e., making them pronounced or dominant in 
the spectral maps), other supplementary methods, based 
on either time-domain or time-frequency-domain analy-
sis, should be properly employed to improve the diag-
nostic accuracy [2,16]. In our investigation, it is found 
that when the bearing is in its normal condition, the shaft 
speed dominates the resulting spectra due to unavoidable 
imperfections (e.g., system unbalance). When an incipi-
ent bearing fault (i.e., inner race defect or outer race de-
fect) occurs, the bearing characteristic defect frequency 
will become pronounced if the proposed WS technique is 
employed. The results from these examinations are 
summarized in Table 1, in which the numbers represent 
the percentages of successful bearing health condition 
estimation. From Table 1, it is seen that: 1) in general,  

Copyright © 2011 SciRes.                                                                                 JSIP 



A Wavelet Spectrum Technique for Machinery Fault Diagnosis 327 

Table 1. Comparison of diagnostic results using different 
methods. 

 
One-scale 

WT 
Frequency 
analysis 

WS 

Healthy bearing 64.3% 71.4% 100% 
Bearing with outer race defect 85.7% 85.7% 100% 
Bearing with inner race defect 50.0% 57.1% 92.9% 

 
the classical methods with entropy-based frequency band 
selection can be more reliable in detecting a bearing fault 
than those methods focusing only on structural resonance 
frequency band; 2) the proposed WS outperforms these 
two classical methods in terms of bearing fault diagnostic 
accuracy, no matter which frequency band is examined. 
In the following context, the processing results from one 
testing case will be used, as an example, to compare the 
performance of different bearing fault detection tech-
niques. 

Healthy Bearing: As mentioned earlier, when the 
bearing is in its normal condition, the shaft speed domi-
nates the resulting spectra due to some unavoidable shaft 
imperfections (e.g., unbalance) and the varying compli-
ance. For example, Figures 5(a)-7(a) show the respec-
tive processing results from these three methods for a 
healthy bearing ( t  = 35 Hz). It is seen that the shaft 
speed can be clearly recognized by using the WS tech-
nique (Figure 5(a)). By contrast, the shaft speed infor-
mation can not be clearly identified by using the 
one-scale WT and the frequency-domain analysis (Fig-
ures 6(a) and 7(a)); instead, the third harmonic of the 
shaft speed dominates the resulting spectra (Figures 6(a) 
and 7(a)), which is in fact very close to the outer race 
defect frequency (  = 106.83 Hz) in this case. 

f

odf

3.1. Outer Race Fault Detection 

Outer race fault detection is a relatively easy task be-
cause the ring is fixed and the defect-related resonance 
modes do not change dramatically. Table 1 illustrates 
that the proposed WS technique can detect the outer race 
faults in all test cases in which the outer race defect fre-
quency dominates the resulting spectra; one example is 
shown in Figure 5(b) when od  = 106.83 Hz. It is 
noted that the one-scale WT and the employed fre-
quency-domain technique can also detect the outer race 
defects although in some test cases the harmonics of the 
outer race defect frequency dominate the resulting spec-
tra, as seen in Figures 6(b) and 7(b).  

f

3.2. Inner Race Fault Detection 

The detection of a fault on an inner race is more chal-
lenging than on a fixed outer ring because the modes of 
the generated resonance signatures vary over time. Test 
results in Table 1 demonstrate that the WS technique is 
more reliable (e.g., Figure 3(b)) than the related classical  
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Figure 5. The processing results when the WS technique is 
applied: (a) healthy bearing; (b) bearing with an outer race 
fault; (c) bearing with a rolling element fault. 
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Figure 6. The processing results when the one-scale WT 
technique is applied: (a) healthy bearing; (b) bearing with 
an outer race fault; (c) bearing with an inner race fault. 
 
methods (e.g., Figures 6(c) and 7(c)) in detecting bearing 
faults on rotating rings and in suppressing the noisy 
spectral components. This is because the WS technique is 
capable of integrating the periodic features from several 
contributive wavelet bands.  
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Figure 7. The processing results when the employed fre-
quency-domain technique is applied: (a) healthy bearing; (b) 
bearing with an outer race fault; (c) bearing with an inner 
race fault; (d) bearing with a rolling element fault. 

3.3. Rolling Element Fault Detection 

The detection of a rolling element fault for ball bearings 
is one of the most challenging tasks in bearing health 
condition monitoring, especially when the fault is at its 
initial stage. This is because: a) the resonance signatures 
generated by a ball defect are non-stationary; and b) the 
impacts are random since the defect may not always 
strike the races. In our tests, it is found that the rolling 
element defect frequency can be detected as long as the 
shaft speed is sufficiently high (e.g., over 30 Hz in this 
test), although the related defect spectral component is 
not the dominant one in the resulting spectra. It is also 
seen that the defect frequency processed by using the WS 
technique (e.g., Figure 5(c)) is more prominent than 
those from the two classical methods (e.g., Figures 
6(a)-7(d)). 

4. Conclusions 

A wavelet spectrum (WS) technique is proposed in this 
paper for representative feature extraction and bearing 
incipient fault detection. The WS technique performs 
feature extraction by demodulating the non-stationary 
resonance signatures generated by bearing incipient de-
fects and then correlating the periodic patterns over more 

contributive wavelet bands. A Jarque-Bera statistic-based 
performance indicator is suggested to guide the wavelet 
band selection. The effectiveness of the proposed WS 
technique is verified by a series of experiments corre-
sponding to different bearing conditions. Test results 
show that the WS technique is an effective approach for 
non-stationary feature extraction and bearing fault detec-
tion. It outperforms the related classical methods such as 
one-scale wavelet transform and the employed fre-
quency-domain technique. 
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