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ABSTRACT 

This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using 
state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state 
transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model pa-
rameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the 
conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible 
numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algo-
rithm was proved in the analysis of the neuroelectric signal waveforms. 
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1. Introduction 

Estimation of the state of the dynamic systems has been a 
research object for many years since the innovation of the 
Kalman filter (KF) [1-4]. The time-varying autoregressive 
models are useful in analysis of relatively slowly chang- 
ing dynamic systems. The adaptive least mean squares 
(LMS) algorithm has been extensively applied in the 
analysis of various biomedical and industrial systems 
[5,6]. A disadvantage of the LMS algorithm is the poor 
adaptation in systems with abrupt changes. The more 
fastly adapting recursive least squares (RLS) algorithm 
[7], Kohonen neural network [8], extended Kalman filter 
(EKF) [9] and many other approaches have recently intr- 
oduced for robust and accurate space-state modelling of 
the highly varying dynamic systems. The computational 
power of the most of the algorithms is based on the recur- 
sive updating of the model parameters and matrices. Usu- 
ally this is solved by using a forgetting function, which 
gives the higher weight to the most recent data values. 

In this work we describe the least squares matrix 
(LSM) algorithm, where the state-space model is based 
on the Hankel structured data matrix formulation. In the 
updating algorithm, no forgetting function is used. 

2. Theoretical Considerations 

2.1. Dynamic State-Space Model 

We consider the dynamic state-space model 

1 , ,n n n n n nX F X y C X w            (1) 

where the state vector 1N
nX  , the state transition 

matrix N N
nF   and the vector   1100 0 NC    . 
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 ny y 
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 is a random zero mean observa- 
tion noise. The signal  consists of measurem- 
ents at time increments , where 
is the sampling period. Let us define the data vector 
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The subscript  in n  and nn Y H  refers to the most 
recent data point n . The least squares estimate of the 
state transition matrix  comes from 
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matrix nF  defines the system order. In many appli- 
cations the state transition matrix should be evaluated at 
T intervals. In complex dynamic systems the dimension 
of the state transition matrix is high and the computation 
of the pseudoinverse matrix #

nH  is time consuming. 
Instead, by partitioning the state transition matrix nF  
into n  and  matrices we introduce a novel 
algorithm for updating the 

R 1
nC

1
nC  and n  matrices and 

for the computation of the state transition matrix 
R

nF . 

2.2. Computation of the 1
nC   Matrix  

Using the data vector representation (2) the  matrix 
can be written as 
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The uptake of the n  matrix is obtained by adding a 
new term and subtracting the oldest term as 
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A key idea in this work is that we write the last two 
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The matrix inversion lemma yields the inverse matrix 

1

1 1 1

( )

n n n n

U

C C V V



  

 

  1
n nC ,

  (8) 

where the identity matrix  By denoting  I
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For fast computation of the nZ  matrix the product 
1 2 N

n n is first computed and then the inverse 
matrix . In Equation (9) the product  

 is first computed. 
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The matrix  can be updated as 

 

1 2 1 1

1

n n n M

n M n

R Y

Y U

    

 

 
    

 

(11) 

where the same notations as in Equation (6) have been used. 

2.4. Computation of the nF  Matrix  

The uptake of the state transition matrix 1
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For fast computation the products 2N
n nF U  and 

1 2
1

N
n nV C 

   are first computed. The uptake of the state 
transition matrix needs five matrix multiplications dimen- 
sioned as    2N N N    and four matrix multiplicati- 
ons dimensioned as    2 2N N    or  
   2 .2 N N    Thus the computational complexity of 
the algorithm is  25 2O N   4 4O N . 

3. Applications of the LSM Algorithm 

3.1. State-Space Filtering 

The knowledge of the state transition matrix nF  enables 
the filtering of the measurement signal  based on the 
prediction 

ny

1
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The state-space filtered signal  can be obtained as 
a mean of the antidiagonal elements. We may define the 
filtered data matrix as 
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In the following we describe several matrix operators 
based on the state transition matrix. In all computations 
the filtered data matrix (14) is applied. 

3.2. Numerical Signal Processing 

The knowledge of the state transition matrix nF  enables 
the numerical signal processing of the state-space filtered 
signal. In the following we develop matrix operators 
based on the state transition matrix for numerical inter- 
polation, differentiation and integration of the measure- 
ment signal.  

The eigenvalue decomposition of the state transition 
matrix is 1
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where the time-shift  0,T
,

. Now we may define the 
interpolating operator N N
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ˆ ˆ

 as 

, , .n n n n nH S H S F 
          (16) 

Next, we may define the differentiation operator  
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Due to Equation (15) we have 
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where  denotes matrix logarithm. Further, we 
may define an integral operator 

 logm 
N N

nI   as 

ˆ dn n
ˆ

n .H t I H               (19) 

Since the differentiation and integral operator are in-
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The interpolating, differentiation and integral opera- 
tors are commutative, i.e. n n n n  and  

n n n n . The computation of the second, third etc. 
derivatives and integrals of the signals are also possible 
using the matrix operators, e.g. the second derivative 
operator is obtained as n . Generally, 
the present method allows the fractional calculus, for 
example the computation of fractional derivative  

n

S D D S

2 lognD  
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 2
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    , where 0  . It should be pointed 

out that applied to the state-space filtered signals the nu-
merical operators are analytic, i.e. they produce results 
with machine precision. 

4. Experimental Results 

The tracking performance of the LSM algorithm was 
tested using different kind of sinusoidal waveforms. In the 
absence of noise the outcome of the LMS algorithm fol- 
lowed the original signal with the machine precision. Fig- 
ure 1 shows the tracking performance of the LSM algo- 
rithm to a sinusoidal signal consisting of two frequency 
components ( 1 0.1   and 2 0.2  ) in the presence of 
zero mean impulsive noise. The length of the data win- 
dow was  and the system order 40M 4.N   The 
mean error in estimation of the frequency components 
based on the eigenvalues of the state transition matrix was 
0.14%. For comparison, the state transition matrix was 
computed from the pseudoinverse matrix (3) using the 
singular value decomposition (SVD) T

nH U V 

#
n

, 
where U and V are unitary and  a diagonal matrix 
consisting of the singular values in descending order. The 
pseudoinverse matrix is then yielded as 


1 TH V   U ,  

sample number

vo
lts

 

Figure 1. The tracking of the LSM algorithm to the noisy 
signal consisting of two sinusoidal components. The vertical 
scale is in volts and the horizontal scale denotes the sample 
number.  
 
where the smallest singular values are eliminated [10,11]. 
An excellent match was found between the LSM and the 
SVD-based algorithms. 

The validity of the LSM algorithm was warranted in 
the analysis of neuroelectric signal waveforms. The neur- 
oelectric signals were recorded from two different loca- 
tions of the brain in freely behaving Kuo-Wistar rats (bred 
in the National Animal Center of Kuopio, Finland): 1) 
from the frontal cortex with a stainless steel screw elec- 
trode (diameter 1 mm) driven into the scull bone, the 
electrode tip locating in the vicinity of the epipial neocor- 
tical surface, 2) from the hilar region of the dentate gyrus 
of the hippocampus with a permanently fixed depth sur- 
face wire electrode (diameter 125 μm, stainless steel, Ny- 
lon coated, tip cut square). In both recordings ground and 
reference points were situated on opposite sides of oc- 
cipital skull. The neuroelectric signals were sampled at 
300 Hz using a 14 bit analog-to-digital (ADC) converter. 
In front of the ADC any analog filter was not used.  

In 16 consecutive EEG recordings the neuronal activi-
ties computed by the LSM and SVD methods cross-cor- 
related highly significantly with each other. The cross- 
correlation coefficient varied between 0.999 - 0.9999. A 
typical neuroelectric signal recording from the hilar re-
gion and the outcome of the LSM algorithm is described 
in Figure 2. The waveform is mixed with varying degrees 
of irregular behavior derived from sources of nonsyn-
chronously bursting neural activities. The eigenvalue de-
composition of the state transition matrix yielded four 
clearly different frequency components with time-varying 
amplitudes. 
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Figure 2. The original neuroelectric signal (top) and the 
outcome of the LMS algorithm (below). The x-axes denote 
the sample number. The y-axes denote the signal voltage in 
millivolts. 

5. Conclusions 

In this work we describe the least squares matrix (LSM) 
algorithm for the estimation of the dynamic state-space 
models. In conventional recursive least squares (RLS) 
algorithms uptake is based on the use of the forgetting 
factor, which weights the data vectors by an exponent- 
tially descending function. In the present algorithm the 
rectangular weighting function is used, where the Hankel 
data matrix includes M vectors (4). The uptake of the 
data matrix consists of the addition of the most recent 
data vector 1n  and subtraction of the latest vector 

1 . This leads to a novel uptake mechanism (7) via 
 and n  matrices, which are dimensioned as  

 and 

Y 

n MY  

nU

nU 
V
2N 2 N

n

V

V . Due to the reduced dimen- 
sions of the nU  and n  matrices, the computations 
needed in the uptake have computational complexity, 
which is of the same order than in the conventional RLS 
algorithm, which is usually referred as .  2O N

The RLS algorithm is known to be only marginally 
stable in the analysis of the fastly time varying systems. 
In the present algorithm the estimation of the state transi-
tion matrix is based on the LS solution of the Hankel 
structured data matrix, which consists of M data vectors. 
The method is inherently robust, since any adaptive fil-
tering criteria are not used. The computation time does 
not depend on the number of data vectors M. The length 
of the data vectors N matches the system order. For noise 
free measurements M may be only slightly higher than N. 
In analysis of systems corrupted with noise the increase 
of M makes the algorithm more noise tolerant. On the 
other hand the overdeterministic solution masks the rapid 

changes in system parameters.  
The good tracking performance of the LSM algorithm 

was warranted in the state-space modelling of the sinu-
soidal signals (Figure 1) and the neuroelectric signal 
waveforms (Figure 2). The outcome of the LSM alg- 
orithm correlated well with the results yielded by SVD 
method. The small differences are probably due to the 
fact that in the SVD method the smallest singular values 
must be eliminated before the computation of the pseu- 
doinverse matrix. This reduces the system order in the 
SVD method. In the LSM algorithm the system order can 
be higher and the state-space modelling is more tolerant 
to variations in system parameters. The distinct differ-
ence between the present algorithm and the SVD based 
methods is that the present algorithm updates the state 
transition matrix nF  at every time interval, while the 
SVD based algorithms [10,11] compute the state transi-
tion matrix in data blocks. Our algorithm is more feasible 
in the analysis of the fastly changing dynamic systems 
and especially for real-time applications, where the ei- 
genvalues of the state transition matrix give actual in-
formation on the system functioning.  

The knowledge of the state transition matrix yields a 
plenty of numerical signal processing tools, such as in- 
terpolation (16), differentiation (18) and integration op- 
erators (20), which compete for example with the conven- 
tional B-spline signal processing algorithms [12-14]. 
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