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Abstract 
We propose the exact solution of the equation in separated variable which ap-
pears in the process of constructing solutions to the quantum Calogero-Moser 
three-particle problem with elliptic two-particle potential ( ) ( )1g g q− ℘ . This 
solution is found for special values of coupling constants , 1g g∈ > . It can 
be used for solving three-particle Calogero-Moser problem under the appro-
priate boundary conditions. 
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1. Introduction 

The problem of finding solutions to quantum integrable finite-dimensional 
systems in many cases still remains unsolved. The empirical constructions of 
such solutions were important at early stages of the development of the theory of 
these systems and lead to many important results being applied to trigonometric 
Calogero-Sutherland-Moser systems with the Hamiltonian of the form  

( ) ( )
2

1
1 , ,

2

N N
j

j k j
j j k j

p
H g g V q q p i

q= >

∂
= + − − = −

∂∑ ∑           (1) 

for N particles in one dimension with the two-body potential given by  

( ) ( )( ) 22 sin .V q a aq
−

=                       (2) 

The coupling constant g is supposed to be real and chosen as 1g > . 
It turned out [1] [2] that the ground-state wave function of the trigonometric 

model is of factorized form and the wave functions of all the excitations can be 
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written as products of this function and multivariable Jack polynomials [3]. 
These results were also extended to more complicated cases with interaction 
terms modified by the introduction of more general root systems [3]. 

The quantum elliptic many-particle problem which also has been proven to be 
integrable [4] [5] is till now quite far from being solved completely. It has 
two-particle interaction potential of the form  

( ) ( ) ,V q q=℘                          (3) 

where ( )q℘  is the Weierstrass elliptic function with two periods 1,2ω  which 
do not lie on the line in complex plane. The hermiticity of the Hamiltonian 
implies 1 2, iω ω∈ ∈  . The trigonometric case (2) corresponds to infinite 
complex period. 

In the simplest case of 2N = , the eigenvalue problem for the Hamiltonian 
(1), (3) is just the well-known Lamé equation. For general coupling constants g, 
its solutions have a branch point at the origin and their expression through the 
known transcendental functions is not known. However, there is an exception: 
for integer values of g, Hermite found that the solutions are expressed in terms 
of an exponent and quasiperiodic Weierstrass σ  functions [6]. The reason for 
the existence of such a solution is in fact based on its “good” analytic properties 
in a complex plane of the variable q: at integer g there is no branch points and 
the only singularity is a pole at 0q =  up to the quasiperiodicity. 

This fact inspired the authors in the paper [7] to consider the case of general 
2N >  and g∈ . It has been proved that the double quasiperiodic solutions 

for many-particle wave functions are still expressed in terms of the Weierstrass 
σ  functions but the procedure of finding them is rather complicated. They 
were able to find it explicitly only for 3N = , 2g = . In [8], these solutions 
have been presented analytically for arbitrary 2N >  and 2g ≥ , also in 
overcomplicated form requiring many nontrivial operations to their explicit 
writing. As for arbitrary real 1g >  the solution of the eigenproblem for the 
elliptic case was constructed by the perturbation theory in the form of infinite 
series [9]. 

However, there is another approach to finding the solutions for the dynamics 
of integrable systems, namely separation of variables. It is well known in its sim-
ple form using purely co-ordinate transformations. As for the elliptic Caloge-
ro-Moser systems, simple forms do not work but separation still takes place as it 
was proposed in [10] for 3-particle case at arbitrary values of coupling constant g. 
The separation of variables occurs after transformation corresponding to a clas-
sical canonical transformation of phase space variables mixing coordinates and 
momenta. The transformation is realized as an integral transform of the wave 
function in the quantum case. The original two-dimensional problem has been 
reduced to one-dimensional one and the process of finding the eigenfunction 
contains investigation of the solution to a third order ordinary differential equa-
tion [10],  
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where 1 2 3, ,h h h  are constants (the values of the integrals of motion). 
The aim of this paper is to find the explicit solutions to Equation (4). We shall 

show below that for integer values of g, 2g ≥  they may be obtained via the 
solution to the system of g usual transcendental equations. 

2. Finding the Solution 

It should be noted at first that the coefficients in (4) are double periodic 
functions of x. Hence one try to seek the particular solution as double 
quasiperiodic function. The second observation concerns possible singularities 
of this solution. Since ( )x℘  has double pole at 0x =  and it is analytic at the 
other points of torus ( )1 2ω ω= +    , all the singularities of ( )xψ  in   
must be also located at 0x = . The assumption  

( ) ~ , 0x xρψ ρ <  

at 0x →  gives the result  

( ) 1~ gx xψ −  

as the leading singularity, taking the most singular possibility only. For 
non-integer g, this is a branch point and there is no simple ansatz to the solution 
of (4). 

The situation is changed drastically if g∈ , 1g > . In this case, the leading 
singularity of ( )xψ  is a pole of the order 1g −  and there are no branch 
points. Combining this property with double quasiperiodicity allows one to 
write down the Hermite-like ansatz for the possible solution to (4)  

( ) ( ) ( ) ( )
1

1

1
exp ,

g
g

s
s

x A x x xψ γ σ σ λ
−

−

=

= +∏               (5) 

where A is inessential normalization constant, γ  and { }sλ  are parameters 
which have to be determined, and ( )xσ  is the Weierstrass sigma function. It is 
connected with ( )x℘  by the relations  

( ) ( ) ( ) ( )d dlog , ,
d d

x x x x
x x

σ ζ ζ= = −℘  

where ( )xζ  is the Weierstrass ζ  function with the property  

( ) ( )1 3 , 0.x x O x xζ −= + →                    (6) 

We assume that all sλ  are mutually different for 1, , 1s g= −  and 
different from 0 in  . 

By consecutive differentiations of (5), one finds  
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=

′
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Note that the all right-hand sides of these equalities are elliptic functions of 
the argument x. Substitution of these expressions into (4) yields  
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(7) 

The function ( )B x  is elliptic and might have poles up to third order at the 
points ( )0, 1, , 1sx x s gλ= = − = − . However, the direct inspection of the 
Laurent decompositions near these points shows that all the coefficients at the 
terms ( ) ( )3 23 2, , ,s sx x x xλ λ− −− − + +  vanish identically for arbitrary γ  and 
{ }sλ . Hence this function can be written in the form  

( ) ( ) ( )
1

0
1
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g

s s
s

B x b x b xζ ζ λ
−

=

= + + +∑                 (8) 

where the constant coefficients { }0 , sb b  should obey the relation  
1

0
1

0
g

s
s

b b
−

=

+ =∑                             (9) 

(statement (III) of par. 20.12 in [6], e.g.). The Laurent decomposition of (7) near 
the points sx λ= −  with the use of (6) allows one to find the coefficients sb  
explicitly. Due to (7), all of them should vanish. This results in the system of 

1g −  transcendental equations to the parameters { }, sγ λ :  
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It remains only to calculate the constant term in (8). Equivalently, we calculate  

( ) 0

0
lim
x

bB x
x→

 − 
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using the Laurent decomposition of (7) near the point 0x = . After long but 
straightforward calculations (performed by the MATHEMATICA® program), 
one finds the condition  
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      (11) 

The algebraic system (10)-(11) allows one to determine the parameters 
{ }, sγ λ  under which the elliptic function B has no poles and equals zero at one 

point. Then ( ) 0B x =  due to the Liouville theorem (statement (IV) of par. 20.12 
in [6]). The last equation is cubic in γ. This corresponds to three linearly 
independent solutions to the original Equation (4).  

3. Summary 

Let us summarize our results. We obtained the explicit solutions of the separated 
Equation (4) at integer couplings g which, in its turn, gives the solution to the 
three-particle quantum Calogero-Moser problem via the procedure described in 
[10]. We conjecture that g Equations (10)-(11) determine the g parameters 

( ), 1, , 1s s gγ λ = −  in the generic case at the least. However, it is not clear 
whether the solution to the above problem in the forms known before [7] [8] can 
be transformed into the forms with separated variables. As [7] [8] [10], we 
consider in general singular solutions to the differential Equation (4) leaving 
aside the right physical boundary conditions which are even not known here 
[10].  
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