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ABSTRACT 
Today computers are used to store data in memory and then process them. In our big data 
era, we are facing the challenge of storing and processing the data simply due to their fast 
ever growing size. Quantum computation offers solutions to these two prominent issues 
quantum mechanically and beautifully. Through careful design to employ superposition, 
entanglement, and interference of quantum states, a quantum algorithm can allow a quan-
tum computer to store datasets of exponentially large size as linear size and then process 
them in parallel. Quantum computing has found its way in the world of machine learning 
where new ideas and approaches are in great need as the classical computers have reached 
their capacity and the demand for processing big data grows much faster than the compu-
ting power the classical computers can provide today. Nearest neighbor algorithms are sim-
ple, robust, and versatile supervised machine learning algorithms, which store all training 
data points as their learned “model” and make the prediction of a new test data point by 
computing the distances between the query point and all the training data points. Quantum 
counterparts of these classical algorithms provide efficient and elegant ways to deal with the 
two major issues of storing data in memory and computing the distances. The purpose of 
our study is to select two similar quantum nearest neighbor algorithms and use a simple 
dataset to give insight into how they work, highlight their quantum nature, and compare 
their performances on IBM’s quantum simulator. 

 

1. INTRODUCTION 
Quantum is a Latin word and in physics it means the smallest possible discrete unit of any physical 

entity such as energy or mass. Quantic particles exhibit wave-particle duality and quantum theory deals 
with finding the probability of a quantum particle at a given point in space, while classical particles can be 
found at an exact location. Classical computers use bits that are either 0 or 1. But quantum computers use 
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quantum bits called qubits. One of the peculiar properties of a qubit is that it can be in a superposition of 
both states 0  and 1 . This ability to store quantum states simultaneously is the base for quantum par-
allelism and offers exponentially compact representation of data. In addition to superposition, entangle-
ment and interference of quantum states are also resources that provide the speedup for quantum compu-
ting as classical computers can do none like these.  

Machine learning has found wide applications in many different areas in life today and often outper-
forms humans in accuracy in solving complex problems. Google’s AlphaGo is a very good example that 
attracts the world’s attention and generates unprecedented excitement to the AI research and development 
and brings hope that AI one day could really improve the quality of human life. However, certain applica-
tion domains remain out of reach due to the difficulty of the problems and limitations of classical com-
puters. In recent years, quantum machine learning has become a matter of interest because of its potential 
as a possible solution to these unresolvable challenges through reducing the computational complexity and 
improving generalization performance.  

In a recent review [1], different scenarios dealing with classical and quantum machine learning are 
discussed with different possible combinations: using classical machine learning to analyze classical data, 
using quantum machine learning to analyze both classical and quantum data, and using classical machine 
learning to analyze quantum data. Notable examples of these can be seen: quantum control using classical 
reinforcement learning, learning unitaries with optimal strategies, making quantum computers more reli-
able with help of machine learning and speedup in various learning algorithms. As a result, quantum 
computing and machine learning can co-evolve and will enable technologies for each other. 

One of the challenges mentioned in this paper [1] is the difficulty in extracting the learned informa-
tion without destroying the information itself, as the laws in quantum mechanics, such as the no-cloning 
theorem, make this task extremely hard. These difficulties motivate us to think more broadly what it 
means for a quantum system to learn about its surroundings. Besides using quantum algorithms for data 
analysis, quantum machine learning can also investigate more fundamental questions about the concept of 
learning from the perspective of quantum theory. 

K-nearest neighbor (KNN) algorithm is a simple and intuitive supervised machine learning algo-
rithm, whose learning model is made of storing the training dataset and can be used for either classifica-
tion or regression. In general, the aim of a supervised learning algorithm is to infer the input-output rela-
tion via learning from training data. To make a prediction for a new test data point, the algorithm uses the 
K closest data points (K nearest neighbors) in the training dataset using some predefined distance. Since 
this algorithm uses only the training data points in the prediction and does not need any iterations of 
going through the training data to build a model before the prediction, it is called instance-based learning 
or lazy learning.  

It is easy to see that the performance of this algorithm depends critically on the choice of K. A small 
value of K could allow the noise in the data to have a higher influence while a large value requires more 
CPU time. Most data analysis practitioners suggest selecting K N=  where N is the number of training 
data points.  

Euclidean distance is a common choice for continuous data points and Hamming distance is a good 
choice for discrete data points. It is obvious that the selection of a distance metric plays a critical role in 
the performance of this algorithm, which determines how to find the nearest neighbors. The second ques-
tion is how to use the nearest neighbors to make a prediction after they have been identified. For this end, 
K is typically chosen as an odd number in case majority votes are employed for final prediction. Therefore, 
it makes decision based on the entire training data set or in the best case a subset of them. 

One extension to the majority votes is not to give 1 vote to all the neighbors. A common strategy is to 
assign a weight to each neighbor based on its distance. For instance under inverse distance weighting, each 
point has a weight equal to the inverse of its distance to the point to be queried, implying that closer 
neighbors have a higher vote than the farther ones. This approach has avoided the hard task to choose K as 
the value of K is implicitly hidden in the weights [2]. 

Further, the famous “curse of dimensionality” can also be seen in this algorithm. Imagine we have 
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1000 training data points uniformly distributed in the unit hypercube and our test data point is at the ori-
gin. In 1-dimensional space, it takes about a distance of 3/1000 = 0.003 on average to get 3 nearest neigh-
bors. In 2-dimensional space, it takes about a distance of ( )1 20.003  and in n-dimensional space, it takes 
about a distance of ( )10.003 n  in each direction as the training data points become sparsely distributed 
when the dimension of the space increases.  

Another feature of this algorithm is non-parametric since it does not make any assumptions about 
the distribution of data in contrast some other algorithms may assume a Gaussian distribution of the given 
data for example. This makes this algorithm more robust and versatile as in the real world most of the 
practical data does not follow the typical theoretical assumptions. For example, beyond classification and 
regression, it can be used in density estimation, since being non parametric allows it to do estimation for 
arbitrary distributions. Because it is lazy, this algorithm does not use the training data points to do any 
generalization but only memorizing the training instances. (Figure 1 & Figure 2) 

The two primary and prominent costs of nearest neighbor algorithm are: storage of all training data 
points and CPU time to compute the distances of the query data point to all training data points, which 
are huge challenge in big data. Quantum nearest neighbor algorithms offer solutions to these two issues 
quantum mechanically and beautifully. Due to superposition, quantum algorithms can store all training 
data points of exponentially large size as a linear size. And because of entanglement and interference, they 
can compute the distances at once.  

As quantum machine learning is an emerging research field, it is constructive and enlightening to in-
vestigate the actual work of these new algorithms. Along in this direction, we have finished a few papers 
for this end [3-5]. In [3], we create some artificial datasets to visualize the working of a distance-based 
quantum classifier and extend their quantum circuit from binary classification to a multiclass classifica-
tion. In [4], the training of an AI agent for its decision making is compared on an ion trap quantum sys-
tem and on a superconducting quantum system, and discover that latter is more accurate than the former 
and tends to underestimate the values for the agent to make a decision when compared with the ion trap 
system. In [5], a quantum neuron is created with a nonlinear activation function like a sigmoid function  
 

 

Figure 1. A diagram to show the work of KNN. One test data point (a star in the center) should be 
classified either to the class of circles or to the class of triangles. If K = 3 (solid line circle) it is as-
signed to the class of triangles because there are 2 triangles and only 1 circle inside the inner circle. 
If we increase the value of K, the prediction outcome may change. 
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Figure 2. A diagram to show the work of NN in general. One test data point (a star in the center) 
should be classified either to the class of circles or to the class of triangles. The distance from this 
test data point to all the training data points are computed and its class membership is determined 
with the closest data points. As in this Figure, the test point is predicted to be in class of circles. 
 
which is a classical activation function commonly used in classical neurons.  

Following the same principle as in [3-5], this current study chooses two related quantum nearest 
neighbor algorithms [2, 6] and uses a simple dataset to demonstrate how they work, reveal their quantum 
nature, and compare their performances in detail using IBM’s quantum simulator [7].  

2 METHODS 
We outline the two algorithms from [2, 6] used in the current study. Each training data point is 

represented as n features ( )1 2, , ,p p p
nv v v

 and its class label pc , where 1,2, ,p N=   is an index of the 
point in a training dataset and { }1,2, ,c d∈  . Each training data point is expressed as a quantum state of  

1 2, , , , ,p p p p p p
nv c v v v c= 

. The test data point is represented as 1 2, , , nx xx x=   and the whole train-

ing data points are super-positioned as 1 2
1 , , , ,p p p p

npT v v v c
N

= ∑  .  

2.1. One Quantum Nearest Neighbor Algorithm from [2]  

This algorithm is the quantum version of the classical weighted nearest neighbor algorithms and is 
inspired from the quantum associative memory in [8]. The idea is to super position all the training data 
points into one quantum state and then compute the Hamming distance of each training point to the test 
point into the amplitude of each training point in superposition. After this, measuring the class qubit re-
veals the appropriate class with highest probability. Here is an outline of the algorithm. 

Step one: superposition all training points into one quantum state 

1 2
1 , , , ,p p p p

n
p

T v v v c
N

= ∑ 

 
Step two: add one ancilla qubit to this state 

0 1 2 1 2
1 , , , ; , , , , ;0p p p p

n n
p

x x x v v v c
N

ψ = ∑  

 
Step three: apply the Hadamard gate to the ancilla qubit 
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( )1 1 2 1 2
1 1, , , ; , , , , 0 1

2
p p p p

n np x x x v v v c
N

ψ = ⊗ +∑  

  
Step four: to get the Hamming distance, apply X gate the x  state and CNOT to ,x v  with x  is 

the control and v  is the target 

( ) ( )

( )

2 1

1 2 1 2

1 ,

1 1, , , ; , , , , 0 1
2

p
k k k

k

p p p p
n n

p

X x CNOT x v
N

x x x d d d c
N

ψ ψ=

= ⊗ +

∏

∑  

 
Step five: apply the unitary operator 

π
2e

i H
nU

−
= , ( )11 1

2
z

zk c
c

H σ σ 
 


⊗ ⊗


+
= ⊗∑  

to add the Hamming distance p
kd  of each training point 1 2, , ,p p p p

nv v v v= 
. The state after this opera-

tion is 

( )

( )

π ,
2

3 2 1 2 1 2

π ,
2

1 2 1 2

1 e , , , ; , , , , ;0
2

e , , , ; , , , , ;1

p
H

p
H

i d x v p p p pn
n n

p

i d x v p p p pn
n n

U x x x d d d c
N

x x x d d d c

ψ ψ

−

= =

+

∑  

 

 
where ( ), p

Hd x v  is the Hamming distance between pv  and x . 
Step six: apply another Hadamard gate on the ancilla qubit 

( )

( )

4 3

1 2 1 2

1 2 1 2

1 πcos , , , , ; , , , , ;0
2

πsin , , , , ; , , , , ;1
2

p p p p p
H n n

p

p p p p p
H n n

H

d x v x x x d d d c
nN

d x v x x x d d d c
n

ψ ψ=

 
  

 
 

=


+

∑  

 

 
Step seven: from step six, it is clear that if the test point is close to the training points then we have a 

higher probability to measure the ancilla qubit in the state 0 , otherwise we should see it in the state 1 . 
The probability of getting 0  is 

( ) ( )21 π0 cos ,
2

p
a H

p
P d x v

nN
 =   

∑
 

At this point of time, there are two paths to take. The first way is to take a “K  all” approach by as-
signing the class of training points that are on average closer to the test point. The second is measure the 
class qubit and retrieve the neighbors with a probability weighted by their distance and choose a class from 
this pool of training points.  

Following the first path, we need to measure the class qubit. To better show the different classes ap-
pearing weighted by their distance to the test point, 4ψ  is rewritten as 

 

( )

( )

4 1

1 2 1 2

1 2 1 2

1

πcos , , , , ; , , , , ;0
2

πsin , , , , ; , , , , ;1
2

d
c

l l l l l
H n n

l c

l l l l l
H n n

c
N

d x v x x x d d d c
n

d x v x x x d d d c
n

ψ =

∈

=

 ⊗   
 +   

∑

∑  

 
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The probability of measuring a class { }1,2, ,c d∈   conditioned on measuring the ancilla qubit in 
0  is 

( ) ( ) ( )21 πcos ,
0 2

l
H

l c
P c d x v

NP n∈

 =   
∑

 
Following the second path, the test point is assigned the class that is in the majority of its nearest 

neighbors.  

2.2. One Quantum Nearest Neighbor Algorithm from [6]  

Inspired by the algorithm introduced in section 2.1, a quantum KNN algorithm is proposed in [6]. In 
addition to the well-known parameter K, it also requires another parameter t as we will explain next.  

Steps one and two are the same as those outlined in section 2.1.  
Step three:  

( ) ( )1 0

1 2 1 2

1 ,

1 , , , ; , , , , ;0

p
k k k

k

p p p p p p p
n n

p

X x CNOT x v
N

d d d v v v c
N

ψ ψ=

=

∏

∑  

 
Here the CNOT gate uses v  as control and x  as target, and as a result the meaning of the p

kd  is 
reversed, i.e., if two bits are the same then 1p

kd = , otherwise 0p
kd = . The reason for this reversion is ex-

plained in the next step. 
Step four: compute the Hamming distance with 1 2, , ,p p p

nd d d
 and label the test point according to 

a threshold value t. This operation can be done with this unitary operator U: 

2 1 1 2 1 2

1 2 1 2

1 , , , ; , , , , ;1

, , , ; , , , , ;0

p p p p p p p
n n

p

p p p p p p p
n n

p

U d d d v v v c
N

d d d v v v c

ψ ψ
∈Ω

∉Ω

= =

+

∑

∑

 

 

 
where Ω  is a set that contains indexes p with Hamming distance between pv  and x t≤ . 

Recall that the meaning p
kd  is reversed, so the Hamming distance ≤t implies p

ii td n≥ −∑ . If K is 
chosen according to 12 2k kn− ≤ ≤ , and let 2kl n= − , then the condition Hamming distance ≤ t can be 
rewritten as  

p
ii d l n l t+ ≥ + −∑  implies 2p k

ii d l t+ + ≥∑  

From this inequality, if the initial a l t= + , then the condition of Hamming distance ≤ t can be de-
termined by whether the sum of p

ii d a+∑  overflows or not.  
Step five: measuring the ancilla qubit in the state of 1  can find the training points whose Hamming 

distance is less than t. In this algorithm there are two parameters, K and t, to select.  

3 RESULTS 
To compare the two classifiers from [2, 6] on a fair base, we only evaluate them by the nearest neigh-

bors they select rather than the final classification results they produce, since this step is the most critical 
before a final classification is rendered and can be compared straightforwardly.  

3.1. Dataset for Comparing the Two Algorithms 

Our aim is to create a dataset that is manageable so our analysis of these two classifiers can provide 
understanding of how they work, reveal their quantum nature, and compare their performances. For this 
purpose, we create a test dataset with all 4 bit binary numbers which makes n = 4 consequently and choose 
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four particular numbers of them as training points with the first two training points in class 0 and second 
two in class 1 (Table 1). Furthermore, in order to establish a benchmark to compare the two quantum 
classifiers in section 2, we choose K = 2 and find the nearest neighbors for each test point manually based 
on the Hamming distance, which provide the best possible results (Table 1).  

3.2. Performance of the First Classifier in Section 2.1 

According to the probability formula in Step six in section 2.1, we calculate the theoretical probability 
of observing each test point and each training point when measuring the ancilla qubit in state 0  in Ta-
ble 2. Since there are four training points, the maximum probability for a test point to be seen together 
with a training point is 0.25. The execution of this algorithm on IBM’s quantum simulator produces the 
observed probabilities that match the theoretical ones very well (Table 2 and Figure 3). 

Each entry in Table 2 represents the theoretical or the experimental probability of observing one test 
point and one training point together when measuring ancilla qubit in state 0 . To render a better illu-
stration of these two ways of computing their probabilities, we plot them in curves in Figure 3 and we  
 
Table 1. This table contains two sub tables. On the left is a sub table for Hamming distances between 
test points and training points. On the right is a sub table for the nearest neighbors of each test point 
selected by the Hamming distance and when K = 2, where 1 means a nearest neighbor, 0 means 
otherwise. This sub table displays the best possible results which will be used as a benchmark to 
compare the two algorithms in the next two sections. 

Hamming distance between training points and test points 
Nearest neighbors for 

each test point 

Test\Training [ ]00 0,0,0,0 ,
0

x
c

=

=
 [ ]01 0,0,0,1 ,

0
x

c
=

=
 [ ]10 1,1,1,0 ,

1
x

c
=

=
 [ ]11 1,1,1,1 ,

1
x

c
=

=
 00x  01x  10x  11x  

[0, 0, 0, 0] 0 1 3 4 1 1 0 0 

[0, 0, 0, 1] 1 0 4 3 1 1 0 0 

[0, 0, 1, 0] 1 2 2 3 1 1 1 0 

[0, 0, 1, 1] 2 1 3 2 1 1 0 1 

[0, 1, 0, 0] 1 2 2 3 1 1 1 0 

[0, 1, 0, 1] 2 1 3 2 1 1 0 1 

[0, 1, 1, 0] 2 3 1 2 1 0 1 1 

[0, 1, 1, 1] 3 2 2 1 0 1 1 1 

[1, 0, 0, 0] 1 2 2 3 1 1 1 0 

[1, 0, 0, 1] 2 1 3 2 1 1 0 1 

[1, 0, 1, 0] 2 3 1 2 1 0 1 1 

[1, 0, 1, 1] 3 2 2 1 0 1 1 1 

[1, 1, 0, 0] 2 3 1 2 1 0 1 1 

[1, 1, 0, 1] 3 2 2 1 0 1 1 1 

[1, 1, 1, 0] 3 4 0 1 0 0 1 1 

[1, 1, 1, 1] 4 3 1 0 0 0 1 1 
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Table 2. This table contains the probabilities computed from the theory of the algorithm in section 
2.1 in the left sub table and the actual observed probabilities when running the algorithm on IBM’s 
simulator with shots = 8192 in the right sub table. 

Theoretical probability of observing each test point and each 
training point when measuring ancilla qubit in state 0  

Observed probability when running the 
algorithm on IBM’s simulator 

Test\Training [ ]
00

0,0,0,0
x

=
 [ ]

01

0,0,0,1
x

=
 [ ]

10

1,1,1,0
x

=
 [ ]

11

1,1,1,1
x

=
 [ ]

00

0,0,0,0
x

=
 [ ]

01

0,0,0,1
x

=
 [ ]

10

1,1,1,0
x

=
 [ ]

11

1,1,1,1
x

=
 

[0, 0, 0, 0] 0.25 0.213424 0.036717 1.59E−07 0.253296 0.215942 0.040161 0 

[0, 0, 0, 1] 0.213424 0.25 1.59E−07 0.036717 0.225952 0.248047 0 0.035889 

[0, 0, 1, 0] 0.213424 0.1251 0.1251 0.036717 0.213379 0.125122 0.126831 0.037598 

[0, 0, 1, 1] 0.1251 0.213424 0.036717 0.1251 0.129272 0.20459 0.035278 0.119507 

[0, 1, 0, 0] 0.213424 0.1251 0.1251 0.036717 0.213623 0.120728 0.132568 0.03833 

[0, 1, 0, 1] 0.1251 0.213424 0.036717 0.1251 0.123901 0.216064 0.033691 0.125244 

[0, 1, 1, 0] 0.1251 0.036717 0.213424 0.1251 0.122803 0.037842 0.211792 0.12793 

[0, 1, 1, 1] 0.036717 0.1251 0.1251 0.213424 0.03479 0.121094 0.126953 0.2146 

[1, 0, 0, 0] 0.213424 0.1251 0.1251 0.036717 0.215332 0.11853 0.128174 0.036499 

[1, 0, 0, 1] 0.1251 0.213424 0.036717 0.1251 0.130005 0.217896 0.032593 0.121582 

[1, 0, 1, 0] 0.1251 0.036717 0.213424 0.1251 0.12793 0.036011 0.211182 0.126343 

[1, 0, 1, 1] 0.036717 0.1251 0.1251 0.213424 0.035522 0.127808 0.11853 0.211548 

[1, 1, 0, 0] 0.1251 0.036717 0.213424 0.1251 0.124268 0.03894 0.200928 0.129395 

[1, 1, 0, 1] 0.036717 0.1251 0.1251 0.213424 0.036987 0.120605 0.126099 0.213867 

[1, 1, 1, 0] 0.036717 1.59E−07 0.25 0.213424 0.037231 0 0.251709 0.21521 

[1, 1, 1, 1] 1.59E−07 0.036717 0.213424 0.25 0 0.036255 0.211914 0.25061 
 
can visually see that the two results match perfectly, giving the random nature of reading these values on a 
quantum simulator.  

For the sake of comparing this classifier with the one in section 2.2, we set K = 2 in this experiment to 
satisfy the condition of 12 2k kn− ≤ ≤  here n = 4, as required by the classifier in section 2.2. The algorithm 
in section 2.1 offers to two different path ways to get the final classification based on the measured proba-
bilities, while the one in section 2.2 produces the final classification based on whether or not there is an 
overflow in the addition of the Hamming distances to the quantum register that holds the value of a, 
which depends on the value of t. For this reason, we choose to compare these two classifiers based on the 
nearest neighbors they generate rather than the final predication. To select the nearest neighbors for the 
algorithm in section 2.1, for each test point we choose the two training points with top two probabilities as 
nearest neighbors since K = 2. From the theory shown in Table 2, there are two equal probabilities in 
some cases. If this happens, we choose three nearest neighbors instead of two. 

Now we have converted the probabilities of seeing a test point and a training point together generated 
by the classifier in section 2.1 into the nearest neighbors of a test point with the assumption that K = 2 
(Table 3). With this groundwork, we can move forward to execution of the algorithm in section 2.2. 
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Figure 3. This figure plots the actual numerical values in Table 2 to visualize how closely the expe-
rimental results match the theoretical results. The x-axis represents the 16 test points as defined in 
Table 1. 

3.3. Performance of the Second Classifier in Section 2.2 

Since n = 4, we choose K = 2 to satisfy the condition 
12 2k kn− ≤ ≤ . Let t = 1, 2, 3 respectively and the  

algorithm finds the nearest neighbors accordingly when running it on IBM’s quantum simulator (see Ta-
ble 4). Recall from section 2.2 that the selection of nearest neighbors in this algorithm is to check if there is 
an overflow or not when we add the Hamming distances to the quantum register that hold the value of 
a(t). So only in this sense, the nearest neighbor selection process in this algorithm is deterministic.  

4. CONCLUSIONS 
Quantum computing is emerging as potential solution to tackle machine learning, optimization, 

search and other challenges that are beyond the capability of the classical computers. In this study, we 
compare two similar quantum nearest neighbor algorithms on a simple dataset using IBM’s quantum si-
mulator. Our analysis suggests that the one from [2] exhibits flexibility without the need to choose K and 
allows the selection of K to be built into the probability of selecting a nearest neighbor. The one from [6]  
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Table 3. This table displays the nearest neighbors for each test point selected by the algorithm in 
section 2.1 when K = 2, where 1 means a nearest neighbor, 0 means otherwise. The results in this 
table match 100% with the best possible results in Table 1.  

Nearest neighbors for each test point selected by running the algorithm in section 2.1 on IBM’s simulator 

Test\Training [ ]00 0,0,0,0 , 0x c= =  [ ]01 0,0,0,1 , 0x c= =  [ ]10 1,1,1,0 , 1x c= =  [ ]11 1,1,1,1 , 1x c= =  
[0, 0, 0, 0] 1 1 0 0 

[0, 0, 0, 1] 1 1 0 0 

[0, 0, 1, 0] 1 1 1 0 

[0, 0, 1, 1] 1 1 0 1 

[0, 1, 0, 0] 1 1 1 0 

[0, 1, 0, 1] 1 1 0 1 

[0, 1, 1, 0] 1 0 1 1 

[0, 1, 1, 1] 0 1 1 1 

[1, 0, 0, 0] 1 1 1 0 

[1, 0, 0, 1] 1 1 0 1 

[1, 0, 1, 0] 1 0 1 1 

[1, 0, 1, 1] 0 1 1 1 

[1, 1, 0, 0] 1 0 1 1 

[1, 1, 0, 1] 0 1 1 1 

[1, 1, 1, 0] 0 0 1 1 

[1, 1, 1, 1] 0 0 1 1 
 
Table 4. This table displays the nearest neighbors for each test point selected by the algorithm in 
section 2.2 when K = 2 and t = 1, 2, 3, respectively, where 1 means a nearest neighbor, 0 means oth-
erwise. Compared with the best possible results in Table 1, when t = 1, there are 29 mismatches, t = 2 
match perfectly, t = 3 have 16 mismatches. The algorithm is run on IBM’s simulator with 1000 shots. 

Nearest neighbors for each test point selected by running the algorithm in section 2.2 on IBM’s simulator 

                    t = 1 t = 2 t = 3 

Test\Training 00x  01x  10x  11x  00x  01x  10x  11x  00x  01x  10x  11x  
[0, 0, 0, 0] 1 1 0 0 1 1 0 0 1 1 1 0 

[0, 0, 0, 1] 1 1 0 0 1 1 0 0 1 1 0 1 

[0, 0, 1, 0] 1 0 0 0 1 1 1 0 1 1 1 1 

[0, 0, 1, 1] 0 1 0 0 1 1 0 1 1 1 1 1 

[0, 1, 0, 0] 0 1 0 0 1 1 1 0 1 1 1 1 

[0, 1, 0, 1] 0 0 1 0 1 1 0 1 1 1 1 1 

[0, 1, 1, 0] 0 0 0 1 1 0 1 1 1 1 1 1 
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[0, 1, 1, 1] 1 0 0 0 0 1 1 1 1 1 1 1 

[1, 0, 0, 0] 0 1 0 0 1 1 1 0 1 1 1 1 

[1, 0, 0, 1] 0 0 1 0 1 1 0 1 1 1 1 1 

[1, 0, 1, 0] 0 0 0 1 1 0 1 1 1 1 1 1 

[1, 0, 1, 1] 0 0 1 0 0 1 1 1 1 1 1 1 

[1, 1, 0, 0] 0 0 0 1 1 0 1 1 1 1 1 1 

[1, 1, 0, 1] 0 0 1 1 0 1 1 1 1 1 1 1 

[1, 1, 1, 0] 0 0 1 1 0 0 1 1 1 0 1 1 

[1, 1, 1, 1] 0 0 1 1 0 0 1 1 0 1 1 1 
 
requires the choice for K and has an additional parameter t to set up and as a result, its performance heav-
ily depends on the value of t. Both have their runtime independent of dataset size N but dependent on the 
number of features n for each data point, which offers a huge advantage in processing big data [2, 6]. The 
quantum nature of these two classifiers is better revealed when testing them on a manageable dataset pro-
posed in this study. The classifier from [2] demonstrates its perfect results to match the best possible re-
sults, in contrast, the results of second one from [6] vary according to different values of the parameter t, 
assuming both choose K = 2.  

In addition to the papers that we have cited in this paper so far, we are also inspired by and have be-
nefited from reading these ones [9-17]. 
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