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Abstract 
Partial least squares discriminant analysis (PLS-DA) with integrated mov-
ing-window (MW) waveband screening was applied to the discriminant anal-
ysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojiao, 
a popular liquor with strong fragrant flavor, was used as the identified liq-
uor brand (160 samples, negative, 52 vol alcoholicity). Liquors of 10 other 
brands with strong fragrant flavor were used as the interferential brands 
(200 samples, positive, 52 vol alcoholicity). The Kennard-Stone algorithm 
was used for the division of modeling samples to achieve uniformity and re-
presentativeness. Based on the MW-PLS-DA, a simplified optimal model set 
with 157 wavebands was further proposed. This set contained five types of 
wavebands corresponding to the NIR absorption bands of water, ethanol, 
and other micronutrients (i.e., acids, aldehydes, phenols, and aromatic 
compounds) in liquor for practical choice. Using five selected simple models 
with 4775 - 4239, 7804 - 6569, 6264 - 5844, 9435 - 7896, and 12066 - 10373 
cm−1, the validation recognition rates were obtained as 99.3% or higher. Re-
sults show good prediction performance and low model complexity, and al-
so provided a valuable reference for designing small dedicated instruments. 
The proposed method is a promising tool for large-scale inspection of liquor 
food safety. 
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1. Introduction 

Chinese liquor is a distilled spirit mainly made from grain and obtained using 
distiller’s yeast, which is a complex mixture and composed mainly of water and 
ethanol as well as micronutrients and active ingredients, including acids, alde-
hydes, phenols, and aromatic compounds. Unfortunately, because of the huge 
market share and high profitability, many fake liquors are being sold in the 
market, which not only causes economic losses to the producers of liquor brands 
but also poses a threat to consumers’ health. At present, identification of liquor 
brands usually requires the determination of various components and their con-
tent recipes using traditional analysis methods (e.g., high-performance liquid 
chromatography), which are complex and costly. Another method is the sensory 
judgment of tasters, which has great subjectivity and relies on the experience. 
The above methods are difficult to conduct in large-scale promotions. 

With the developments of chemometric and sensor technology, near-infrared 
(NIR) spectroscopy has been proven to be a significant potential tool in the rapid 
and reagent-less measurement of various fields. It is reported that NIR quantita-
tive analysis has been applied to determine the main components of liquor, such 
as ethanol [1], ethyl acetate [2], and aldehydes [3]. However, the components 
and contents are different in liquors of various brands. Therefore, it is still diffi-
cult to identify the liquor brands by quantitative analysis of the above conven-
tional components. 

Spectral discriminant analysis uses the spectral overall features to identify and 
to classify samples; its bases are that the spectral similarities of the samples of the 
same types and the spectral differences among samples of different types. Prin-
cipal component analysis-linear discriminant analysis (PCA-LDA) is the 
commonly well-performed method for spectral discriminant analysis, which 
has been applied in the identification of liquor brands [4] [5]. Partial least 
squares-discriminant analysis (PLS-DA) is more effective than the PCA-LDA 
method in theory and practice [6] [7] [8], which has been applied in the identi-
fication of liquor brands [9]. However, neither of the literatures [4] and [5] 
strictly used the liquor brands of the same flavor and ethanol content for discri-
minant analysis. Literature [9] shown the experimental result of identifying liq-
uor brands with the same flavor and ethanol content, but model only used the 
entire spectral region without any waveband selection and the prediction recog-
nition rates required further improved. 

Appropriate wavelength selection is essential for mitigating disturbance, im-
proving prediction accuracy and simplifying the model, especially for the com-
plex samples with multiple components. However, the above works [1] [2] [3] 
[4] [5] [9] on liquor brands identification are still based on the whole spectral 
region because of algorithm complexity. In the quantitative analysis of the NIR 
spectrum, moving-window waveband screening [10]-[15] combined with the 
PLS method can extract information effectively, eliminate noise disturbances, 
and improve predictive capability. 

In the current study, moving-window (MW) waveband screening was inte-
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grated to PLS-DA (MW-PLS-DA) and employed for the NIR spectral discrimi-
nant analysis of liquor brands. Furthermore, the optimal model set and its sim-
plified method were further proposed, and the simple models with high accuracy 
were obtained. 

The spectra of liquor samples of different flavors (or different ethanol con-
tents) are remarkably diverse [1] [2] [3] [4]. This work is focused on the identi-
fication for liquor brands with the same flavor and ethanol content. Although 
difficult, such a method is important and essential. 

2. Materials and Methods 
2.1. Experiment 

Luzhou Laojiao, a popular liquor with strong fragrant flavor in China, was used 
as the identified brand (negative). A total of 160 bottles of Luzhou Laojiao 
Danya Erqu liquor (52 vol alcoholicity) were collected. Liquors of 10 other 
brands with strong fragrant flavor and the same ethanol content (52 vol) were 
used as the interferential brands (200 bottles, positive), which were composed of 
20 bottles from each liquor brand, including 1) Bainian Hutu, 2) Dukang Taibai, 
3) Shixiantaibai, 4) Luzhou Laojiufang, 5) Tangchao Laojiao, 6) Wudang Xiaoji-
ufan, 7) Jingjuyuan Pingjian, 8) Tianxiafu, 9) Guifeizuijiu, and 10) Kongfujia 
Shengshidatao. A total of 360 liquor samples were extracted and used for spec-
tral measurement. 

The instrument was a VERTEX 70 FT-NIR Spectrometer (Bruker, Germany) 
equipped with a transmission accessory and a 1 mm cuvette. An InGaAs detec-
tor was used. Twelve scans were added to each spectrum. The entire scanning 
region was 14,994 - 3996 cm−1 at a wavenumber interval of 3.857 cm−1, with 2852 
wavenumbers. Each sample was measured twice, and the mean value was used 
for modeling and validation. The spectra were obtained at 25˚C ± 1˚C and 45% 
± 1% RH. 

2.2. Sample Division 

Initially, 60 negative and 80 positive samples were randomly selected into the 
independent validation set (140 samples), while the rest of 100 negative and 120 
positive samples were used for modeling set (220 samples). Then, using the 
Kennard-Stone algorithm [16], the negative and positive modeling samples were 
further equally divided into calibration and prediction samples, to fulfill unifor-
mity and representativeness. 

2.3. Integrated MW-PLS-DA Method 

All sub-waveband were traversed for modeling, using the following two parame-
ters [11] [12] [13] [14] [15]: (1) initial wavenumber (I) and (2) number of wa-
venumbers (N). The search range was 14,994 - 3996 cm−1 with 2852 wavenumb-
ers, and I was set to { }14994,14990, ,3996I ∈ � . To cut down the volume of 
work and guarantee representativeness, N was set to  
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{ } { } { } { }1,2, ,50 50,60, ,500 500,550, ,2800 2852N ∈ � ∪ � ∪ � ∪ . 
The obtained wavebands were used to establish the calibration and prediction 

models of PLS-DA. The process can refer to [6] [7] [8] [9]. Here, the positive 
and negative samples were assigned to the category value 1 and 0 respectively, 
then the quantitative calculation was carried out, the samples are classified by 
the 0.5 as the threshold. Where, the number of PLS factors (F) was set to 

{ }1,2, ,20F ∈ � . 
On the basis of the predicted category of the samples and their genuine brand 

type, it is easy to calculate the prediction recognition rate denoted as P_REC. 
According to the maximum P_REC, the optimal parameters (i.e. I, N and F) 
were selected and then the optimal MW-PLS-DA models were obtained. 

2.4. Optimal Model Set and Its Simplification 

Given that the optimal MW-PLS-DA models corresponded to the maximum 
P_REC (denoted as P_REC*) were not usually unique, the optimal model set and 
its simplification method were further proposed for the appropriate selection of 
wavebands. The optimal waveband set can be expressed as follows: 

( ) ( )( ){ }, 1,2,3, ,q qI E q Q∗Λ = = � ,                  (1) 

where I and E are the initial and ending wavenumbers, respectively, and Q is the 
number of optimal wavebands. If a containing relationship exists between two 
optimal wavebands, then 

( ) ( )( ) ( ) ( )( ), , , 1i i j jI E I E i j Q⊂ ≤ ≠ ≤ .                   (2) 

The latter contained redundant wavenumbers, which must be removed from 
the optimal model set. The same processing was performed for each optimal 
waveband. Accordingly, the simplified optimal model set (denoted as ∗Ω ) can 
be obtained. In the set of ∗Ω , no containing relationship existed between any 
two wavebands. 

2.5. Model Validation 

The validation group that containing 60 negative and 80 positive samples (total 
140 samples) as well as out of the modeling optimization procedure were used 
for verifying the selected models screened using MW-PLS-DA method. Accord-
ing to the predicted category of validation samples and their genuine brand type, 
it is easy to calculate the validation recognition rate denoted as V_REC. Fur-
thermore, the validation recognition rates of negative and positive samples can 
be calculated and were denoted as V_REC— and V_REC+, respectively. 

The computer platform was developed using Matlab 2012a. 

3. Results and Discussion 
3.1. Full PLS-DA Model 

The NIR spectra ranging from 14,994 to 3996 cm−1 of liquor samples for 160 
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Luzhou Laojiao (negative, upper) and 200 Non-Luzhou Laojiao (positive, lower) 
are plotted, as shown in Figure 1. There were no apparent differences of spectra 
for direct discriminant analysis, since the given spectra of negative and positive 
samples were overlapping. 

The PLS-DA model based on the entire scanning region (14,994 - 3996 cm−1), 
called full PLS-DA, was first established. The optimal F was 7, and the corres-
ponding P_REC was 99.1%. However, the adopted waveband contained a large 
number of wavenumbers (N = 2852), which may include redundant wavenumb-
ers. Therefore, the model complexity must be further reduced. 

3.2. Simplified Optimal Model Set with MW-PLS-DA 

The waveband selection was performed using the MW-PLS-DA method. The 
maximum P_REC achieved 100% (P_REC*), and the optimal waveband set ∗Λ  
contained 37,870 wavebands. The corresponding 2D diagram for initial and 
ending wavenumbers is shown in Figure 2(a). In the set of ∗Λ , a large amount 
of containing relationship was easily observed. Therefore, ∗Λ  must be further 
simplified. Using the simplification method mentioned above, the simplified op-
timal model set ∗Ω  contained only 157 models. The 2D diagram is shown in 
Figure 2(b). No containing relationship was observed in ∗Ω . In the average 
spectra, 157 wavebands were marked to clearly observe their position, as in Fig-
ure 3. 

The wavebands of the simplified optimal model set ∗Ω  could be divided into 
two parts, as follows. 

The first part was associated mainly with the NIR characteristic absorption 
bands of water and ethanol. At 4347 cm−1, the absorption band related to the 
characteristic absorption of ethanol [3] could be applied to a quantitative analy-
sis of ethanol in liquor. Two wavebands existed in ∗Ω  containing the absorp-
tion band. These wavebands were 4775 - 4239 and 4772 - 4235 cm−1, the number 
 

 
Figure 1. NIR spectra of liquor samples for Luzhou Laojiao (160 negative, 
upper) and Non-Luzhou Laojiao (200 positive, lower). 
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Figure 2. Two-dimensional diagrams for initial and ending wavenumbers 
of (a) Entire optimal waveband set and (b) Simplified optimal waveband set. 

 
of wavenumbers N were both 140, and the corresponding optimal F were 7 and 
8. 

At 5128 and 6896 cm−1, the absorption bands were related to the O-H stretch 
first overtone and second overtone of water [17]. A total of 55 wavebands in ∗Ω  
was around the band at 6896 cm−1. Among them, the waveband (7804 - 6569 
cm−1) was of low model complexity (N = 320) with the corresponding F of 8. 

The second part was associated mainly with the NIR characteristic absorption 
bands of other micronutrients (i.e., acids, aldehydes, phenols, and aromatic 
compounds) in liquor. 

Both varieties showed absorption bands at 5586 cm−1 related with the C-H 
stretch first overtone of acids, aldehydes, phenols; bands at 5917 cm−1 were  
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Figure 3. The position of 157 simplified optimal wavebands in average 
spectra of the positive and negative samples. 

 
related with either the C-H3 stretch first overtone or the C-H first overtone of 
aromatic groups [17]. These bands were contained in 42 wavebands of ∗Ω . 
Among them, the waveband (6264 - 5844 cm−1) was of low model complexity (N 
= 110) with the corresponding F of 7. 

The small peak around 8333 cm−1 arose from the second overtones of C-H 
with stretching vibrations of acids, aldehydes, and phenols [4]. A total of 49 wa-
vebands in ∗Ω  were around the band at 8333 cm−1. Among them, the wave-
band (9435 - 7896 cm−1) was of low model complexity (N = 400) with the cor-
responding F of 9. 

The band at 11,235 cm−1 related with the C-H third overtone of aromatic 
compounds was contained by the remaining 9 wavebands in ∗Ω . Among them, 
the waveband (12,066 - 10,373 cm−1) was of low model complexity (N = 440) 
with the corresponding F of 7. 

Liquor samples with different ethanol contents have significantly different 
water contents. Hence, the wavebands in the first part of ∗Ω  were suitable to 
identify those samples. In this study, ethanol contents of samples were the same. 
Therefore, the wavebands in the second part of ∗Ω  were appropriate for the 
discriminant analysis. 

3.3. Independent Validation 

The randomly selected validation samples excluded from the modeling optimi-
zation process were used to validate the five selected simple wavebands (4775 - 
4239, 7804 - 6569, 6264 - 5844, 9435 - 7896, and 12,066 - 10,373 cm−1). The cor-
responding parameters and validation effects are summarized in Table 1. The 
validation recognition rates (V_RECs) were 99.3% or higher, and the number of 
wavenumbers (N) were 440 or less. Furthermore, the full PLS-DA model (14,994 
- 3996 cm−1) was used to validate for comparison. The V_REC and N were 98.6%  
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Table 1. Parameters and validation effects of the five selected models screened using the 
MW-PLS-DA method. 

Waveband (cm−1) N F V_REC V_REC— V_REC+ 

4775 - 4239 140 7 99.3% 100% 98.8% 

7804 - 6569 320 8 99.3% 100% 98.8% 

6264 - 5844 110 7 100% 100% 100% 

9435 - 7896 400 9 100% 100% 100% 

12,066 - 10,373 440 7 99.3% 100% 98.8% 

 
and 2852, respectively (see also in [9]). The results indicate that, the validation 
effects of the five selected models were superior to the full PLS-DA model in two 
aspects of prediction performance and model complexity. 

4. Conclusions 

Most of the fake liquors are usually made into the products with the same flavor 
and ethanol content as regular brand, so the identification for such liquor sam-
ples is essential. However, it is also difficult because their components are very 
similar. 

In the present study, the MW-PLS-DA was integrated and successfully applied 
to the NIR spectral discriminant analysis of liquor brands with the same flavor 
and ethanol content. A simplified optimal model set with 157 wavebands was 
further proposed based on the MW-PLS-DA. The five types of wavebands in the 
simplified optimal model set corresponded to the NIR absorption bands of wa-
ter, ethanol, and other micronutrients (i.e., acids, aldehydes, phenols, and aro-
matic compounds) in liquor. According to the differences in components and 
NIR absorption features of objects, an appropriate model can be selected from 
them. 

The experimental results indicate that the selected models achieved high pre-
diction recognition rates with low model complexity, and provide a valuable ref-
erence for designing small dedicated instrument. The proposed method is a 
promising tool for large-scale inspection of liquor food safety. 
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