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Abstract 
This paper addresses the effects of nuclear properties at different potentials. 
Reid Soft Core (RSC) and Nijmegen potentials were used to study the nuclear 
system of 4He nucleus. It has been examined with and without large compres-
sion. Moreover, the constrained spherical Hartree-Fock (CSHF) approxima-
tions are used as a major tool of analysis. The dependence of the ground state 
properties was investigated to the degree of compression. It was noticed that it 
is possible to compress the nucleus to a smaller volume and the nucleus be-
comes more bounded using RSC than Nijmegen potential. It was also shown 
that the spectrum of single particle levels increases more rapidly for Nijmegen 
than RSC potential under compression. Finally, the radial density distribution 
remains constant, except in the interior region, while it is larger with RSC 
than Nijmegen potential. At large compression, the radial density distribution 
becomes larger than that in the interior region when RSC potential is used. 
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1. Introduction 

Traditional nuclear model assumes that nuclei are composed of neutrons and 
protons. Nuclear properties can be understood in terms of the interactions 
between nucleons. 

The structure of compressed nuclei is a current challenge of both experimental 
and theoretical physicists. At present, the best available experimental and 
theoretical data on the structure of compressed nuclei come from the analysis of 
the breathing mode [1] [2] [3]. 

By using the nucleon-nucleon (N-N) interaction, a deep understanding of the 
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structure of finite nuclei is a major issue that is needed to be resolved [4]. In 
non-relativistic nuclear model, the nucleus is considered as a nucleon system. It 
contains protons and neutrons without internal resonances. Compressed nuclei 
are expected to occur during heavy-ion experiments [5]. The problem of 
compression for nuclei is very useful in understanding astrophysics. The nuclei 
structure with their finite number of particles has to be calculated from 
simulating an effective N-N interaction and transition potentials which are not 
sufficiently well known. 

In this paper, the nuclear properties of 4He nucleus have been studied at 
equilibrium and large compression. Nijmegen and RSC potentials are used [6] 
[7]. Nijm II potential describes pp data. It is local potential. RSC potential is 
depend on partially erroneous phase shift in the single, triplet state and spin 
orbit coupling [8]. The sensitivity of the ground state properties to the potential 
is specifically examined. 

The objective of this study is to investigate the effect of the potential used on 
softening the nuclear equation of state. This study also will shed some light on 
the behavior of nuclear matter under extreme conditions. It has importance in 
astrophysics [9]. Also it gives us a better understanding of its behavior in N-N 
collisions as in heavy ion collisions in high-energy supercollider’s [10]. 

This work is written as: Sec. 2 shows a short description of a statement of 
problem. Sec. 3 specifies the results and discussions, while conclusion is given in 
Sec. 4. 

2. Statement of Problem 

A nuclear system of A-nucleon (N neutrons and Z protons) is considered with 
its spin s and isospin τ  which is 1/2 for each. The Hamiltonian of this system 
consists of the single particle energy and the two-body interaction as:  

1

ˆ ˆ
A A

i ij
i i j

H T V
= <

= +∑ ∑                       (2.1) 

where îT  denotes the single particle kinetic energy operator, which in terms of 
single particle momentum p  is:  

2ˆ = 2i iT mp                         (2.2) 

here m is the nucleon mass. Vij is the two-body interaction term. It is two body 
VNN and Coulomb VC interactions. 

The exact solution of the Schrödinger equation in the infinite Hilbert space 
was solved for mass number smaller than 20 only [11] [12] [13] [14]. For mass 
number greater than 20, the truncated model space with an effective Hamiltonian, 
Heff, is used. So, Equation (2.1) can be written as:  

( )
1

ˆ ˆ
A A

eff i eff ij
i i j

H T V
= <

′ = +∑ ∑                     (2.3) 

A two-body effective Hamiltonian ˆ
effH ′  is introduced by using the relative 

kinetic energy operator ( )rel ij
T  instead of the single particle energy operator.  
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ˆ NN
eff rel eff rel eff CH T V T V V′ = + = + +                 (2.4) 

where ( )rel ij
T  represents the pure two body natures. This is evident form the 

relative kinetic energy operator between pairs of nucleons  

( ) ( )2
2rel i jij

T mA= −p p
                  

 (2.5) 

The effV , however, is the sum of Brueckner G-matrix and the lower order 
folded diagram (2nd order in G) acting between pair of nucleons in the no-core 
model space The effV , however, is Brueckner G-matrix and the lower order 
folded diagram (2nd order in G) that acts between pair of nucleons in the no-core 
model space [15] [16]. 

The matrix element of the two-body part of the effective Hamiltonian is 
constructed by using two-particle harmonic oscillator basis. They have good 
total angular momentum J and isospin τ . 

There are two problems: dimensional full Hilbert space and short range 
repulsion of the core potential. The first problem can be solved by truncating the 
full Hilbert space using Block-Horowitz theory. The second problem is removed 
by solving the Brueckner-Bethe Goldstone equation; the potential V matrix 
elements are replaced by the Brueckner G-matrix elements in the series 
expansion of NNV .  

( ) ( ) ( )0G V VQ H Gω ω ω= + −                 (2.6) 

where the variable ω  is the starting energy and Q is the Pauli operator. It 
prohibits particles from scattering into occupied states. 0H  is the unperturbed 
single particle Hamiltonian [17]. 

In order to evaluate matrix element of ˆ
effH ′ , the harmonic oscillator basis are 

chosen with ω  = 14.0 MeV. By using harmonic oscillator wave function, the 
relative and center of mass coordinates can be separated. Therefore, a great 
simplification results in the calculation of the two-body matrix elements. 

By using the effective Hamiltonian within the chosen model space, the 
Hartree-Fock equation for nucleon orbital can be derived, by applying the 
variation principle. By applying a static load, Compressed system is achieved. 
The radial constraint represents an external force to compress or expand the 
nucleus. For details see Refs. [18]-[27]. 

No-core model space with six major oscillator shells was used for calculations. 
In this space, orbits were: 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, 0f7/2, 1p3/2, 0f5/2, 1p1/2, 
0g9/2, 1g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2, 0h9/2, 1f7/2, 1f5/2, 2p3/2 and 2p1/2. The finite 
truncated model space which is used in this study was described. 

A no-core model space was used to avoid calculating core polarization effects 
with realistic effective interaction. Also, all nucleons were considered active, so 
there were no terms in the expansion that involves particle-hole excitations. 

Techniques used in this study as same as Refs. [18]-[27] without nuclear 
resonances. 
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3. Results and Discussion 

The results of the ground state properties of 4He nucleus namely the binding 
energy, the single particle energy (SPE) and the radial density distribution are 
presented. These results are obtained by using model space of six shells within 
the CSHF approximation based on RSC and Nijmegen (Nijm. II) potentials. 

 The adjusting parameters are listed in Table 1. With these parameters, an 
equilibrium root mean square radius rmsr  and HFE  are found using RSC and 
Nijm. II potentials. The value of 1λ  is less than one. This because of the 
operator for kinetic energy is a positive and is normalized by itself this will 
reduce its magnitude. The value of 2λ  is larger than one to compensate for the 
lack of sufficient binding when the full Hilbert space is truncated to a finite 
model space. 

The HFE  energies versus rmsr  using RSC and Nijmegen potentials are 
displayed in Figure 1. It can be seen from the figure that there is a reduction in  

 
Table 1. Values of adjusting parameters 1 2,λ λ  and ω′  of the effective Hamiltonian 
for 4He in six oscillator shells to get an agreement between the HF results and experimental 
data [28]. The binding energy (nuclear radius rmsr ) was −28.296 MeV (1.46 fm) for 4He. 

Nucleus Potential 1λ  2λ  ( )MeVω′  

4He RSC 0.980 1.186 17.872 

4He Nijmegen 0.990 1.041 15.700 

 

 
Figure 1. Constrained spherical Hartree-Fock energy for 4He in six-oscillator shells 
versus rmsr . The dashed and solid curves are for RSC and Nijmegen potentials, 
respectively. 
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the volume of the nucleus by about 15% for RSC potential. Thus, the binding 
energy is reduced by 61% for this reduction in volume. It appears from these 
results that 11.05 MeV of the excitation energy, is enough to reduce the volume 
and the binding energy by 15%, 61% respectively more for RSC potential. This 
means that the lager dense inner part of the nucleus initially responds to the 
external load more radially than the outer part. 

By using Nijmegen potential, the reduction of volume is about 25% compared 
to its volume at equilibrium case. In this case, the reduction in the binding 
energy is 27%. i.e. the binding energy of 4He4He nucleus at equilibrium case 

HFE  is −28.296 MeV and at large compression is −20.611 MeV. This means that 
nuclear equation of state becomes stiffer for the compressed nucleus. It can be 
noted that at large compression the nuclear binging energy for Nijmegen 
potential is larger than the binding energy for RSC potential. 

In Figure 2, the lowest neutron single particle energy levels as a function of 
compression are shown. The order of the orbitals is exact with standard shell 
model. The orbitals curved up as the load on the nucleus increases. For 
Nijmegen potential, the levels cure up more rapidly than the RSC potential when 
the nucleus is compressed. This is because the positive kinetic energy of the 
nucleons becomes more effective than the attractive mean field core of the 
nucleons. 

The energy spectrum also displays the gaps between the shells. For the 
compressed nucleus, the ordering of the energy spectrum levels and the gaps 
among them are conserved. The splitting of the energy spectrum levels in each 
subshell is an indicator that the orbital-spin (L-S) coupling is strong enough in  

 

 
Figure 2. Spectrum energy of lowest six neutron orbitals for 4He in 6 shells as a function 
of rmsr . The solid and dashed levels are for RSC and Nijmegen potentials, respectively.  
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both RSC and Nijmegen potentials. If the static load increases then the L-S 
coupling becomes stronger. The behaviour of the spectrum energies (except the 
deepest bound orbital which actually drops with compression) shifts to higher 
energies for the compressed nucleus so that the binding energies become lower. 
The curvature goes up more and more for the surface orbits under compression. 
This means that the surface is more responsive to compression than the interior 
of the nucleus. 

In addition, energy spectrum is formed entirely from the underlying 
microscopic Hamiltonian. This is a good point since the calculated energy 
spectrum agrees with the expected ordering of the theoretical shell model in the 
dominantly nucleon orbitals, and the energy levels exhibit clear gaps among the 
shells. It is also worth noting that the closest orbitals to binding energy are more 
sensitive in the compressed nucleus for both potentials. 

Figure 3 displays the total density distribution for Tρ  versus the displacement 
from the center of the nucleus at equilibrium. It is noted that the Tρ  is larger 
for RSC potential than the Tρ  for Nijmegen potential in the interior region of 
the nucleus, but this difference is very small. In the exterior region, the Tρ  is 
approximately same for both potentials.  

Figure 4 shows the total density at large compression and equilibrium cases 
using Nijmegen potential. This figure displays that when the nucleus volume is 
reduced by 23% of the equilibrium case, the radial density increases by about 
1.20 of its value at the equilibrium case. In the compressed nucleus, the nuclear 
radial density becomes denser in the interior than the exterior regions. This  

 

 
Figure 3. Total Tρ  (dashed curve for Nijm. II potential and solid line for RSC potential) 
density for 4He at radius 1.46 fmrmsr =  in a 6 shells(Equilbrium case). 
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Figure 4. Tρ  (dashed curve) radial density distribution for 4He at point mass 

1.34 fmrmsr =  and solid cure for equilibrium case in a 6 shells model space by using Nijm. 
II potential. 

 
Figure 5. Tρ  (dashed curve) radial density distribution for 4He at point mass 1.24 fmrmsr =  
and solid cure for equilibrium case in a 6 shells space by using RSC potential. 

 
result shows that the surface of the nucleus becomes more and more responsive 
as the load increases more and more. 

In Figure 5, the total density distribution at equilibrium and large static 
compression ( 1.24 fmrmsr = ) is shown for RSC potential. This figure sees that 

https://doi.org/10.4236/jamp.2018.63042


M. H. E. Abu-Sei’leek 
 

 

DOI: 10.4236/jamp.2018.63042 465 Journal of Applied Mathematics and Physics 
 

when the nucleus volume is reduced by 39% of the equilibrium volume, the 
radial density increases by about 1.19 of its value at the equilibrium case. 

It is clear that the density distribution following: the nuclear density becomes 
denser in the interior than the exterior regions for both potentials under 
compression. Also, the nuclear density becomes denser in the interior regions 
for Nijmegen than RSC potential. It is less dense in the exterior regions for 
Nijmegen than RSC potential. This means when the static load increases more 
and more on the nucleus, the surface of the nucleus becomes more and more 
responsive. Finally, it is possible to compress the nucleus by using RSC potential 
more than Nijmegen potential. 

4. Conclusions 

In the CSHF approximation, the ground state properties of the double magic 
spherical 4He nucleus have been investigated by using RSC and Nijmegen 
potentials. A realistic effective N-N Hamiltonian is used in a six shells model 
space. The nucleus can be compressed to a smaller volume using RSC than 
Nijmegen potential. 

If the compression increases, HFE  will increase very sharply towards zero 
energy (unbound state). The behavior of the energy spectrum levels is found to 
be in a good agreement with those of the traditional phenomenological shell 
model. At higher compression levels, the overlapping of energies of single particles 
become more pronounced. Therefore, the nucleus becomes free (i.e. unbounded 
nucleus). The single particle energy levels curve up under compression more 
rapidly for Nijmegen than RSC potential. 

Finally, if the compression increases then the total radial density will increase. 
The radial density distribution is the same except in the interior region; it is 
larger with RSC than Nijmegen potential. At large compression, the situation is 
reversed especially in the the interior region, the radial density distribution 
becomes larger than the radial density distribution when RSC potential is used.  
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