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Abstract 
The expected shortfall is a popular risk measure in financial risk management. 
It is defined as the conditional expected loss given that the loss is greater than 
a given high quantile. We derive the asymptotic properties of the blocking 
bootstrap estimators for the expected shortfall of a stationary process under 
strong mixing conditions. 
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1. Introduction 

The expected shortfall is a risk measure which has been mostly used among 
actuaries and insurance companies. The expected shortfall on a portfolio of 
financial assets is the conditional expected loss given that the loss is greater than 
a high quantile named as value at risk (VaR). While the expected shortfall and 
VaR are two popular risk measures, the expected shortfall is becoming increasingly 
important due to its better properties. For example, the expected shortfall 
satisfies the sub-additive property, whereas the VaR does not. Sub-additivity, 
which is one of the four requirements of coherent risk measures, implies in the 
context of risk management that the total risk on a portfolio should not be 
greater than the sum of the individual risks. See [1] and [2] for details. 

Let { }t t
X

∈
 be a sequence of stationary random variables with common 

distribution function F that describes the negative profit and loss distribution, 
where { }0, 1, 2,≡ ± ±   denotes the set of all integers. For a given positive 
value p close to zero, the ( )1 p−  confidence level VaR, denoted by pν , is 
defined as the ( )1 p− -th high quantile of the loss function F. That is  

( ) ( ){ }1 1 inf : 1 .p F p t F t pν −= − = ≥ −
              

(1.1) 
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VaR is defined as the loss of a financial position over a time horizon that 
would be exceeded with small probability p. See [3] [4] [5] for more discussions 
on VaR. The expected shortfall associated with a confidence level ( )1 p−  on a 
portfolio, denoted by pµ , is a conditional expectation defined as follows  

( )| .p t t pE X Xµ ν= >  

As can be seen from the definitions above, the expected shortfall gives the 
potential size of the loss that exceeds it, whereas VaR does not. Moreover, as a 
risk measure, in addition to being coherent, the expected shortfall gives weights 
to all quantiles greater than the high quantile pν , whereas the VaR gives all its 
weight to a single quantile pν  and tells nothing about the size of the loss that 
exceeds it. Thus, as a risk measure, the expected shortfall is more applicable and 
produces better incentive for traders than VaR. 

In the past, the estimation of expected shortfall has been mainly developed for 
the identically independently distributed (IID) observations based on the 
extreme value theory in a parametric or semi-parametric framework. We refer 
the reader to [6] and [7] for details. However, many empirical studies showed 
that financial data are often weakly dependent with heavy tails. It is also 
challenging to build a parametric model that can capture the tail behavior for 
calculating risk measures since the data are generally sparse in the tail part of the 
loss distribution. As a result, nonparametric based methods can play an 
important role in diverse problems in risk managements. 

For the weak dependence case, under suitable mixing conditions, [8] first 
proposed a nonparametric kernel estimator for the expected shortfall in the 
context of portfolio allocation and derived its asymptotic properties. Reference 
[9] compared the performance of the sample estimator and the kernel smoothed 
estimator of the expected shortfall and showed that extra smoothing does not 
result in more accurate approximation for the expected shortfall. 

Although properties of expected shortfall are well studied in the literature, no 
work seems to be available on the properties of bootstrap approximations for the 
expected shortfall. Our main contribution in this research is to provide a 
theoretical foundation to the practical applications of the moving block bootstrap 
for the expected shortfall. 

In this paper, we investigate the asymptotic properties of nonparametric block 
bootstrap methods for estimating the sampling distribution and the asymptotic 
variance of expected shortfall under weak dependence setting. 

The rest of the paper is organized as follows. In Section 2, we introduce some 
background material, including a brief description of the moving block 
bootstrap (MBB) method. In Section 3, we state the main results of this paper. 
Technical details and proofs will be presented in Section 4. 

2. Background 

We first define the sample estimator of expected shortfall. For a sample 

1, , , 1nX X n ≥ , of stationary random variables with common distribution 
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function F, let nF  denote the corresponding empirical distribution function, 
putting mass 1/n on each iX , i.e.,  

( ) ( )1

1
, ,

n

n i
i

F x n I X x x−

=

= ≤ ∈∑ 
                

(2.1) 

where ( )I ⋅  denotes the indicator function which is defined as follows  

( ) 1, if the statement is true
0, if the statement if false

S
I S

S


≡ 


 

Then, ( )1ˆ 1n nF pν −= −  is the sample estimator of VaR at confidence level 
( )1 p− . The sample estimator of the expected shortfall, denoted by ˆnµ , can be 
defined as  

( )
( )

( )1

1
1

ˆ 1 ˆˆ ,
1ˆ

n
n

i i ni
n i i nn

it ni

X I X
X I X

npI X

ν
µ ν

ν
=

=
=

≥
= = ≥

+ ≥  

∑ ∑
∑

 

where x    denotes the largest integer not exceeding x for Rx∈ , i.e.,  

{ }max :x n n x= ∈ ≤     

Then, the normalized expected shortfall, denoted by nZ , is defined as below:  

( )ˆ .n n pZ n p µ µ≡ −  

Our goal in this paper is to investigate the asymptotic properties of bootstrap 
approximations to the distribution and the variance of the normalized expected 
shortfall, nZ . 

Reference [10] first introduced the bootstrap method into the statistical world. 
The bootstrap is a flexible method that can be applied to a variety of problems. It 
can be used to approximate the quantities of interest such as distribution, bias, 
variance, significance level in a nonparametric framework. 

However, Efron’s bootstrap method fails when the data are not independent 
[11] [12]. Block bootstrap methods for dependent data have been put forward by 
several authors, notably by [13]-[20]. See [21] and references therein for a 
detailed account of results on bootstrap methods (for smooth functions of the 
data) in the dependent case. 

It is worth mentioning that although there has been a considerable amount of 
work on properties of block bootstrap methods for smooth functionals of weakly 
dependent data, not many theoretical results seem to be available on properties 
of the moving block bootstrap (MBB) and other block bootstrap methods in case 
of nonsmooth functionals. Reference [22] first showed that blocking bootstrap 
methods provide a valid approximation to the distribution and its asymptotic 
variance of a non-smooth function of data, the normalized sample quantile. 
Recently, due to its applications in financial times series data analysis, quantile 
based methods (for nonsmooth functions of data) are becoming increasingly 
attractive, such as expected shortfall [8], quantile hedging [23], risk management 
[24], among others. 
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In this paper, we investigate the blocking bootstrap approximation to the 
expected shortfall based on time series data. For definiteness and conciseness, we 
shall exclusively concentrate on the MBB method that was independently 
proposed by [15] and [16]. 

For the sake of integrity, we briefly describe the MBB method for estimating 
the sampling distributions of statistics based on weakly dependent observations. 
Let 1 2, , , nX X X  be a sample from the stationary process { }i i

X
∈

. For 


, a 
positive integer between 1 and n, we define the overlapping blocks of size 


 as:  

( )1, , , 1, , 1.i i iB X X i N n+ −= = = − +


    

Let * *
1 , , bB B  be a random sample of blocks from { }1, , NB B , where 

b n=    , that is, * *
1 , , bB B  are independently and identically distributed as 

{ }1Uniform , , NB B . 
The observations in the resampled block *

iB  are denoted by 

( )
* *

1 1, , ,1iiX X i b− + ≤ ≤




 . The MBB sample consists of 
1

* * *
1 , , , , nX X X



  , where 

1n b=  . Let  

( )1, , ;n n nT t X X θ≡                       (2.2) 

be a random quantity of interest that is a function of the random variables 
{ }1, , nX X  and of some unknown population parameter θ . Then, the MBB 
version of nT  is defined as  

( )1 1

* * *
1

ˆ, , ; ,n n n nT t X X θ= 

                   
(2.3) 

where n̂θ  is a sensible estimator of θ  based on { }1, , nX X . The MBB 
estimator of the distribution of nT  can be defined as the conditional 
distribution of *

nT , given { }1 2, , ,X X≡  X . Note that Efron’s bootstrap 
method is a special case of the MBB method with block length 1= . 

An alternative definition of the MBB version of nT  of (2.2) is given by 
resampling n    blocks from { }1, , NB B , and using the first n out of the 

n ⋅    -many resampled values. However, the difference between the two 
versions is asymptotically negligible. To simplify the proofs of the main results, 
here we shall use the version given by (2.3) based on b complete resampled blocks. 

Throughout this paper, we use *P , *E , and *Var  to denote, respectively, the 
conditional probability, the conditional expectation, and the conditional 
variance, given X . 

Now, we are in a position to define the MBB version of the normalized 
expected shortfall, nZ , for a given ( )0,1p∈ . Let *

nF  denote the MBB 
empirical distribution function, i.e., ( ) ( )1* 1 *

1 1 ,n
n iiF x n I X x x−

=
= ≤ ∈∑  . Then, 

the MBB version of the sample VaR, ( )1ˆ = 1n nF pν − − , is defined as 
( )* * 1 1n nF pν −≡ − . Similarly, the MBB version of the expected shortfall can be 

defined as below  

( )
( ) ( )

1

* *
1* * *

*
111

1 ,
1

n
ni i ni

n i i nn
ii ni

X I X
X I X

n pI X

ν
µ ν

ν
=

=
=

≥
= = ≥

+ ≥  

∑ ∑
∑






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where ( )1
n nF pν −=  , and ( ) *

*n nF E F⋅ = . The MBB version of the normalized 
expected shortfall, ( )ˆn n pZ n p µ µ= − , is given by  

( )* * *
1 *, .n n n n nZ n p Eµ µ µ µ≡ − = 

               
(2.4) 

Note that in the definition of the MBB version of nZ , we center *
nµ  by nµ . 

As in the case of the sample mean [25], and the sample quantile [22], this helps 
center constant for the MBB sample expected shortfall. 

Let  

( ) ( ) , ,n nH x P Z x x= ≤ ∈                  (2.5) 

denote the distribution function of nZ . Then, the MBB estimator of ( )nH x  is 
given by the conditional distribution of *

nZ , i.e., by  

( ) ( )*
*

ˆ , .n nH x P Z x x= ≤ ∈
                 

(2.6) 

We conclude this section with an introduction of some standard dependence 
condition on the iX ’s. Suppose that the random variables { }i i

X
∈

 are defined 
on a common probability space ( ), , PΩ  . Let : ,n

m iX m i n iσ= ≤ ≤ ∈  
be the σ-field generated by random variables , ,m nX X , m n−∞ ≤ ≤ ≤ ∞ . For 

1n ≥ , we define  

( ) ( ) ( ) ( )
,

sup sup .
m

m nm A B
n P A B P A P Bα

∞
−∞ +∈ ∈ ∈

= −

  
 

The sequence { }i i
X

∈
 is called strongly mixing or α-mixing if ( ) 0nα →  

as n →∞ . Strong mixing is a fairly non-restrictive dependence assumption. 
Empirical studies have showed that many log financial returns are strong mixing 
with exponential decay coefficients. 

As a convention, we assume throughout this paper that unless otherwise 
specified, limits are taken as n →∞ . Next we state the main results of the paper. 

3. Main Results 

The first result asserts consistency of the MBB approximation for the 
distribution function of nZ . 

Theorem 1. Assume that 0 1p< <  with p close to zero and that F has a 
positive and continuous derivative f in a neighborhood p  of pν  with 
( ) 0pf ν > . Also, suppose that ( ) nn Cα ρ≤  for some ( )0,C∈ ∞  and 
( )0,1ρ ∈ , and that ( )1 1o− =  and ( )( )1 41 4 log logo n n −= . Then, under the 

moment condition  
4

1 , for some 0,E X δ δ+ < ∞ >                 (3.1) 

( )( ) ( )( ) ( )*
* 1 ˆsup 1 .n n n p p

x
P n p x P n p x oµ µ µ µ

∈
− ≤ − − ≤ =

      
(3.2) 

Theorem 1 shows that the MBB method provides a valid approximation to the 
distribution of the centered and scaled sample expected shortfall nZ  under 
geometric mixing and under a mild condition on the block length 


. 

The next result proves the consistency of the MBB variance estimators under 
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the same conditions as Theorem 1. 
Theorem 2. Under the conditions of Theorem 1,  

( )( )2 * 2
* 1ˆ ,p

n n nVar n pσ µ µ σ∞= − →  

where  

( ) ( )( )2
1 1 1 1, .p i i p

i
Cov X I X X I Xσ ν ν∞ + +

∈

= > >∑
           

(3.3) 

Theorem 2 shows that under some mild conditions, the MBB estimator 2ˆnσ  
of the asymptotic variance of the centered and scaled expected shortfall at 
confidence level ( )1 p−  converges in probability. 

Remark 1. Note that in addition to the regularity conditions, we require the 
moment condition (3.1) for both main results. The consistency of the MBB 
approximation to the distributions of some quantities, as in the cases of sample 
mean and sample quantile, does not require moment condition although 
consistency of the MBB variance estimator in general needs some moment 
condition. The moment condition of Theorem 1 may be relaxed.  

4. Proofs  

We now introduce some basic notation. Let C, ( )C ⋅  denote generic constants 
in ( )0,∞  that depend on their arguments (if any) but not on the variables n 
and x. For real numbers x and y, write { }max ,x y x y∨ = , { }min ,x y x y∧ = . 

For any real number x, 1, ,i n=  , we introduce the following  

( ) ( ) ( ) ( )* * *,i i i i i iY x X I X x Y x X I X x= ≥ = ≥  

( ) ( ) ( ) ( ) ( ) ( )* *
1 1

1 1

1 1,i ii j i j
j j

U x Y x U x Y x− + − +
= =

= =∑ ∑
 

 

 

 

Note that ( )iU ⋅  and ( )*
iU ⋅ , 1, ,i b=  , are block averages. Then,  

( ) ( ) ( ) ( )
1

* *

1 11

1 1ˆ ,
1 1

nn

n i n i
i i

x Y x x Y x
np n p

µ µ
= =

= =
+ +      
∑ ∑  

which implies that  

( ) ( )* *ˆˆ ˆ , .n n n n n nµ µ ν µ µ ν= =   

For a random variable X and a real number q, we define  

( ) [ )
1

, 1, .q q
qX E X q≡ ∈ ∞  

Recall that unless otherwise indicated, limits are taken by letting n tend to 
infinity. The first lemma is Theorem 1 of [9]. It states the asymptotic normality 
of the centered and scaled sample estimator of expected shortfall,  

( )ˆn n pZ n p µ µ= − , for a given ( )0,1p∈  close to zero. We include this result 
here for the sake of completeness. 

Lemma 1. Suppose that F is differentiable at pν  with a positive derivative 
( ) 0pf ν >  and that ( ) nn Cα ρ≤  for some 0C >  and 0 1ρ< < . Then, 
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( ) ( )2ˆ 0, ,d
n n pZ n p Nµ µ σ∞= − →

               
(4.1) 

where 2σ∞  is as defined in (3.3).  
The next lemma is a consistency result of the MBB variance estimator of 2σ∞ , 

the asymptotic variance of the normalized expected shortfall. 
Lemma 2. Under conditions of Theorem 2, we have  

( )* 2
* 1 , as .p

nVarU nν σ∞→ →∞
  

Proof: By Lemma 5.4 (iii) of [22], for ( )1 2o n= , we have,  

( )1 21 2
1 log log , a.s.n p C n nν ν −− ≤

               
(4.2) 

where 1 0C >  is a constant. Let 

( ) ( )1 2 1 21 2 1 2
1 1 2 1log log , log log ,n p n px C n n x C n nν ν− −= − = +  

and  

( ) ( )( ) ( )( ){ }, 1 1 1
1

1 , 1 .i n n pi j i j i j
j

R X I X I X i Nν ν− + − + − +
=

 = ≥ − ≥ ≤ ≤ ∑


  



  
(4.3) 

Then, for 1,2r = , 1, ,j =   ,  

( ) ( )( ) ( )( )
( ) ( )

( )

( )

( )( )

2

1

2

1 1 1

2

1 1 1

2
1 1 1 2

2

1 21 2

d

log log ,

n

n

r

n pi j i j i j

r

n p

r
n n

x r

x

E X I X I X

E X I X I X

E X I x X x

x f x x

O n n

δ

δ

δ

δ

ν ν

ν ν

+

− + − + − +

+

+

+

−

 ≥ − ≥
 

 = ≥ − ≥ 

 ≤ ≤ ≤ 

=

=

∫

  





         

(4.4) 

since ( )f x  is continuous (and hence bounded) in a neighborhood p  of 

pν . Because the mixing coefficient ( )α ⋅  decays exponentially, it is easily seen 
that, for 1 2k r≤ ≤ ,  

( ) ( ) ( )2

1
, 1

rk

j
k r j j

δ δ
α

+

=

 ∆ = + < ∞ ∑


 

Hence, applying Lemma 3.2 of Lahiri (2003) with 1,2r = , and 1 2k r≤ ≤ , we 
obtain  

( ) ( )( ) ( )( )
( ) ( )( )

( ) ( ) ( )( )

, 1 1 1
1

2
1 1 1 2 2

4 24 22

( , )

log log .

k
k k

i n n pi j i j i j
j

kk k
n n r

k rk rk

E R E X I X I X

C r k r X I x X x

O n n

δ

δδ

ν ν−
− + − + − +

=

−

+

+− +−

  ≤ ≥ − ≥   

≤ ⋅ ∆ ≤ ≤

=

∑


  




 



  

(4.5) 

Thus,  

( ) ( ) ( )( )1 4 21 4 21 2
, 1,

1

1 log log ,
N

i n n
i

E R E R O n n
N

δδ +− +−

=

  = = 
 

∑ 
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and  

( ) ( ) ( )( )2 2 1 21 21
, 1,

1

1 log log .
N

i n n
i

E R E R O n n
N

δδ +− +−

=

  = = 
 

∑ 
 

which together with the Markov’s inequality lead to  

( ) ( ) ( )( )1 4 21 4 21 2
,

1

1 log log ,
N

i n p
i

R O n n
N

δδ +− +−

=

=∑ 

          
(4.6) 

and  

( ) ( ) ( )( )2 1 21 21
,

1

1 log log .
N

i n p
i

R O n n
N

δδ +− +−

=

=∑ 

           
(4.7) 

Define,  

( ) ,
1 1

1 1, .
N N

N i p N i n
i i

U U R R
N N

ν
= =

= =∑ ∑
              

(4.8) 

Now, we investigate ( )*
* 1 nVar U ν   . 

( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )

2
*

* 1
1 1

2

, ,
1 1

2

,
1

1 1

1 1

1

N N

n i n i n
i i

N N

i p i n i p i n
i i

N

i p N i n N
i

Var U U U
N N

U R U R
N N

U U R R
N

ν ν ν

ν ν

ν

= =

= =

=

   = −    

 = + − +  

 = − + − 

∑ ∑

∑ ∑

∑

  

 

( )

( )

( )

( )

2 2
,

1 1

,
1

2*
* 1 ,

1

,
1

1 1

2

1

2 .

N N

i p N i n N
i i

N

i p N i n N
i

N

p i n N
i

N

i p N i n N
i

U U R R
N N

U U R R
N

Var U R R
N

U U R R
N

ν

ν

ν

ν

= =

=

=

=

   = − + −  

   + − −  

   = + −  

   + − −  

∑ ∑

∑

∑

∑
        

(4.9) 

Theorem 3.1 of Lahiri (2003) implies that  

( )* 2
* 1 .p

pVar U ν σ∞
  → 

                  
(4.10) 

Next, we show that  

( ) ( ) ( )( )

2
,

1

1 21 21

1

log log ,

N

i n N
i

p

R R
N

O n n δδ

=

+− +−

 − 

=

∑



              
(4.11) 

and  

( )
( ) ( ) ( ) ( )( )

,
1

1 4 21 4 21 2

1

log log .

N

i p N i n N
i

p

U U R R
N

O n n δδ δ

ν
=

+− + +−

   − −  

=

∑



            
(4.12) 

Using (4.6), (4.7), we get  
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( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

2 22
, ,

1 1
2

2
, ,

1 1

1 21 21

2 4 22 4 21

1 21 21

1 2

2 12

log log

log log

log log .

N N

i n N i n N
i i

N N

i n i n
i i

p

p

p

R R R R
N N

R R
N N

O n n

O n n

O n n

δδ

δδ

δδ

= =

= =

+− +−

+− +−

+− +−

 − ≤ + 

 ≤ +  
 

=

+

=

∑ ∑

∑ ∑







 

Hence, Equation (4.11) is proved. By (4.10), (4.11), and Cauchy-Schwartz 
inequality, we have,  

( )

( )

( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

,
1

1 2 1 2
2 2

,
1 1

1 21 2 2*
* 1 ,

1

1 4 21 4 21 2 1 2

1 4 21 4 21 2

1

1

1 1

1 log log

log log .

N

i p N i n N
i

N N

i p N i n N
i i

N

p i n
i

p p

p

U U R R
N

U U R R
N

Var U R
NN

N O O n n

O n n

δδ

δδ δ

ν

ν

ν

=

= =

=

+− +− −

+− + +−

   − −  

      ≤ − −        

  =     

= ⋅ ⋅

=

∑

∑ ∑

∑





 

We complete the proof of (4.12). Combining (4.9)-(4.12), we obtain  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )

1 21 2* 2 1
* 1

1 4 21 4 21 2

1 4 21 4 22 1 2

2
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1

n p

p
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o
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δδ δ
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ν σ

σ
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+− +−
∞
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+− + +
∞

∞

  = + ⋅ 

+ ⋅

= +

= +


  

 



 

Here we used the condition on the block length ( )( )1 41 4 log logo n n −= . We 
complete the proof of Lemma 2.                                       

Lemma 3 below gives a convergence result of the third moment of the MBB 
block average. 

Lemma 3. Under the conditions of Theorem 2,  

( ) ( )
3* *

* 1 * 12 0.p
n n

n n E U E U
b

ν ν− →   

Proof: It can be verified by using (4.5) with 3, 2k r= = ,  

( ) ( ) ( )( )3 3 3 8 23 8 23 2
, 1,

1

1 log log ,
N

i n n
i

E R E R O n n
N

δδ +− +−

=

  = = 
 

∑ 
 

which leads to  

( ) ( ) ( )( )3 3 8 23 8 23 2
,

1

1 log log .
N

i n p
i

R O n n
N

δδ +− +−

=

=∑ 

        
(4.13) 

Using (4.6), (4.13), and the fact that  
 

DOI: 10.4236/tel.2018.84046 693 Theoretical Economics Letters 
 

https://doi.org/10.4236/tel.2018.84046


S. X. Sun, F. X. Cheng 
 

( ) ( )2 , , , 0m m m mx y x y m x y+ ≤ + ∀ >
             

(4.14) 

we obtain,  
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1
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 ≤ +  
 

=

∑

∑
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Therefore,  

( ) ( ) ( )( )3 3 8 23 8 23 2
,

1

1 log log .
N

i n N p
i

R R O n n
N

δδ +− +−

=

− =∑ 

      
(4.15) 

Note that for 1 j≤ ≤  , 1,2r = , and 1 2k r≤ ≤ ,  

( ) 1 22j p rr
Y X

δδ
ν

++
≤ < ∞  

and  

( ) ( ) ( )2

1
, 1

rk

j
k r j j

δ δ
α

+

=

 ∆ = + < ∞ ∑


 

Then, Lemma 3.2 of Lahiri (2003) implies,  

( ) ( ) ( ) ( ) ( )2 2 2
1 1 221

, ,
k

k kk k k
j p p rrj

E Y k r Y C k r X O
δδ

ν ν
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≤ ∆ ≤ =∑


  

 
(4.16) 

which implies  
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3
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E U E U E Y O
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and  
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Therefore,  
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1 1, .
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U O U O
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(4.17) 

Finally, combining (4.14), (4.15), and (4.17) gives,  
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(4.18) 

Thus, we obtain,  
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−
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=

 

    

Lemma 3 is proved.                                               
Proof of Theorem 1: By the definitions of *

nµ , nµ , *
iY , *

iU , 1n b=  , and 
the fact that * * *

1 2, , , bU U U  are IID, we get 
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(4.19) 

Then, for any y∈ ,  
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which together with the Berry-Esseen Theorem gives  
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(4.20) 

Lemma 2 and Lemma 3 imply, respectively,  
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+ +      = →
 



    

(4.21) 
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and  

( ) ( )
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( ) ( )
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3* *3* *
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3 2 3 2* *
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(4.22) 

Then, by (4.20)-(4.22), we have  

( )( )*
* 1 0,p

n n
yP n p yµ µ
σ∞

 
− ≤ −Ψ → 

 
  

uniformly in y∈ . This together with Lemma 1 yields  

( )( ) ( )( )*
* 1 ˆ 0.sup p

n n n p
y

P n p y P n p yµ µ µ µ
∈

− ≤ − − ≤ →


 

That is, ( )* *
1n n nZ n p µ µ= −   converges in probability to ( )ˆn n pZ n p µ µ= − . 

We complete the proof of Theorem 1.                                  
Proof of Theorem 2: Theorem 2 is a consequence of Lemma 2 and Equation 

(4.19).  
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since * * *
1 2, , , bU U U  are IID, which implies that  

( ) ( )( ) ( )( )( )* * *
* * 1 * 1

1 1

1 1 1 .
b

i n n n
i

Var U Var U Var U
b b n

ν ν ν
=

  = = 
 
∑   


 

The proof of Theorem 2 is completed.                                

5. Conclusions 

In this paper, we establish the asymptotic properties of the blocking bootstrap 
estimators of the expected shortfall. We prove that the MBB method provides a 
valid approximation to the distribution of the centered and scaled sample 
estimator of the expected shortfall and show that under mild regularity 
conditions, the MBB variance estimator is consistent. 

As in many situations where the block bootstrap methodology is involved, the 
performance of the block bootstrap distribution function and variance 
estimators of nZ  critically depends on the block size 


. Although there have 

been some theoretical works on the choice of the optimal block length in the 
literature, the optimal block lengths and/or the optimal rates of convergence in 
Theorems 1 and 2 are unknown at this stage. 
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It is also of interest to conduct both empirical studies and simulations to 
investigate the performance of the MBB estimators and compare the obtained 
results with those in [9]. 
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