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Abstract 
The development of artificial intelligence today is marked with increased 
computational power, new algorithms, and big data. One such milestone im-
pressive achievement in this area is Google’s AlphaGo. However, this ad-
vancement is beginning to face increasing challenges and the major bottleneck 
of AI today is the lack of adequate computing power in the processing of big 
data. Quantum computing offers a new and viable solution to deal with these 
challenges. A recent work designed a quantum classifier that runs on IBM’s 
five qubit quantum computer and tested its performance on the Iris data set as 
well as a circles data set. As quantum machine learning is still an emerging 
discipline, it may be enlightening to conduct an empirical analysis of this 
quantum classifier on some artificial datasets to help learn its unique features 
and potentials. Our work on the quantum classifier can be summarized in 
three parts. The first is to run its original version as a binary classifier on some 
artificial datasets using visualization to reveal the quantum nature of this al-
gorithm, and the second is to analyze the swap operation utilized in its origi-
nal circuit due to the hardware constraint and investigate its impact on the 
performance of the classifier. The last part is to extend the original circuit for 
binary classification to a circuit for multiclass classification and test its per-
formance. Our findings shed new light on how this quantum classifier works. 
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1. Introduction 

Quantum computation is a new computing approach based on the laws of 
quantum mechanics, which is a very hot topic at the frontiers of computing 
world today. By carefully exploiting the unique features of quantum states, 
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quantum computers can efficiently solve some problems that are believed to be 
hard for classical computers. 

There are two well-known quantum algorithms that demonstrate the advan-
tage of quantum computation over classical approach. Shor’s algorithm for 
finding the prime factors of a number runs in polynomial time while any classic-
al similar algorithms run in exponential times. Grover devised a quantum algo-
rithm for the problem of unstructured search which achieves a quadratic speed 
up over the classical algorithms. Not available in classical computing, superposi-
tion, entanglement and interference of quantum states employed in quantum 
computing are generally considered as resources for this speed up. Furthermore, 
quantum computers can perform simulations of another quantum system such 
as protein folding that is beyond the capability of any classical computers.  

IBM recently released the Quantum Experience to allow users to access a five 
qubit quantum processor, with services including circuit design, simulation, 
testing and actual computation on a physical device [1]. It offers researchers 
great opportunities to test their quantum theories and algorithms on actual 
quantum hardware. In today’s data rich society, the growth rate of data generat-
ed by different devices goes up way faster than that of the computer processors’ 
speed. As such quantum computation provides a new computing paradigm to 
process the enormous data and information we are facing today. 

It is true that a quantum computer using quantum laws can process many 
quantum states simultaneously via quantum parallelism, say it can compute 
( )f x  through evaluating the function for multiple values of x simultaneously. 

But when we need to measure the results of the computation, we can only get 
one result and sometimes this result is even nondeterministic. Therefore, to get a 
classical result, we have to run a quantum algorithm multiple times in some cas-
es. In this sense, to produce the same classical result, an algorithm that requires 
less number of runs the better. In particularly, for a quantum classifier, we are 
not only interested in the classification accuracy, but also less number of runs 
(or shots in IBM’s term) of the algorithm.  

Machine learning is generally categorized into three classes: supervised learn-
ing, unsupervised learning, and reinforcement learning. In supervised learning, 
there are classification and regression problems. Quantum advantage has long 
been known for problems such as factoring, search, and simulation. Only re-
cently have quantum algorithms begun to emerge that demonstrate their quan-
tum speedups in machine learning. These quantum machine learning algorithms 
have to address the basic techniques such as how to compute the distance among 
the data points and inner product of two vectors. These computing tasks are easy 
for classical computes because they can measure the computed terms anytime 
during the whole process, but quantum computers usually can only take direct 
measurements at the end of the process. It is no easy task for a quantum algo-
rithm to be creative in exploiting measurement in a non-trivial way during the 
computing process. 
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The work in [2] was to design a quantum circuit for a distance based binary 
classifier runnable on IBM’s 5Q quantum computer. The quantum advantage of 
this classifier is the ability to compute the distance of the test data point to all the 
training data points simultaneously. In contrast, a major drawback of classical 
distance based classifier is that it can be computationally expensive. Other 
quantum machine learning algorithms can be seen in [3]-[13].  

This classifier was tested on iris dataset and a circles data set. The numerical 
results were summarized in two tables [2]. We thought it might shed more light 
on the nature of this quantum classifier if some visualization of its working can 
be seen. More specifically how the distance of the data points influences the pre-
diction probabilities caused by the stochastic nature of quantum computing. The 
second thought is how the swap operation in the circuit (Figure 1) has a toll on 
the prediction accuracy as this operation is necessary in quantum circuit design 
to meet certain hardware constraints. Our final thought is how to extend the 
quantum binary classifier to a multiclass classifier, a further step to illustrate the 
potential of quantum machine learning. The purposes of our study entail the use 
of IBM’s quantum simulator instead of its real quantum device as we need to use 
more than five qubits.  

2. A Quantum Classifier 

This paper reports our empirical analysis of a quantum classifier implemented 
on IBM’s 5Q computer. We will briefly present the distance based quantum clas-
sifier created in [2]. Quantum computing requires the data be encoded in quan-
tum states for storage, transformation, and processing. In the context of the 
analysis of classical data, one method is to encode the coordinates of a classical 
data point as amplitudes of the quantum state, adopted by [2]. Another straight 
forward encoding method is to encode one classical bit of information into a 
qubit. The advantage of amplitude encoding is its compactness to represent real 
numbers.  

Let 2nN =  and ( )0 1 1, , N
NX x x x R−= ∈  is a unit vector. A dataset of size 

M can be denoted by ( ) ( ) ( ) ( ){ }0 0 1 1 2 2 1 1, , , , , , , ,M MD X y X y X y X y− −=  , where 
m NX R∈  represents a data point and my  represents its class label. For a binary 

classification, { }0,1my ∈ . The amplitude encoding of X is 1
0

N
X ii ixψ −

=
=∑ . The 

first step of the quantum classifier is, through some quantum operations (see the 
quantum circuit in Figure 1), to transform the dataset D together with a test 
point as:  

( )1
0

1

1 0 1 m
M m
m XXD m y

Z
ψ ψ−

=
= +∑ 

             (1) 

where X  is a test point, mX  are training points, m is an index for the data 
point mX , and 1Z  is a normalization constant to make the whole quantum 
state of length one. After applying the Hadamard gate to the data qubit that 
contains X  and mX , the state becomes  
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Figure 1. An implementation of the quantum circuit from [2] in IBM’s quantum com-
poser. The first two H gates prepare the ancilla qubit q[0] and index qubit m q[1] in su-
perposition. The cU3 gate entangles a test data point with the ancilla qubit q[0]. The ccX 
gate entangles the first training data point with q[0] and q[1]. The ccU3 gate adds the 
second training data point to the circuit. Lastly the swap operation is used to add the class 
label to the circuit through a cnot gate due to the star topology of IBM’s 5Q quantum 
processor.  

 

( )1
1 0

1

1 0 1m m
M

X
m

m X XX
D m y

Z
ψ ψ

+ −

−

=
= +∑

 

            (2) 

here m mXX X X
ψ ψ ψ

±
= ±





. The key observation is 

2 2

0 0
2 2

1 11m m
m m

y yX X X
Z Z

X
= =

+ = − −∑ ∑   

where 2Z  is another normalization constant, which implies that the closer the 
test point X  to the training point mX , the larger the amplitudes in front of 

my  and therefore the more likely to be observed at the last step of measure-
ments. In another word, the probability of measuring the class qubit my  in 
state 0  is: 

( )
2

0 0
2 2

21 10 1m m
m m

y yP y X
Z

X XX
Z = =

= = + = − −∑ ∑

         (3) 

By exploiting superposition, entanglement, and interference, this algorithm is 
able to evaluate the distance of the test point to all the training points at once. 
And more importantly, through clever mathematical manipulation, the proba-
bility of the test point belonging to class 0 or 1 can be determined at the end of 
the quantum circuit. However, when measuring the ancilla qubit (the qubit con-
taining 0  and 1  in Equations (1) and (2)), we may see 1  instead of 0 . 
Therefore the final tally of the counts for P(0) or P(1) has to exclude the results 
of seeing 1  in the ancilla qubit, which is way different from classical machine 
learning algorithms. 

In this circuit in Figure 1, the first two Hadamard gates are employed to super 
position the qubits q[0] and q[1]. Entanglement of the qubits is seen among the 
controlled gates while the interference of the qubits is seen at the last Hadamard 
gate. According to [2], q[0] is an ancilla qubit, q[1] is index for each training da-
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ta point, q[2] is data, and q[3] is for class label. q[4] is an temporary qubit that 
we use to build the ccU3 gate. Note that a swap operation is used at the end of 
this circuit to satisfy the star topology employed in IBM’s 5Q quantum chip, see 
Figure 1.  

A typical quantum circuit is composed of initial states, followed by several un-
itary operators, and terminated by a few measurements according to the task of 
the algorithm. During execution of the algorithm, the super positioned quantum 
states have to maintain their coherent superposition. As a result, the length of a 
quantum circuit depends directly on the amount of time that these quantum 
states can remain coherent [14]. 

3. Results 

The quantum classifier in [2] uses amplitude encoding technique, so the classical 
data points that we will use in our experiments are all of the form ( )1 2,x x =
( )sin ,cosθ θ , to make the notation easier to follow we simply use θ to  

represent a point. Say, we can use π
4

θ =  to represent the point of ( )sin ,cosθ θ  

1 1,
2 2

 =  
 

. Since the classifier is distance based, we like to investigate  

experimentally how the distance of the data points affect its performance. The 
classifier is run several times with 1000 or 8192 shots, where 8192 is the maximal 
number of shots allowed on Quantum Experience. We use IBM’s quantum si-
mulator in this work rather than the real 5Q quantum computer because part of 
our goal is to extend the binary classifier in [2] to a multiclass classifier that uses 
more than five qubits. We summarize our findings in the following three subsec-
tions. 

3.1. Experiments on a Binary Classifier 

Our first task is to test the binary classifier in [2], we set the two training data 
points to be {0, θ} and label point 0 as class 0 and point θ as class 1. Then select 
the evenly spaced points in the interval [0, θ] as the test points. θ can take values 
like π, or π/4. Since this is a binary classifier, P(0) + P(1) = 1. Our first experi-
ment indicates that P(0) and P(1) can take values in the full range of [0, 1], see 
Figure 2, where θ = π. As the test point moves from the training point 0 (class 
label 0) to another training point π (class label 1), P(0) changes from 1 to 0 
gradually. Similarly, P(1) changes from 0 to 1. The angular distance of the two 
training points 0 and π is π. 

In the next two experiments, we choose θ = π/4 and θ = π/16. As expected 
when the distance of the two training points becomes smaller, the binary classi-
fication task gets harder which can been seen from the values of P(0) and P(1) in 
Figure 3 and Figure 4. The purpose of these experiments is to visualize the 
changes of P(0) and P(1) of the test points when the distances of the training 
points get smaller. 
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Figure 2. Curves of P(0) and P(1) for 400 test points in [0, π] and two training points 0 and π with 8192 shots. The values of P(0) 
and P(1) can takes values from the full range of [0, 1]. The angular distance of 0 and π is π. 

 

 
Figure 3. Curves of P(0) and P(1) for 100 test points in [0, π/4] and two training points 0 and π/4 with 8192 shots. The angular 
distance of the two training points is π/4 which is smaller than that in Figure 2, so the values of P(0) and P(1) cannot take the fall 
range of [0, 1] but within the range of [0.46, 0.54] approximately. 

 
As the test point moves from 0 (class label 0) to π/4 (class label 1), P(0) 

changes from about 0.54 to about 0.56 gradually. Similarly, P(1) changes from 
0.46 to 0.56. When the test point gets into the middle of the interval [0, π/4], the 
classification problem becomes harder for a distance based classifier. Note that 
P(0) and P(1) do not take values near 1 and 0 as the distances between 0 and π/4 
is smaller than that of 0 and π, compared with Figure 2. 

In this plot, the distance between 0 and π/16 is even smaller than that of 0 and 
π/4, in comparison to Figure 3. P(0) and P(1) take values near 0.5 and far away 
from 1 and 0, making this classification problem harder than that in Figure 2 
and Figure 3. The three experiments here clearly visualize the fact that the val-
ues of P(0) and P(1) depend on the distances between the test points and train-
ing points, and the training points themselves, and the stochastic nature of  
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quantum computing caused by the genuinely probabilistic properties of 
quantum states. 

3.2. Experiments on a Binary Classifier with or without Swap  
Operation 

The IBM 5Q consists of five superconducting transmon qubits patterned on a 
silicon substrate. The qubits are labeled Q0, Q1, Q2, Q3, and Q4. For the IBM 
5Q system, only 4 different types of CNOT gates are available: every CNOT must 
have Q2 as the target qubit and Q0, Q1, Q3, or Q4 as the control qubit, see Fig-
ure 5. The SWAP gate is routinely used to deal the hardware constraint that the 
CNOT gate cannot be applied to two arbitrary qubits. 
 

 
Figure 4. Curves of P(0) and P(1) for 100 test points in [0, π/16] and two training points 0 and π/16 with 8192 shots. This time the 
angular distance between the two training points is π/16, much smaller than π. As a result, the values of P(0) and P(1) are oscillat-
ing near 0.5, far away from 1 and 0. 

 

 
Figure 5. A schematic demonstration of the five qubits in IBM’s 5Q chip, an image taken from  
https://quantumexperience.ng.bluemix.net/qx/editor 
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To test the effects of the swap operation as shown in Figure 1, we create 
another circuit where the SWAP gate and CNOT gate in the original circuit are 
replaced by a Toffoli gate so they are logically equivalent but the latter involves 
no swap. We run 10 experiments for these two classifiers, each of which is made 
of 8192 shots for 200 test points and two training points, see Figure 6. From 
these experiments, the average error rate of the circuit with the swap is 20.55% 
and the one without swap is 22.05%. Our results imply no significant difference 
in the classification accuracy, given the stochastic nature of these two classifiers. 
We intentionally choose two close training points 0 and π/8 to make it hard for 
the distance based classifiers to differentiate them. To further elucidate the ob-
served results, we select one experiment for each classifier from the 10 experi-
ments and plot the whole curves of P(0) and P(1) over all the 200 test points, see 
Figure 7 and Figure 8. They show what the curves of P(0) and P(1) look like 
when the classification error rate is around 20%. 

3.3. Experiments on a Multiclass Classifier 

To make a multiclass classifier, four classes to be exact in this study, we use two 
qubits for index and two qubits for classes following the circuit patterns shown 
in Figure 1. In the following experiment, we set the four training data points to 
be {0, π/2, π, 3π/2} with class labels 0, 1, 2, and 3 respectively and then select the 
evenly spaced points in the interval [0, 2π] as the test points. Since we have four 
classes, P(0) + P(1) + P(2) + P(3) = 1. The idea is to create the test points so they 
can move from 0 to 2π, as a result these four probabilities can display their four 
peaks in turn as shown in Figure 9. 

4. Conclusions 

Quantum machine learning, though in its initial stage, has demonstrated its  
 

 
Figure 6. Classification error rate from 10 experiments for two classifiers with and without swap operation, each of which is made 
of 200 test points in [0, π/8] and two training points 0 and π/8 with 8192 shots. The average classification error rate for the clas-
sifier with swap is 20.55% and the one without is 22.05%. 
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Figure 7. One selected experiment for the classifier with swap from the 10 experiments reported in Figure 6. 

 

 
Figure 8. One selected experiment for the classifier without swap from the 10 experiments reported in Figure 6. 

 
potential to speed up some of the costly machine learning calculations when 
compared to the existing classical approaches. This study presents an empirical 
analysis of the distance based quantum classifier created in [2]. Our work con-
sists of three components. The first is to visualize the probabilities of observing a 
test data point being in class 0 or 1 in a binary classification as it moves among 
the training points. Although it is obvious the predication depends on the dis-
tance of the data points implied by the nature of this kind of algorithms. Since 
it is a quantum classifier so it might be helpful if some experiments can be de-
signed to reveal the quantum nature of this classifier. Our analysis shows that 
when the training points are close enough, the classifier has hard time to  
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Figure 9. Curves of P(0) and P(1) for 200 test points in [0, 2π] and four training points 0, π/2, π, 3π/2 with class labels 0, 1, 2, and 
3 respectively, with 1000 shots from the multiclass classifier created in this study. 

 
differentiate the training points. The values of P(0) and P(1) are very close to 0.5 
and oscillating about 0.5. Because of the stochastic nature of quantum algo-
rithms, this phenomena makes prediction more difficult than the corresponding 
classical algorithms.  

The second is to see if the swap operation that is commonly utilized in quan-
tum circuit design to meet the hardware constraints may have an impact on the 
performance of this classifier. A typical circuit of a quantum machine learning 
algorithm employs superposition, entailment, and interference of qubits. Be-
cause of this, any swap of two qubits in the circuit may influence the final out-
come of the algorithm. Our experiments suggest that the swap operation does 
not make a difference in the cases that we have tested.  

Our final goal is to extend the binary classifier in [2] to a multiclass classifier 
to further demonstrate the capability of this classifier. The four-class classifier 
that we create in this work shows its ability to distinguish the four different 
training points with four peaks of the curves of P(0), P(1), P(2), and P(3) occur-
ring at the right test points.  

It is known that some quantum machine learning algorithms can outperform 
their classical counterparts, but the full scope of their potential needs to be fur-
ther investigated. Our work adds new knowledge to this field by helping learn 
the working of this quantum classifier, fulfilling part of the big goal of under-
standing the value of quantum computing to machine learning and AI. 
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