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Abstract 
This paper analyzes a discrete-time Geoa/Geob/1 queuing system with batch 
arrivals of fixed size a, and batch services of fixed size b. Both arrivals and ser-
vices occur randomly following a geometric distribution. The steady-state 
queue length distribution is obtained as the solution of a system of difference 
equations. Necessary and sufficient conditions are given for the system to be 
stationary. Besides, the uniqueness of the root of the characteristic polynomial 
in the interval (0, 1) is proven which is the only root needed for the computa-
tion of the theoretical solution with the proposed procedure. The theoretical 
results are compared with the ones observed in some simulations of the 
queuing system under different sets of parameters. The agreement of the re-
sults encourages the use of simulation for more complex systems. Finally, we 
explore the effect of parameters on the mean length of the queue as well as on 
the mean waiting time. 
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1. Introduction 

Queuing systems are being studied from the beginning of the XX century, trying 
to model fluctuations arising in a queue, such as number of clients, waiting time, 
service time, etc. In fact, its origin can be found in the study of congestion prob-
lems on telephone networks. The first work on these problems was published in 
1909 by Agner Krarup Erlang [1] who demonstrated that telephone calls were 
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well modeled by a Poisson distribution. 
Besides the queues in the telephone exchanges that were the origin of the theory 

of queues, nowadays, batch queues are common in transports, distribution and 
telecommunications. Consequently, the words “customers” or “clients” are used in 
general terms, whether it is about people or, say, printer jobs waiting their turn. 
Chaudhry and Templeton [2] offer a complete analysis of queuing systems.  

In particular, models in discrete-time have received much attention in the last 
years, mostly focusing on the calculus of the length queue distribution and wait-
ing time. In pursuing these goals, different approaches are used and with differ-
ent models that arise when considering varying characteristics such as the ser-
vice policy, or distribution of arrivals or of inter-arrivals time. 

The present paper focuses on discrete time queuing systems for batch arrivals 
and services, both following a geometric distribution and both with fixed size, 
though different. Following the notation introduced by Kendall [3], this is de-
noted as Geoa/Geob/1.  

A general discrete time GIX/GY/1 model was studied by Alfa and He [4] by the 
Markov chain associated to the number of customers in the queue. Chaudhry 
and Gupta [5] compute the length queue distribution and the waiting time 
through the PGF (Probability Generating Function) of the distributions involved 
for the GIX/Geo/1 model, and more recently, [6], they focus on the waiting time 
for the GIX/G/1 model. In [7], Chaudhry and Kim present a multi-server model 
with deterministic service times. 

In [8], Borkakaty et al. focus on the busy period of the system GIa/Gb/1, with 
fixed sizes for arrival and service batches by lattice path approach. The method is 
first applied for models in discrete time, handling then the model in continuous 
time as the limiting case. 

For arrivals of variable size following a Poisson distribution, Claeys et al. [9] 
analyze the model MX/GIl,c/1, where the server remains idle until there is at least 
l customers waiting and can serve at most c customers simultaneously. With 
geometric distribution for arrivals and services, in [10], they present the model 
GeoX/Geoc/1 under two different policies: in the first, the server starts a new ser-
vice although the number of clients does not reach c; in the second, the server 
waits until the number of clients reaches c.  

A related model, the GI/Geo/1 queue under N-policy, is analyzed by Lim et al. 
[11]. In this model, customers arrive and are served one by one, but the server 
waits until the number of customers reaches N before starting services. 

Bruneel et al. [12] examine the model with fixed service capacity, while in [13] 
they consider systems with variable service capacity. Focusing in the interval 
between arrivals (keeping it constant) and constant time of service, Zhao and 
Campbell [14] use the roots, both inside and outside the unit circle, of the de-
nominator of the generating function for the system DX/Dm/1. Related to this 
methodology, Janssen and Leeuwaarden [15] discuss about the method of find-
ing the roots of ( ) sA z z−  (where A(z) is the PGF of the number of arriving 
customers in each slot time), both in order to clarify the probabilistic interpreta-
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tion of the roots and to find them numerically. They present a solution for the 
stationary queue length distribution that does not depend on roots. 

On the other hand, Yao et al. [16] consider computer simulation for discrete 
models as a method to avoid the difficulties of theoretical analysis. 

The present paper shows how the specific characteristics of the model being 
studied make it possible to obtain the theoretical solutions without the need of 
finding all the roots of ( ) sA z z− . In particular, we prove the existence of a 
unique root of the characteristic polynomial in (0, 1), which suffices to obtain 
the solution, provided the system is stationary. Conditions for the system to be 
stationary are also given. 

2. Analytic Solution 
2.1. Model Description 

The model under study is a discrete-time model denoted as Geoa/Geob/1: cus-
tomers arrive in batches of fixed size a, and they are served in batches of fixed 
size b. If there is not at least b customers at the end of a service, the server does 
not start a new service until the number of waiting customers reaches b.  

It is assumed that arrivals are independent, service times are independent, and 
services are independent of arrivals unless the number of waiting customers 
were less than b. Batch sizes a and b are supposed to be relative prime integers; 
otherwise, we would take their greatest common divisor as unit. 

At each time slot, an arrival of a customers can happen with probability α, or 
not, with probability 1 − α. Furthermore, if there is a service running, it can 
finish with probability β, or not, with probability 1 − β. Besides, inter-arrival 
times are geometrically distributed with parameter α, and service times are geo-
metrically distributed with parameter β. Then, traffic density is ( )a bβρ α= . 

Therefore, if there are n customers in the system, Equations (1) to (4) describe 
the different probabilities.  

( ) ( ) ( )( )
1 if

| no arrival and no exit |
1 1 if

n b
P AE n P n

n b
α
α β

− <
= =  − − ≥

    (1) 

( ) ( )
if

| arrival and no exit |
(1 ) if

n b
P AE n P n

n b
α
α β

<
= =  − ≥

       (2) 

( ) ( ) ( )
0 if

| no arrival and exit |
1 if

n b
P AE n P n

n bα β
<

= =  − ≥
       (3) 

( ) ( )
0 if

| arrival and exit |
if

n b
P AE n P n

n bαβ
<

= =  ≥
          (4) 

If the system reaches an equilibrium, and nq  denotes the probability of “n 
customers in the system”, then the following Equation (5) holds, 

( ) ( ) ( )
( )

| | |

|
n n n a n b

n a b

q P AE n q P AE n a q P AE n b q

P AE n a b q
− +

− +

= + − + +

+ − +
        (5) 

https://doi.org/10.4236/am.2018.92011


A. Lorente, M. S. Sánchez 
 

 

DOI: 10.4236/am.2018.92011 156 Applied Mathematics 
 

where all mq  with m < 0 are 0. 
Note that, according to Equations (1)-(4), the probabilities of exit or no exit 

are different depending on whether n is greater than b or not. Consequently, all 
equations with any subscript less than b are particular equations.  

Since the lowest subscript in Equation (5) is n a− , then there are a b+  par-
ticular equations, from 0n =  to 1n a b= + − , the ones detailed in Equations 
(6)-(11), that also should take into account the relation between a and b.   

If a b<  the particular equations are: 

( ) ( )1 1 if 0n n n bq q q n aβα α += − + − ≤ <               (6) 

( ) ( )1 1 ifn n n a n b n a bq q q q q a n bβ βα α α α− + − += − + + − + ≤ <      (7) 

( )( ) ( )1 1 1 ifn n n a n b n a bq q q q q b n a bβ β βα α α α− + − += − − + + − + ≤ < +   (8) 

While, if a b> , the equations become: 

( ) ( )1 1 if 0n n n bq q q n bβα α += − + − ≤ <              (9) 

( )( ) ( )1 1 1 ifn n n a n bq q q q b n aβ βα α α− += − − + + − ≤ <       (10) 

( )( ) ( )1 1 1 ifn n n a n b n a bq q q q q a n a bβ β βα α α α− + − += − − + + − + ≤ < +   (11) 

Remember that a and b are supposed to be relative prime integers. In any case, 
if a b= , the problem would reduce to 1a b= = , since each block can be treated 
as a unit. 

The general equation for n a b≥ +  in Equation (12) is obtained by replacing 
Equations (1)-(4) into Equation (5). 

( )( ) ( ) ( )1 1 1 1n n n a n b n a bq q q q qβ β β βα α α α− + − += − − + − + − +      (12) 

2.2. Steady-State Equations 

Rearranging Equation (12), for n a b≥ +  we have 

( ) ( )( ) ( )1 1 1 1 1 0n a n n a b n bq q q qβ β β βα α α α− − + +− + − − − + + − =      (13) 

whose characteristic polynomial is 

( ) ( ) ( )( ) ( )1 1 1 1 1a b a bP x x x xβ β β βα α α α += − + − − − + + −        (14) 

The steady-state distribution, if it exists, must be a particular solution of Equ-
ation (13). The general solution of Equation (13) is 

( )n
n k k

k
q a x n a b= ≥ +∑                    (15) 

where kx  are the roots of the characteristic polynomial in Equation (14).  
Then, with the aim of studying the roots of Equation (14), we distinguish two 

cases: 
Case a b< : 
If a b< , exponents in Equation (14) are already in ascending order. As a po-

lynomial, P(x) is continuous and differentiable in . Its derivative:  
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( ) ( )( ) ( )( )

( )( ) ( )( )( )
( )

1 1 1

1

1

1 1 1 1

1 1 1 1

a b a b

a b a b

a

P x a x b x a b x

x a b x a b x

x Q x

β β β

β β β

α α α

α α α

− − + −

− −

−

′ = − − − + + + −  

= − − − − + + + −  

=

  (16) 

Since a, b are positive integers and α, β lay in ( )0,1 , Q(x) is an increasing po-
lynomial and ( )0 0Q < . Consequently, Q(x) has a unique root in ( )0,∞ , and so 
has ( )P x′ . Therefore P(x) has at most two roots in (0, ∞). 

Case a b> : 
If a b> , Equation (17) shows P(x) with exponents in ascending order  

( ) ( ) ( )( ) ( )1 1 1 1 1b a a bP x x x xβ β β βα α α α += − + + − − − + −       (17) 

Its derivative:  

( ) ( )( ) ( )( )

( )( ) ( )( )( )
( )

1 1 1

1

1

1 1 1 1

1 1 1 1

b a a b

b a b a

b

P x b x a x a b x

x b a x a b x

x S x

β β β

β β β

α α α

α α α

− − + −

− −

−

′ = + − − − + + −  

= − − − − + + −  

=

  (18) 

By differentiating again the polynomial S(x) in Equation (18) is 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )( )

1 1

1

1 1 1 1

1 1 1 1

a b a

a b b

S x a a b x a a b x

x a a b a a b x

β β

β β

α α

α α

− − −

− −

′ = − − − − − + + −  

= − − − − − + + −  
  (19) 

Like in the previous case, the second factor in Equation (19) is an increasing 
polynomial in the interval ( )0,∞  and negative at 0. Then ( )S x′  has a unique 
root in ( )0,∞ . This implies that S(x) has at most two roots in ( )0,∞ , and so 
has ( )P x′ . 

As ( )S x′  must be negative until its unique root in ( )0,∞  and positive after 
the root, S(x) is at first decreasing, it reaches a relative minimum and turns to be 
an increasing function. Because ( )0 0S > , either S(x) remains above the hori-
zontal axis in ( )0,∞  (maybe reaching it at the relative minimum), or S(x) 
crosses the horizontal axis at two different points. However, the former case 
would imply, Equation (18), that ( )P x′  is never negative and therefore P(x) is 
never decreasing, which is impossible because ( )0 0P >  and ( )1 0P = . 

We conclude that S(x), and thus ( )P x′ , crosses the horizontal axis at two 
different points 1s  and 2s  ( )1 2s s<  in ( )0,∞  with ( ) 0P x′ >  if ( )10,x s∈ , 

( ) 0P x′ <  if ( )1 2,x s s∈  and again ( ) 0P x′ >  if 2x s> . Accordingly, P(x) is 
increasing in ( ) ( )1 20, ,s s∪ ∞  and decreasing in ( )1 2,s s . In the first interval 
( )10, s  there are no roots of P(x), since ( )0 0P > . Consequently, as the only 
remaining root of ( )P x′  is in ( )1,s ∞ , in this interval there is at most two roots 
of P(x). 

This proves that, in both cases (a < b and a > b), the characteristic polynomial 
has at most two roots in the interval ( )0,∞ . One of these roots is 1. Let’s sup-
pose that there is another root, r, in ( )0,1 . Then P(x) must be decreasing up to r 
and then increasing until 1. In particular, ( )1P′  must be positive but 
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( ) ( )( ) ( )( )1 1 1 1 1P a b a b

a a a a a b a a b b
a b

β β β

β β β β β β β

β

α α α

α α α α α
α

′ = − − − + + + −  
= − − + − + + − + −
= − +

        (20) 

Thus, ( )1 0P a bβα⇔′ > < .  
This implies that if a bβα ≥  there are no roots of P(x) in ( )0,1 , then we 

cannot construct any particular solution as defined in Equation (15), which 
should generate a probability distribution. 

On the other hand, if a bβα < , the root of P(x) in ( )0,1  is unique, let 0x  
be this root. Therefore, for any 0u > , the series in Equation (21) 

0
n

n a b
ux

∞

= +
∑                              (21) 

is a convergent series with positive terms. 
We can choose 0u >  such that  

1

0
0 0

1
a b

n
n n

n n n a b
q q ux

∞ + − ∞

= = = +

= + =∑ ∑ ∑                       (22) 

that is, 
1

0

0 0

1
1

a b

n a b
n

xu q
x

+ −

+
=

− = − 
 

∑                          (23) 

Inserting Equation (23) into Equation (21), the probability of n customers in 
the system, qn, for n a b≥ + , is written as 

1
0

0
0 0

1
1

a b
n

n n a b
n

xq q x
x

+ −

+
=

− = − 
 

∑                        (24) 

depending on the first a b+  probabilities of the succession. We determine 
these initial probabilities by replacing ( )nq n a b≥ +  in the a b+  particular 
equations and solving the resulting linear system.  

This provides the distribution of the total number of customers. Equation (25) 
gives the rule to obtain the number of customers waiting before service 

( )
if

 customers waiting
if

n n b

n b

q q n b
P n

q n b
+

+

+ <
=  ≥

              (25) 

Also from these equations, the average number of customers in the system is 
calculated by summing up the series in the following Equation (26) 

1 1
0

0
0 0 0

1
1

a b a b
n

n n a b
n n a b n

xnq n q x
x

+ − ∞ + −

+
= = + =

− + − 
 

∑ ∑ ∑                  (26) 

which gives 
1 1

0

0 0 0

1
1

a b a b

n n
n n

xnq q a b
x

+ − + −

= =

  + − + +   −  
∑ ∑                 (27) 

and the average number of customers waiting is computed as: 

( )
1 1 1 1

0

0 0 0 0 0

1
1

b b a b a b

n n b n n n b n
n n b n n n

xn q q nq nq nq q a
x

− ∞ − + − + −

+ +
= = = = =

  + + = + + − +   −  
∑ ∑ ∑ ∑ ∑    (28) 
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3. Numerical Results and Discussion 
3.1. Theoretical Probabilities versus Relative Frequencies 

The equations in the previous section can be easily programmed so they provide 
a straightforward procedure to compute the probabilities. To illustrate the pro-
cedure as well as comparing the probabilities against relative frequencies com-
puted with simulated results (for the cases where the probabilities were difficult 
to compute), we simulated the system for some given values and for around 
10,000 cycles. For the sake of simplicity, the case studies we chose were with 
small numbers for a and b. 

For the first simulation study, fixed values of a = 2, b = 3 and β = 0.5 were 
chosen. By varying α, the traffic density ρ is also varied, so that, for instance, α = 
0.3 gives ρ = 0.4, whereas for α = 0.6, a heavier traffic density, ρ = 0.8, is ob-
tained.  

In both cases, the first five probabilities { }0 1 2 3 4, , , ,q q q q q  come from the li-
near system obtained by substituting and rearranging Equations (6)-(8), and 
(12) (the details can be found in [17]), namely 

( )

( )

0 0

1 1

02 2

0 0 0 0 03 3
2 2 2 2 2
0 0 0 0 04 4

0

10 0
2

1 0 0 0 0 00 0 0
2 0 0 0 0 0

1 1 1 1 1 1 10 0
22

10 0
2 2

10 0 0
2

0 0 0 0

1
2

q q
q q

xq q
x x x x xq q
x x x x xq q

x

α
α α

α
α

αα
α α

α α
α

α
α

α

− − 
 

−      −      
      −      − −−      
      +     −      
 + −
 

− − ( ) ( )

0

1

0 02

03
2
04

00 0
00 0 0 0 0 0

1 1 1 10 0 0 0 0 0
2 2

0 0 0 0 0 0
1 1 1 1 1 1

q
q

x xq
xq
xq

α α

     
     
     −      = − − − −
     
     

            

 

where x0 is the root of the characteristic polynomial in ( )0,1 . The remaining 
probabilities obey to the geometric formula in Equation (24) with 5a b+ = .  

Table 1 shows the resulting probabilities with 1,2, ,30n =   customers in 
the system, with different traffic density ρ obtained by varying the probability of 
incoming customers α. The probabilities have been computed for the total 
number of customers (first three columns) and also for the number of customers 
that are waiting (last three columns). The last row of Table 1 shows the corres-
ponding expectation. 

For the total number of customers, relative frequencies obtained when simu-
lating the systems with the same parameters are shown in Figure 1 and Figure 
2, where also the theoretical probabilities have been depicted for comparative 
purposes. We can see in both cases how relative frequencies approach the theo-
retical values. 
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Table 1. Theoretical probabilities and expectations for the system with a = 2, b = 3, β = 
0.5, and different traffic density ρ. 

Total number 
of customers 

Probability 
Waiting 

customers 

Probability 

α = 0.3 α = 0.6 α = 0.3 α = 0.6 

(ρ = 0.4) (ρ = 0.8) (ρ = 0.4) (ρ = 0.8) 

0 0.1520 0.0362 0 0.2823 0.1449 

1 0.1742 0.0476 1 0.3235 0.1904 

2 0.2789 0.1220 2 0.3320 0.2161 

3 0.1303 0.1087 3 0.0286 0.0778 

4 0.1493 0.1428 4 0.0155 0.0643 

5 0.0530 0.0941 5 0.0084 0.0531 

6 0.0286 0.0778 6 0.0045 0.0439 

7 0.0155 0.0643 7 0.0024 0.0363 

8 0.0084 0.0531 8 0.0013 0.0300 

9 0.0045 0.0439 9 0.0007 0.0248 

10 0.0024 0.0363 10 0.0004 0.0205 

11 0.0013 0.0300 11 0.0002 0.0170 

12 0.0007 0.0248 12 0.0001 0.0140 

13 0.0004 0.0205 13 0.0001 0.0116 

14 0.0002 0.0170 14 0.0000 0.0096 

15 0.0001 0.0140 15 0.0000 0.0079 

16 0.0001 0.0116 16 0.0000 0.0065 

17 0.0000 0.0096 17 0.0000 0.0054 

18 0.0000 0.0079 18 0.0000 0.0045 

19 0.0000 0.0065 19 0.0000 0.0037 

20 0.0000 0.0054 20 0.0000 0.0031 

21 0.0000 0.0045 21 0.0000 0.0025 

22 0.0000 0.0037 22 0.0000 0.0021 

23 0.0000 0.0031 23 0.0000 0.0017 

24 0.0000 0.0025 24 0.0000 0.0014 

25 0.0000 0.0021 25 0.0000 0.0012 

26 0.0000 0.0017 26 0.0000 0.0010 

27 0.0000 0.0014 27 0.0000 0.0008 

28 0.0000 0.0012 28 0.0000 0.0007 

29 0.0000 0.0010 29 0.0000 0.0006 

30 0.0000 0.0008 30 0.0000 0.0005 

Expectation: 2.4319 6.4891 Expectation: 1.2473 4.1065 

 
In the case of lighter traffic density, ρ = 0.4, the first a + b = 5 probabilities, up 

to 4 customers in the systems, are comparatively large in the system, which is 
very clear in Figure 1 (where it is also seen that the probabilities are practically 
equal to the relative frequencies) and also in the second column of Table 1 with  
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Figure 1. Results for the system with a = 2, b = 3, β = 0.5, α = 0.3 (ρ = 0.4). 

 

 
Figure 2. Results for the system for a = 2, b = 3, β = 0.5, α = 0.6 (ρ = 0.8). 
 
probabilities greater than 0.13 for less than 5 customers; while the remaining 
ones are very small, graphically inappreciable in Figure 1 from around 11 cus-
tomers in the system, and smaller than 10−4 from 17 customers (Table 1).  

The magnitude of q2 stands out clearly that reflects the fact that there must be 
at least 3 customers for the system to start, but they arrive two by two with less 
probability. Accordingly, the expectation is near 2 customers (2.4319 as can be 
seen in the last row of Table 1) in the system.  

This same reason explains the behavior of the probabilities for the number of 
customers that are waiting their turn, fourth column in Table 1, not only the 
fact that the largest probability is indeed for 2 customers but that the cumulative 
probability of having up to 2 customers waiting is in fact 0.9378, almost the 
whole distribution.  

Comparatively, the probabilities of the number of customers waiting for their 
turn are much larger than the probabilities of n customers in the system just up 
until 2 customers waiting. Then, the probabilities rapidly decrease and are ob-
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viously less than their counterparts, and the expectation drops to 1.2473 customers.  
The difference between the first five probabilities and the remaining ones is 

less pronounced in the second system, with ρ = 0.8, as we can see in both Figure 
2 and the third column of Table 1 and also for the probabilities of n customers 
waiting to go to the server, last column in Table 1. 

In Figure 2, again, there is not difference between the probabilities computed 
with Equation (24) and the relative frequencies obtained when simulating the 
system (except may be for 6 customers in the system), the probability reaches its 
maximum for 4 customers (0.1428 in Table 1) but then, contrary to the situation 
in Figure 1, the probabilities softly decrease and remain larger than 8 × 10−4 for 
up to 30 customers. The expectation increases accordingly up to near 6.5 cus-
tomers in the system, on average, 4 of them waiting.  

Like in the previous case, when looking at the probability of having n custom-
ers waiting for their turn, the largest probability is for 2 customers waiting, and 
again the largest probabilities are indeed for 0, 1 or 2 customers waiting but now 
the cumulative probability is much smaller, 0.5514, and slowly decreases from 3 
customers waiting their turn. 

In this case, larger traffic density due to the larger probability of arrival causes 
larger probabilities for more customers in the system, and thus for the ones 
waiting because the probability of service is the same. 

For illustrative purposes, Table 2 contains probabilities and relative frequen-
cies computed also with ten thousand cycles when a > b, in this case, obtained 
for a = 5, b = 3, and probabilities α = 0.2, β = 0.4 (thus, maintaining high traffic 
density ρ = 0.83). The range of values shown now for the number of customers is 
necessarily larger than in Table 1 because the root of the characteristic poly-
nomial is 0.9392 implying a very slow decreasing of the probabilities when in-
creasing the number of customers for 8n a b≥ = + , see Equation (24). 

As in the previous case, the results for the number of total customers in the 
system are similar to each other, although in this case, shorter simulation times 
showed rather high differences between the theoretical probabilities and the ob-
served frequencies. 

The largest values are in the first three rows, up to 2 customers in the system, 
especially for exactly 2 customers. This is due to the needed 3 = b customers to 
start the service. Then, from 3 to 7 = a + b − 1 customers, both the probabilities 
and observed frequencies increase and, at that point, they start to slowly de-
crease from 8 customers in the system, although the high traffic density diffuses 
the differences among these three block of probabilities (or frequencies). The 
slow decrease is apparent in the fact that there is still 0.8 in a thousand rate of 
having 70 customers in the system, with almost 16 customers on average, 15.72 
according to Table 2. 

3.2. Effect of the Parameters on the Queue Length and Waiting  
Time 

With the aim of studying the effect of the parameters on the waiting time and on  

https://doi.org/10.4236/am.2018.92011


A. Lorente, M. S. Sánchez 
 

 

DOI: 10.4236/am.2018.92011 163 Applied Mathematics 
 

Table 2. Relative frequencies observed in a simulation of 10,000 cycles and theoretical 
probabilities computed for a = 5, b = 3, α = 0.2, β = 0.4. 

Total number 
of customers 

Relative 
frequency 

Probability 
Total number 
of customers 

Relative 
frequency 

Probability 

0 0.0446 0.0470 36 0.0038 0.0064 

1 0.0472 0.0544 37 0.0051 0.0061 

2 0.0781 0.0729 38 0.0038 0.0057 

3 0.0296 0.0294 39 0.0049 0.0053 

4 0.0308 0.0340 40 0.0062 0.0050 

5 0.0476 0.0455 41 0.0047 0.0047 

6 0.0476 0.0477 42 0.0055 0.0044 

7 0.0593 0.0553 43 0.0061 0.0042 

8 0.0378 0.0373 44 0.0054 0.0039 

9 0.0390 0.0350 45 0.0039 0.0037 

10 0.0333 0.0329 46 0.0040 0.0034 

11 0.0343 0.0309 47 0.0066 0.0032 

12 0.0316 0.0290 48 0.0038 0.0030 

13 0.0310 0.0273 49 0.0043 0.0029 

14 0.0234 0.0256 50 0.0028 0.0027 

15 0.0265 0.0240 51 0.0031 0.0025 

16 0.0258 0.0226 52 0.0020 0.0024 

17 0.0228 0.0212 53 0.0021 0.0022 

18 0.0233 0.0199 54 0.0022 0.0021 

19 0.0213 0.0187 55 0.0005 0.0020 

20 0.0157 0.0176 56 0.0017 0.0018 

21 0.0195 0.0165 57 0.0013 0.0017 

22 0.0174 0.0155 58 0.0004 0.0016 

23 0.0159 0.0146 59 0.0011 0.0015 

24 0.0139 0.0137 60 0.0004 0.0014 

25 0.0144 0.0128 61 0.0004 0.0013 

26 0.0121 0.0121 62 0.0002 0.0013 

27 0.0093 0.0113 63 0.0002 0.0012 

28 0.0126 0.0106 64 0.0005 0.0011 

29 0.0076 0.0100 65 0.0001 0.0010 

30 0.0095 0.0094 66 0.0003 0.0010 

31 0.0066 0.0088 67 0.0003 0.0009 

32 0.0055 0.0083 68 0.0001 0.0009 

33 0.0078 0.0078 69 0.0002 0.0008 

34 0.0046 0.0073 70 0.0004 0.0008 

35 0.0048 0.0069 Expectation 14.4072 15.72 
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the length of the queue, in the two possible situations a < b and b < a, we main-
tain the size of the blocks, both entering and exiting the system (the same as in 
section 3.1), and modify the rate service from high (β = 0.2), medium (β = 0.5), 
to low (β = 0.7). Systematic simulations were conducted by varying the arrival 
rate α with the purpose of obtaining traffic density ρ from 0.1 to 0.9. 

In all cases, Equations (27) and (28) are used to compute the average number 
of customers in the system and the average number of customers waiting for 
service. The average waiting time is obtained from simulations. From it, we also 
computed the percentage of this waiting time due to the insufficient number of 
customers in the system, i.e. the time spent waiting for the system to reach the 
minimum b customers to start a service.  

The first situation corresponds to the first system studied in Section 3.1, and 
thus the simulations and computation are made by keeping a = 2 and b = 3. The 
resulting waiting time is depicted in Figure 3 as a function of the traffic density, 
and for the three values of β taken into account in order to cover slow, medium 
and fast services, namely β = 0.7, β = 0.5 and β = 0.2, respectively. 

It is observed that, for all values of β, the average waiting time is rather high 
for low traffic density, probably because customers must wait until the number 
reaches the minimum b. It decreases slowly until medium traffic density and 
then grows up again for high traffic density due to congestion.  

As expected, irrespective of ρ, the time spent waiting decreases with β but not 
in the same way. The differences among mean times for each ρ are larger when 
comparing the slow service (open circles) to the medium one (crosses), with 
smaller differences between the later and the fast one (filled circles). These dis-
tances are remarkably different above all for extreme traffic densities, notice the 
huge increase in the mean for ρ = 0.9 when β = 0.7 as compared to the medium 
or the fast one. 

This behavior is related to the one depicted in Figure 4, the percentage of the  
 

 
Figure 3. Mean waiting time vs. traffic density for a = 2, b = 3, and dif-
ferent β. 
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Figure 4. Percentage of waiting time with the server free vs. traffic densi-
ty for a = 2, b = 3, and different β. 

 
waiting time that is due to inactivity of the server because there are not enough 
customers waiting for service, i.e., the server is free but the customers are wait-
ing. At low traffic density, irrespective of the probability of the service, most of 
the waiting time is due to the insufficient number of customers. For instance, 
when ρ = 0.1, more than 90% of the total waiting time is spent with the server 
idle (thus, the increasing mean value of the total waiting time already observed 
in Figure 3). As expected, the values coincide again, practically null in this case, 
for ρ = 0.9, where the traffic is so high that more than 90% of the time that the 
customers spent waiting is because the server is busy (only less than 5% of the 
waiting time is due to insufficient customers).  

Between these two extreme values, Figure 4 shows a decreasing behavior of 
the percentage of the time waiting for the minimum number of customers 
needed to start the service, a decreasing which is almost linear for the fastest ser-
vice among the cases shown. Globally, for a given traffic density, the faster the 
service is, the larger the percentage of the time spent waiting that is due to the 
fact that there are not enough customers.  

In relation to the number of customers in the system, Figure 5 shows the av-
erage values for both the total number of customers (black lines) and the num-
ber of them waiting for service (in red lines). As expected, in both cases, the 
mean values are ordered from smallest to largest according to the speed of the 
service, i.e., the largest mean values are for the slow service (open circles or 
squares for the total number of customers or for those waiting, respectively), 
then the ones corresponding to the medium service rate (crosses in Figure 5), 
and the smallest mean values are for the fast service (filled circles or squares). 

More interestingly, the rate service β does not seem to have a high influence 
on the mean values for small traffic densities, regardless of whether we look at 
the number of total customers or at the number of those that are waiting. In fact, 
all the mean values are graphically undistinguishable until approximately ρ =  
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Figure 5. Average number of both total customers (dark lines) and custom-
ers waiting for service (red lines) vs. traffic density for a = 2, b = 3, and dif-
ferent rate services (β = 0.7 for slow, β = 0.5 for medium and β = 0.2 for fast 
services). 

 
0.4. From then, the mean values continue their increase with ρ, but the differ-
ences due to β become apparent, more importantly for largest traffic densities 
and also with more dispersion, that is, larger differences among the averages 
correspond to larger values of ρ, though this dispersion is the same for the total 
number of customers or when we look only to the customers that are waiting.  

Similar conclusions can be drawn with systems with a = 5 and b = 3 (then a > 
b, as opposed to the preceding case). Figure 6 shows the effect of traffic density 
on the mean waiting time computed with the simulations conducted, as before, 
modifying the rate service from high (β = 0.2), medium (β = 0.5), to low (β = 
0.7) and varying the arrival rate α with the purpose of obtaining traffic density ρ 
from 0.1 to 0.9. 

The pattern in Figure 6 is the same as the one observed in Figure 3, at first 
decreasing with the increase of ρ up to approximately 0.5 and then a faster in-
crease of the waiting time when ρ continues to increase. However, in the present 
case the mean waiting time is comparatively larger in all cases, especially in the 
slow service, open circles in Figure 6. 

It might seem obvious because customers arrive in groups of a = 5 instead of a = 
2 but, in fact, it was not so predictable because the rate of arrival is also varying 
so that the product remains constant; in other words, there are more clients ar-
riving but they do so more spaced in time to maintain traffic density. When 
comparing to Figure 7 that shows the percentage of the time spent waiting be-
cause there are not enough customers to start a service, the reason becomes 
clearer, they are waiting for attention, because for every five arriving, at most 
three receive service thus there can be up to four customers waiting and still one 
when the next service starts. This percentage is now smaller, although, as in 
Figure 4, it is comparatively high at lower traffic densities and decreases when  
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Figure 6. Mean waiting time vs. traffic density for a = 5, b = 3, and dif-
ferent β. 

 

 
Figure 7. Percentage of the total waiting time with the server free vs. traf-
fic density for a = 5, b = 3, and varying β. 

 
traffic density increases (up to a point). 

Comparing to the case a < b, the decreasing pattern for all values of β is now 
less linear than it appeared to be in Figure 4 and also the differences among the 
percentages for the three service rates are smaller than the ones observed in Fig-
ure 4. This reflects the fact that with a > b the server is less frequently free. 

Figure 8 shows the average number of total customers (in black) and the av-
erage of the number of customers waiting for service (in red lighter lines), 
among those in the system. The global increasing pattern of the mean values 
when increasing the traffic density is the same as the one observed for a < b in 
Figure 5, but now the average number of customers, both total or waiting, is al-
ways higher than it was for the analogous case.  

Comparing with the preceding system, we see that the number of customers 
increases with ρ but more rapidly than in Figure 5 even for low traffic densities  
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Figure 8. Average number of total customers in the system (black lines) and 
average number of waiting customers (red lines) vs. traffic density for a = 5, 
b = 3. Different service rate: slow for β = 0.7, medium β = 0.5, and fast for β = 
0.2. 

 
and, consequently, there are more customers (both total customers and the 
number of them that are waiting). It is remarkable the sharp increase of the 
mean number of customers when passing from traffic density 0.8 to 0.9. 

4. Conclusions 

In this paper, we present a discrete-time queuing system where both arrivals and 
services occur in batches of fixed size, a for arrivals and b for services, following 
geometric distributions with probabilities α and β, respectively. In this situation, 
analytical solutions are obtained by explicitly establishing the steady-state equa-
tions, and proving that that the system is stationary if and only if a bβα < .  

The specific features of the system allow us avoiding the search of all roots of 
( ) sA z z−  when computing probabilities, since it suffices to take into account 

the unique real root of the characteristic polynomial in (0, 1), if the stationary 
requirements hold.  

Simulations of the system conducted under different sets of parameters show 
the similarity between the theoretical probabilities and the relative frequencies 
obtained in the numerical results. This provides a viable alternative to avoid 
solving the whole set of equations for each particular case, and then compute the 
remaining probabilities. 

Finally, we explore the effect of parameters on the mean queue length and the 
mean waiting time. For the cases studied, on average, the waiting time is ob-
served to be high for low traffic density, due probably to the time spent waiting 
for a group of b customers that starts the server. Then the time decreases as the 
traffic density increases up to a point where the congestion of the system gives 
rise again to longer waiting times. 

https://doi.org/10.4236/am.2018.92011


A. Lorente, M. S. Sánchez 
 

 

DOI: 10.4236/am.2018.92011 169 Applied Mathematics 
 

Acknowledgements 

Special thanks are due to Dr. M.ª Cruz Valsero, former professor at the Univer-
sity of Valladolid (Spain) for her encouragement, and useful discussions. 

References 
[1] Erlang, A.K. (1909) The Theory of Probabilities and Telephone Conversations. Nyt 

Tidsskrift for Matematik B, 20, 33. 

[2] Chaudhry, M.L. and Templeton, J.G.C. (1983) A First Course in Bulk Queues. 
Wiley, New York. 

[3] Kendall, D.G. (1953) Stochastic Processes Occurring in the Theory of Queues and 
Their Analysis by the Method of the Imbedded Markov Chain. The Annals of 
Mathematical Statistics, 24, 338-354. https://doi.org/10.1214/aoms/1177728975 

[4] Alfa, A.S. and He, Q.M. (2008) Algorithmic Analysis of the Discrete Time GIX/GY/1 
Queueing System. Performance Evaluation, 65, 623-640.  
https://doi.org/10.1016/j.peva.2008.02.001 

[5] Chaudhry, M.L. and Gupta, U.C. (1997) Queue-Length and Waiting-Time Distri-
butions of Discrete-Time GIX/Geom/1 Queueing Systems with Early and Late Arri-
vals. Queueing Systems, 25, 307-324. https://doi.org/10.1023/A:1019144116136 

[6] Chaudhry, M.L. and Gupta, U.C. (2001) Computing Waiting-Time Probabilities in 
the Discrete-Time Queue: GIX/G/1. Performance Evaluation, 43, 123-131.  
https://doi.org/10.1016/S0166-5316(00)00038-9 

[7] Chaudhry, M.L. and Kim, N.K. (2003) A Complete and Simple Solution for a Dis-
crete-Time Multi-Server Queue with Bulk Arrivals and Deterministic Service 
Times. Operations Research Letters, 31, 101-107.  
https://doi.org/10.1016/S0167-6377(02)00214-6 

[8] Borkakaty, B., Agarwal, M. and Sen, K. (2010) Lattice Path Approach for Busy Pe-
riod Density of GIa/Gb/1 Queues Using C2 Coxian Distributions. Applied Mathe-
matical Modelling, 34, 1597-1614. https://doi.org/10.1016/j.apm.2009.09.005 

[9] Claeys, D., Walraevens, J., Laevens, K. and Bruneel, H. (2007) A Discrete-Time 
Queuing Model with a Batch Server Operating under the Minimum Batch Size Rule. 
NEW2AN2007: Next Generation Teletraffic and Wired/Wireless Advanced Net-
working, 4712, 248-259. https://doi.org/10.1007/978-3-540-74833-5_21 

[10] Claeys, D., Walraevens, J., Laevens, K. and Bruneel, H. (2010) Delay Analysis of 
Two Batch-Service Queueing Models with Batch Arrivals: GeoX/Geoc/1. 4OR, 8, 
255-269. https://doi.org/10.1007/s10288-009-0111-2 

[11] Lim, D.E., Lee, D.H., Yang, W.S. and Chae, K.C. (2013) Analysis of the GI/Geo/1 
Queue with N-Policy. Applied Mathematical Modelling, 37, 4643-4652.  
https://doi.org/10.1016/j.apm.2012.09.037 

[12] Bruneel, H., Rogiest, W., Walraevens, J. and Wittevrongel, S. (2015) Analysis of a 
Discrete-Time Queue with General Independent Arrivals, General Service Demands 
and Fixed Service Capacity. Mathematical Methods of Operations Research, 82, 
285-315. https://doi.org/10.1007/s00186-015-0515-z 

[13] Bruneel, H., Wittevrongel, S., Claeys, D. and Walraevens, J. (2016) Discrete-Time 
Queues with Variable Service Capacity: A Basic Model and Its Analysis. Annals of 
Operations Research, 239, 359-380. https://doi.org/10.1007/s10479-013-1428-y 

[14] Zhao, Y.Q. and Campbell, L.L. (1996) Equilibrium Probability Calculations for a 
Discrete-Time Bulk Queue Model. Queueing Systems, 22, 189-198.  

https://doi.org/10.4236/am.2018.92011
https://doi.org/10.1214/aoms/1177728975
https://doi.org/10.1016/j.peva.2008.02.001
https://doi.org/10.1023/A:1019144116136
https://doi.org/10.1016/S0166-5316(00)00038-9
https://doi.org/10.1016/S0167-6377(02)00214-6
https://doi.org/10.1016/j.apm.2009.09.005
https://doi.org/10.1007/978-3-540-74833-5_21
https://doi.org/10.1007/s10288-009-0111-2
https://doi.org/10.1016/j.apm.2012.09.037
https://doi.org/10.1007/s00186-015-0515-z
https://doi.org/10.1007/s10479-013-1428-y


A. Lorente, M. S. Sánchez 
 

 

DOI: 10.4236/am.2018.92011 170 Applied Mathematics 
 

https://doi.org/10.1007/BF01159401 

[15] Janssen, A.J.E.M. and van Leeuwaarden, J.S.H. (2005) Analytic Computation 
Schemes for the Discrete-Time Bulk Service Queue. Queueing Systems, 50, 141-163.  
https://doi.org/10.1007/s11134-005-0402-z 

[16] Yao, M.H., Chen, X.J. and Zuo, L.C. (2014) Customer Arrival Event Processing on 
Computer Simulation for Discrete Event System. Applied Mechanics and Materials, 
513-517, 2133-2136.  
https://doi.org/10.4028/www.scientific.net/AMM.513-517.2133 

[17] Lorente, A. (2016) Sistemas de colas en tiempo discreto con entradas y salidas en 
bloque: Estudio teórico y simulaciones comparativas. Ph.D. Dissertation, Universi-
dad de Burgos, Burgos, Spain. 

 
 

https://doi.org/10.4236/am.2018.92011
https://doi.org/10.1007/BF01159401
https://doi.org/10.1007/s11134-005-0402-z
https://doi.org/10.4028/www.scientific.net/AMM.513-517.2133

	Effect of Parameters on Geoa/Geob/1 Queues: Theoretical Analysis and Simulation Results
	Abstract
	Keywords
	1. Introduction
	2. Analytic Solution
	2.1. Model Description
	2.2. Steady-State Equations

	3. Numerical Results and Discussion
	3.1. Theoretical Probabilities versus Relative Frequencies
	3.2. Effect of the Parameters on the Queue Length and Waiting Time

	4. Conclusions
	Acknowledgements
	References

