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Abstract 
Claims experience in non-life insurance is contingent on random eventualities 
of claim frequency and claim severity. By design, a single policy may possibly 
incur more than one claim such that the total number of claims as well as the 
total size of claims due on any given portfolio is unpredictable. For insurers to 
be able to settle claims that may occur from existing portfolios of policies at 
some future time periods, it is imperative that they adequately model histori-
cal and current data on claims experience; this can be used to project the ex-
pected future claims experience and setting sufficient reserves. Non-life in-
surance companies are often faced with two challenges when modeling claims 
data; selecting appropriate statistical distributions for claims data and estab-
lishing how well the selected statistical distributions fit the claims data. Accu-
rate evaluation of claim frequency and claim severity plays a critical role in 
determining: An adequate premium loading factor, required reserve levels, 
product profitability and the impact of policy modifications. Whilst the as-
sessment of insurers’ actuarial risks in respect of their solvency status is a 
complex process, the first step toward the solution is the modeling of individ-
ual claims frequency and severity. This paper presents a methodical frame-
work for choosing a suitable probability model that best describes automobile 
claim frequency and loss severity as well as their application in risk manage-
ment. Selected statistical distributions are fitted to historical automobile 
claims data and parameters estimated using the maximum likelihood method. 
The Chi-square test is used to check the goodness-of-fit for claim frequency 
distributions whereas the Kolmogorov-Smirnov and Anderson-Darling tests 
are applied to claim severity distributions. The Akaike information criterion 
(AIC) is used to choose between competing distributions. Empirical results 
indicate that claim severity data is better modeled using heavy-tailed and 
skewed distributions. The lognormal distribution is selected as the best dis-
tribution to model the claim size while negative binomial and geometric dis-
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tributions are selected as the best distributions for fitting the claim frequency 
data in comparison to other standard distributions. 
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1. Introduction 

The development of insurance business is driven by general demands of the so-
ciety for protection against various types of risks of undesirable random events 
with a significant economic impact. Insurance is a process that entails the provi-
sion of an equitable method of offsetting the risk of a likely future loss with a 
payment of a premium. The underlying concept is to create a fund to which the 
insured members contribute predetermined amounts of the premium for given 
levels of loss. When the random events that policyholders are protected against 
occur giving rise to claims then claims are settled from the fund. The characte-
ristic feature of such an arrangement is that the insured members are faced with 
a homogeneous set of risks. The positive aspect of forming such communities is 
the pooling together of risks which enables members to benefit from the weak 
law of large numbers. 

In the non-life insurance industry, there is increased interest in the automo-
bile insurance because it requires the management of a large number of risk 
events. These include cases of theft and damage to vehicles due to accidents or 
other causes as well as the extent of damage and parties involved [1]. General 
insurance companies deal with large volumes of data and need to handle this 
data in the most efficient way possible. According to Klugman et al. [2], actuarial 
models assist insurance companies to handle these vast amounts of data. The 
models are intended to represent the real world of insurance problems and to 
depict the uncertain behavior of future claims payments. This uncertainty neces-
sitates the use of probability distributions to model the occurrence of claims, the 
timing of the settlement and the severity of the payment, that is, the amount 
paid. 

One of the main challenges that non-life insurance companies face is to accu-
rately forecast the expected future claims experience and consequently deter-
mining an appropriate reserve level and premium loading. The erratic results 
often reported by non-life insurance companies lead to the pre-conclusion that it 
is virtually impossible to conduct the business on a sound basis. Most non-life 
insurance companies base their estimations of claim frequency and severity on 
their own historical claims data. This is sometimes complemented with data 
from external sources and is used as a base for managerial decisions [3]. The 
management, with the guidance of actuaries, ensures that the insurance compa-
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ny is run on a sound financial basis by charging the appropriate premium cor-
responding to the specific risks and also maintaining a suitable reserve level. 

A general approach to claims data modeling is to consider separately claim 
count experience from the claim size experience. Both claim frequency and se-
verity random variables; hence there is a risk that future claims experience will 
deviate from past eventualities. It is therefore imperative that appropriate statis-
tical distributions are applied in modeling of claims data variables. Although the 
empirical distribution functions are useful tools in analyzing claims processes, it 
is always convenient to model claims data by fitting a probability distribution 
with mathematically tractable features. 

Statistical modeling of claims data has gained popularity in the past recent 
years, particularly in the actuarial literature all in an attempt to address the 
problem of premium setting and reserves calculations. Hogg and Klugman [4] 
provide an extensive description of the subject of insurance loss models. Loss 
models are useful in revealing claim-sensitive information to insurance compa-
nies and giving insight into decisions on required premium levels, premium 
loading reserves and assessing the profitability of insurance products. The main 
components of aggregate claims of a non-life insurance company are frequen-
cy/count and size/severity. Claim frequency refers to the total count of claims 
that occur on a block of policies, while claim severity or claim size is the mone-
tary amount of loss on each policy or on the portfolio as a whole. The claims ex-
perience random variables are often assumed to follow certain probability dis-
tributions, referred to as loss distributions [5]. Loss distributions are typically 
skewed to the right with relatively high right-tail probabilities. Various studies 
available literature describes these probability distributions as being long-tailed 
or heavy-tailed. 

When assessing portfolio claim frequency, it is often found that certain poli-
cies did not incur any claims since the insured loss event did not occur to the 
insured. Such cases result in many zero claim counts such that the claim fre-
quency random variable takes the value zero with high probability. Antonio et 
al. [6] present the Poisson distribution as the modeling archetype of claim fre-
quency. In available economic literature, considerations have been made for 
models of count data on claims frequency that allow for excess zeros. For in-
stance, Yip and Yau [7] fit a zero-inflated count model to their insurance data. 
Boucher et al. [8] considered zero-inflated and hurdles models with application 
to real data from a Spanish insurance company. Mouatassim and Ezzahid [9] 
analyzed the zero-inflated models with an application to private health insurance 
data. 

Modeling claim frequency and claim severity of an insurance company is an 
essential part of insurance pricing and forecasting future claims. Being able to 
forecast future claim experience enables the insurance company to make appro-
priate prior arrangements to reduce the chances of making a loss. Such ar-
rangements include setting a suitable premium for the policies and setting aside 
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money required to settle future claims (reserves). A suitable premium level for 
an individual policy, with proper investment, should be enough to at least cover 
the cost of paying a claim on the said policy. Adequate reserves set aside should 
enable the insurance company to remain solvent, such that it can adequately set-
tle claims when they are due, and in a timely manner. Bahnemann [10] argued 
that the number of claims arising in a portfolio is a discrete quantity which 
makes discrete standard distributions ideal since their probabilities are defined 
only on non-negative integers. Further, they showed claims severity has support 
on the positive real line and tends to be skewed to the right. They modeled claim 
severity as a non-negative continuous random variable. Several actuarial models 
for claims severity are based on continuous distributions while claim frequencies 
are modeled using discrete probability distributions. The log-normal and gam-
ma distributions are among the most commonly applied distributions for mod-
eling claim severity. Other distributions for claim size are the exponential, Wei-
bull, and Pareto distributions. Achieng [2] modeled the claim amounts from 
First Assurance Company limited, Kenya for motor comprehensive policy. The 
log-normal distribution was chosen as the appropriate model that would provide 
a good fit to the claims data. The Pareto distribution has been shown to ade-
quately mimic the tail-behavior of claim amounts and thus provides a good fit. 

The objective of this paper is to present a hypothetical procedure for selecting 
probability models that approximately describe auto-insurance frequency and 
severity losses. The method employs fitting of standard statistical distributions 
that are relatively straightforward to implement. However, the commonly used 
distributions for modeling claims frequency and severity may not appropriately 
describe the actual claims data distributions and therefore may require modifi-
cations of standard distributions. Most insurance companies rely on existing 
models from developed markets that are normally customized to model their 
claims frequency and severity distributions. In practice, specific models from 
different markets cannot be generalized to appropriately model the claims data 
of all insurance companies as different markets have unique characteristics. 

This paper gives a general methodology in modeling the claims frequency and 
severity using the standard statistical distributions that may be used as starting 
point in modeling claims frequency and severity. The actuarial modeling tech-
niques are utilized in an attempt to fit an appropriate statistical probability dis-
tribution to the general insurance claims data and select the best fitting proba-
bility distribution. In this paper, a sample of the automobile portfolio datasets 
obtained from the insurance Data package in R with variables; Auto Collision, 
data Car, and data Ohlsson are used. These data are chosen since they are com-
plete, freely and easily available in R statistical software package. However, any 
other appropriate dataset especially company-specific data may also be used. 
The parameter estimates for fitted models are obtained using the Maximum Li-
kelihood Estimation procedure. The Chi-square test is used to check the good-
ness-of-fit for claim frequency models whereas the Kolmogorov-Smirnov and 
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Anderson-Darling tests are used for the claim severity models. The AIC and BIC 
criteria are used to choose between competing distributions. 

The remainder of the paper is organized as follows: Section 2 discusses the 
statistical modeling procedure for claims data. Section 3 presents the empirical 
results of the study. Finally, Section 4 concludes the study. 

2. Statistical Modeling of Claims Data 

The statistical modeling of claims data involves the fitting of standard probabili-
ty distributions to the observed claims data. Kaishev and Krachunov [11] sug-
gested the following four-step statistical procedure for fitting an appropriate sta-
tistical distribution to claims data: 

1) Selection of the claims distribution family 
2) Estimation of parameters of the chosen fitted distributions 
3) Specification of the criteria to select the appropriate distribution from the 

family of distributions. 
4) Testing the goodness of fit of the approximate distributions. 

2.1. Selection of Claims Distributions 

The initial selection of the models is based on prior knowledge on the nature and 
form of claim’s data. Claim frequency is usually modeled using non-negative 
discrete probability distributions since the number of claims is discrete and non- 
zero. Claim severity is known to be best modeled using non-zero continuous 
distributions which are skewed to the right and have heavy tails. Kaas, et al. [12] 
attributes this to the fact that extremely large claim values often occur in the up-
per-right tails of the distribution. Prior knowledge of claims experiences in non- 
life insurance coupled with descriptive analysis of prominent features of the 
claims data and graphical techniques a used to guide the selection of the initial 
approximate probability distributions of claim size and frequency. Merz and 
Wüthrich [13] noted that majority of claims data arising from the general in-
surance industry are positively skewed and have heavy tails. They argued that 
statistical distributions which exhibit these characteristics may be appropriate 
for modeling such claims. 

This study proposes a number of standard probability distributions that could 
be used to approximate the distributions for claim amount and claim count 
random variables. The binomial, geometric, negative-binomial and Poisson dis-
tributions are considered for modeling claim frequency as they are discrete. On 
the other hand, five standard continuous probability distributions are proposed 
for modeling claim severity. These are the exponential, gamma, Weibull, Pareto 
and the lognormal distributions. The probability distribution functions along 
with their parameters estimation and their respective properties are discussed 
subsequently. 

2.2. Estimation of Parameters 

In this paper, the parameters of the selected claim distributions are estimated 
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using the maximum likelihood estimation (MLE) technique. The MLE is a 
commonly applied method of estimation in a variety of problems. It often yields 
better estimates compared to other methods like; least-squares estimation (LSE), 
the method of quantile and method of moments especially when the sample size 
is large. Boucher et al. [14] argued that the MLE approach fully utilizes all the 
information about the parameters contained in the data and yields highly flexi-
ble estimator with better asymptotic properties. 

Suppose 1 2, , , nX X X  is a random sample of independent and identically 
distributed (iid) observations drawn from an unknown population. Let X x=
denote a realization of a random variable or vector X with probability mass or 
density function ( );f x θ ; where θ  is a scalar or a vector of unknown para-
meters to be estimated. The objective of statistical inference is to infer θ  from 
the observed data. The MLE involves obtaining the likelihood function of a ran-
dom variable. The likelihood function ( )L θ  is the probability mass or density 
function of the observed data x, expressed as a function of the unknown para-
meter θ . Given that 1 2, , , nX X X  have a joint density function 
( )1 2, , , nf X X X θ  for every observed sample of independent observations 

{ }, 1, 2, ,ix i n= 
, the likelihood function of θ  is defined by 

( ) ( ) ( ) ( )1 2 1 2
1

| , , , , , , |
n

n n i
i

L L x x x f x x x f xθ θ θ θ
=

= = =∏       (1) 

The principle of maximum likelihood provides a means of choosing an 
asymptotically efficient estimator for a parameter or a set of parameters θ̂  as 
the value for the unknown parameter that makes the observed data “most prob-
able”. The maximum likelihood estimate (MLE) θ̂  of a parameter θ  is ob-
tained through maximizing the likelihood function ( )L θ . 

( ) ( )ˆ arg maxx L
θ

θ θ=                       (2) 

Since the logarithm of the likelihood function is a monotonically non-de- 
creasing function of X, maximizing ( )L θ  is equivalent to maximizing 

( )log L θ . Therefore, the log of the likelihood function denoted as ( )l θ  is de-
fined as 

( ) ( ) ( ) ( )
11

ln ln | ln |
n n

i i
ii

l L f x f xθ θ θ θ
==

= = =∑∏           (3) 

The probability distribution functions of the selected claim distributions along 
with their maximum likelihood estimates for the parameters are given as follows: 

2.2.1. Binomial Distribution 
The binomial distribution is a popular discrete distribution for modeling count 
data. Given a portfolio of n independent insurance policies, let X denote a bino-
mially distributed random variable that represents the number of policies in the 
portfolio that result in a claim. The claim count variable X can be said to follow a 
binomial distribution with parameters n and p, where n is a known positive in-
teger representing the number of policies on the portfolio and p is the probabili-
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ty that there is at least one claim on an individual policy. The probability distri-
bution function of X is defined as: 

( ) ( )1 n xx
X

n
f x p p

x
− 

= − 
 

, for 0,1, ,x n=   and 0 1p≤ ≤       (4) 

The expected value of the binomial distribution is np and variance ( )1np p− . 
Hence, the variance of the binomial distribution is smaller than the mean. 

The corresponding binomial likelihood function is 

( ) ( )1 n xxn
L p p p

x
− 

= − 
 

                     (5) 

Therefore the log-likelihood function is 

( ) ( ) ( )ln ln 1l p k x p n x p= + + − −  

where k is a constant that does not involve the parameter p. Therefore, to deter-
mine the parameter estimate p̂ s we obtain the derivative of the log-likelihood 
function with respect to the parameter and equate to zero. 

( ) 0
1

l p x n x
p p p

∂ −
= − =

∂ −
                     (6) 

Solving the Equation (6) gives the MLE. Thus, the MLE is p̂ x n= . 

2.2.2. Poisson Distribution 
The Poisson distribution is a discrete distribution for modeling the count of 
randomly occurring events in a given time interval. Let X be the number of 
claim events in a given interval of time and λ is the parameter of the Poisson 
distribution representing the mean number of claim events per interval. The 
probability of recording x claim events in a given interval is given by 

( ) e;
!

x

Xf x
x

λλ
λ

−

= , for 1,2,3,x =               (7) 

A Poisson random variable can take on any positive integer value. Unlike the 
Binomial distribution which always has a finite upper limit. In general, the ex-
pected value and variance functions of the Poisson distribution are both equal λ. 

The Poisson likelihood function is 

( )
1

1 1 2

e e
! ! ! !

n
i

i i
x

xn

i i n

L
x x x x

λ λλ λ
λ

=− −

=

∑

= =∏


                     (8) 

Therefore, the log-likelihood function is 

( )
1

ln
n

i
i

l x nλ λ λ
=

= −∑  

Differentiating the log-likelihood function with respect to λ, ignoring the 
constant term that does not depend on λ and equating to zero 

( )
1

1 0
n

i
i

l
x n

λ
λ λ =

∂
= − =

∂ ∑                      (9) 
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Solving the Equation (9) gives the MLE. Thus, the MLE is 
1

ˆ
n

i
i

x nλ
=

=∑ . 

2.2.3. Geometric Distribution 
The geometric distribution is a discrete distribution that generates the probabil-
ity that the first occurrence of an event of interest requires x independent trials, 
where each trial results in either success or failure, and the probability of success 
in any individual trial is constant. The probability distribution function of the 
geometric distribution is 

( ) ( ); 1 ; 0,1,2,x
Xf x p p p x= − =                  (10) 

where p is the probability of success, and x is the number of failures before the 
first success. The geometric distribution is the only discrete memoryless random 
distribution analogous to the exponential distribution. 

The likelihood function for n independent and identically distributed trials is 

( ) ( ) ( )
1 1

1 1i i
n n

x xn

i i
L p p p p p

= =

= − = −∏ ∏              (11) 

The log-likelihood function is: 

( ) ( )
1

ln ln 1
n

i
i

l p n p p x
=

= + − ∑  

Thus, to determine the parameter estimate, equate the derivative of the log- 
likelihood function to zero. 

( )
1

1 0
1

n

i
i

l p n x
p p p =

∂
= − =

∂ − ∑                  (12) 

Therefore, the MLE is 
1ˆ

1
p

x
=

+
. 

2.2.4. Negative Binomial Distribution 
The negative binomial distribution is a generality of the geometric distribution. 
Consider a sequence of independent Bernoulli trials, with common probability 
p, until we get r successes. If X denotes the number of failures which occur be-
fore the r-th success, then X has a negative binomial distribution given by 

( ) ( )
1

; , 1 ;
1

0,1,2,

xr
X

x r
f x r p p p

r
x

+ − 
= − − 
= 

               (13) 

The negative binomial distribution has an advantage over the Poisson distri-
bution in modeling because it has two positive parameters 0p >  and 0r > . 
The most important feature of this distribution is that the variance is bigger than 
the expected value. A further significant feature in comparing these three dis-
crete distributions is that the binomial distribution has a fixed range but the 
negative binomial and Poisson distributions both have infinite ranges. 

The likelihood function is 
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( ) ( ) ( )
1 1

1 1
; , 1 1

1 1
i i

n n
x xi ir nr

i i

x r x r
L p x r p p p p

r r= =

∑+ − + −   
= − = −   − −   
∏ ∏  (14) 

The log-likelihood function is obtained by taking logarithms 

( ) ( )
1 1

1
; , ln ln ln 1

1

n n
i

i
i i

x r
l p x r nr p x p

r= =

+ − 
= + + − − 
∑ ∑  

Taking the derivative with respect to p and equating to zero. 

0
1

ixl nr
p p p
∂

= − =
∂ −

∑                     (15) 

The resulting MLE estimate is ˆ nrp
nr x

=
+

. Therefore, the negative binomial  

random variable can be expressed as a sum of r independent, identically distri-
buted (geometric) random variables. 

2.2.5. Exponential Distribution 
The exponential distribution is a continuous distribution that is usually used to 
model the time until the occurrence of an event of interest in the process. A con-
tinuous random variable X is said to have an exponential distribution if its 
probability density function (pdf) is given by: 

( ) ( )exp , 0Xf x x xλ λ= − >                      (16) 

where 0λ >  is the rate parameter of the distribution. The exponential distribu-
tion is a special case for both the gamma and Weibull distribution. 

The likelihood function is 

( ) ( )
11

exp exp
n n

n
i i

ii
L x xλ λ λ λ λ

==

 = − = − 
 

∑∏            (17) 

The log-likelihood functions is therefore 

( )
1

ln
n

i
i

l n xλ λ λ
=

= − − ∑  

The parameter estimator λ̂  is be obtained by setting the derivative of the 
log-likelihood function to zero and solving for λ  

( )
1

d ln
0

d

n

i
i

l n x
λ

λ λ =

= − =∑                   (18) 

The resulting MLE is given by ˆ 1 xλ =  where 
1

1 n

i
i

x x
n =

= ∑  is the mean ob-

served time. 

2.2.6. Gamma Distribution 
The gamma distribution and Weibull distributions are extensions of the expo-
nential distribution. Both of them are expressed in terms of the gamma function 
which is defined by 

( ) 1

0

e d , 0x tx t t x
∞

− −Γ = >∫  
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The two-parameter gamma distribution function is given by 

( ) ( ) ( )1; , exp , 0Xf x x x x
α

αβα β β
α

−= − >
Γ

              (19) 

where 0α >  is the shape parameter and 0β >  is the scale parameter. 
The likelihood function for the gamma distribution function is given by 

( ) ( )
1

1
, e i

n
x

i
i

L x
α

βαβα β
α

−−

=

=
Γ∏                      (20) 

The log-likelihood functions is 

( ) ( )( ) ( )
1 1

, ln ln 1 ln
n n

i i
i i

l n x xα β α β α α β
= =

= − Γ + − −∑ ∑  

Thus, to determine the parameter estimates, we equate the derivatives of the 
log-likelihood function to zero and solve the following equations 

( ) ( )
1

, dˆ ˆln ln ln 0
d

n

i
i

l
n x

α β
β α

α α =

∂  = − Γ + = ∂  
∑         (21) 

Hence 

( )
1

, ˆ
0ˆ

n

i
i

l
n x

α β α
β β =

∂
= − =

∂ ∑  or 
ˆ
ˆx α
β

= . 

Substituting ˆ ˆ xβ α=  in Equation (21) results in the following relationship 
for α̂ , 

( )
_____dˆ ˆln ln ln ln 0

d
n x x

x
α α − − Γ + = 

 
.            (22) 

This result is a non-linear equation in α̂  that cannot be solved in a closed 
form. This can be solved numerically using the root-finding methods. 

2.2.7. Weibull Distribution 
The Weibull distribution is a continuous distribution that is commonly used to 
model the lifetimes of components. The Weibull probability density function has 
two parameters, both positive constants that determine its location and shape. 
The probability density function of the Weibull distribution is 

( ) 1; , exp ; 0, 0, 0X
xf x x x

γ
γ

γ

γ
γ β γ β

ββ
−

   = − > > >    
          (23) 

where γ  is the shape parameter and β  the scale parameter. When 1γ = , the 
Weibull distribution is reduced to the exponential distribution with parameter
λ β= . 

The likelihood function for the Weibull distribution is given by: 

( )
1

1
, exp

n
i i

i

x xL
γ γ

γ
γ β

β β β

−

=

      = −          
∏              (24) 

The log-likelihood function is therefore given by 
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( ) ( )
1 1

, ln ln 1 ln
n n

i
i

i i

xl n n x
γ

γ β γ γ β γ
β= =

 
= − + − −  

 
∑ ∑  

Thus, to determine the parameter estimates, we equate the derivatives of the 
log-likelihood function to zero and solve the following equations 

( )
1 1

, 1ln ln ln 0
n n

i i i
i i

l n n x x xγ
γ

γ β
β

γ γ β= =

∂
= − + − =

∂ ∑ ∑             (25) 

( )
1

1

,
0

n

i
i

l n xγγ

γ β γ γ
β β β −

=

∂
= − + =

∂ ∑                 (26) 

By eliminating β  and simplifying, we obtained the following non-linear eq-
uation 

1

1

1

ln
1 1 ln 0

n

i i n
i

in
i

i
i

x x
x

nx

γ

γ γ
=

=

=

− − =
∑

∑
∑

           (27) 

This can be solved numerically to obtain the estimate of γ  by using the  

Newton-Raphson method. The MLE estimate for β  is given by 
1

1ˆ
n

i
i

x
n

γβ
=

= ∑  

2.2.8. Log-Normal Distribution 
A positive random variable X is log-normally distributed if the logarithm of the 
random variable is normally distributed. Hence X follows a lognormal distribu-
tion if its probability density function is given by 

( ) ( )2

2

ln1; , exp , 0
22πX
x

f x x
x

µ
µ σ

σσ

 −
 = − >
 
 

            (28) 

with parameters: location µ , scale 0σ > . 
The likelihood function for the lognormal distribution is 

( ) ( )2

2
1

ln1, exp
22π

n
i

i i

x
L

x
µ

µ σ
σσ=

 −
 = −
 
 

∏              (29) 

Therefore the log-likelihood function is given by 

( ) ( )2
2

1

1ln , ln ln 2π ln ln
2 2

n

i i
i

nL n x xµ σ σ µ
σ=

 = − − − + −  
∑ . 

The parameter estimators µ̂  and σ̂  for the parameters µ  and σ  can 
be determined by equating the derivatives of the log-likelihood function to zero 
and solve the following two equations 

( )ln ,
0

L µ σ
µ

∂
=

∂
 and 

( )ln ,
0

L µ σ
σ

∂
=

∂
             (30) 

The resulting estimates are 
1

1ˆ ln
n

i
i

x
n

µ
=

= ∑  and ( )2

1

1ˆ ˆln
n

i
i

x
n

σ µ
=

= −∑   

respectively. 
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2.2.9. Pareto Distribution 
The Pareto distribution with parameter 0α >  and 0γ > , is given by 

( )
( ) 1; , , 0Xf x x
x

α

α

αγα γ
γ += ≥

+
                   (31) 

where 0α >  represent the shape parameter and 0γ >  the scale parameter. 
The likelihood function is 

( ) { }1
1

, , 0 min , 0
n

i
i i

L x
x

α

α

αγ
α γ γ α+

=

= < ≤ >∏  

The log-likelihood function 

( ) ( ) ( ) ( ) ( )
1

, ln ln 1 ln
n

i
i

l n n xγ α α α γ α
=

= + − + ∑           (32) 

It is important to note that the best way to maximize the log-likelihood func-
tion is by adjusting as follows, { }ˆ min ixγ =  such that γ  cannot be larger than 
the smallest value of x in the data. Thus, to determine the parameter estimate α̂  
equates the derivative of the log-likelihood function to zero we solve the follow-
ing equations 

( ) ( ) ( )
1

ln ,
ln ln 0

n

i
i

L n n x
γ α

γ
α α =

∂
= + − =

∂ ∑           (33) 

Thus, we obtain 
1

ˆ ln
ˆ

n
i

i

xnα
γ=

 
=  

 
∑  

After estimating the parameters of the selected distributions, the next step is 
typically the determination of the best fitting distribution, i.e., the distribution 
that provides the best fit to the data set at hand. Establishing the underlying dis-
tribution of a data set is fundamental for the correct implementation of claims 
modeling procedures. This is an important step that must be implemented be-
fore employing the selected distributions for forecasting insurance claims or 
pricing insurance contacts. The consequences of misspecification of the under-
lying distribution may prove very costly. One way of dealing with this problem is 
to assess the goodness of fit of the selected distributions. 

2.3. Goodness of Fit Tests 

A goodness-of-fit (GoF) test is a statistical procedure that describes how well a 
distribution fits a set of observations by measuring the quantifiable compatibility 
between the estimated theoretical distributions against the empirical distribu-
tions of the sample data. The GoF tests are effectively based on either of the two 
distribution functions: the probability density function (PDF) or cumulative dis-
tribution function (CDF) in order to test the null hypothesis that the unknown 
distribution function is, in fact, a known specified function. The tests considered 
for testing the suitability of the fitted distributions to claims data include; the 
Chi-Square goodness of fit test, Kolmogorov-Smirnov (K-S) test, and the An-
derson-Darling (A-D) test. The three GoF tests were selected for two reasons. 
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First, they are among the most common statistical test for small samples (and 
they can as well be used for large samples). Secondly, the tests are implemented 
in most statistical packages and are therefore widely used in practice. The Chi- 
Square test is based on the PDF while both, the K-S and A-D GoF tests use the 
CDF approach and therefore they are generally considered to be more powerful 
than the Chi-Square goodness of fit test. 

For all the GoF tests, the hypotheses of interest are: 
H0: The claims data sample follows a particular distribution, 
H1: The claims data samples do not follow the particular distribution. 

2.3.1. The Chi-Square Goodness of Fit Test 
The Chi-Square goodness of fit test is used to test the hypothesis that the distri-
bution of a set of observed data follows a particular distribution. The Chi-square 
statistic measures how well the expected frequency of the fitted distribution 
compares with the observed frequency of a histogram of the observed data. The 
Chi-square test statistic is: 

( )2

2

1

k j j

j j

O E

E
χ

=

−
=∑                    (34) 

where jO  is the observed number of cases in interval j, jE  is the expected 
number of cases in interval j of the specified distribution and k is the number of 
intervals the sample data is divided into. The test statistic approximately follows 
a Chi-Squared distribution with 1k p− −  degrees of freedom where p is the 
number of parameters estimated from the (sample) data used to generate the 
hypothesized distribution. 

2.3.2. The Kolmogorov-Smirnov Test 
The Kolmogorov-Smirnov (K-S) test compares a hypothetical or fitted cumula-
tive distribution function (CDF) ( )F̂ x  with an empirical ( )nF x  CDF in or-
der to assess the goodness-of-fit of a given data set to a theoretical distribution. 
The CDF uniquely characterizes a probability distribution. The empirical 

( )nF x  CDF is expressed as the proportion of the observed values that are less 
than or equal to x and is defined as 

( ) ( )
n

I x
F x

n
=                           (35) 

where n is the size of the random sample, ( )I x  is the number of xi’s less than 
or equal to x. To test the null hypothesis, the maximum absolute distance be-
tween empirical ( )nF x  CDF and fitted CDF ( )F̂ x  and is computed. The K-S 
test statistic nD  is the largest vertical distance between ( )nF x  and ( )F̂ x  for 
all values of x; i.e. 

( ) ( )ˆsupn n
x

D F x F x= −                     (36) 

where ( )F x  is the theoretical cumulative distribution of the distribution being 
tested which must be a continuous distribution, and it must be fully specified. 
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2.3.3. The Anderson-Darling Test 
The Anderson-Darling (A-D) test is an alternative to other statistical tests for 
testing whether a given sample of data is drawn from a specified probability dis-
tribution. The test statistic is non-directional, and is calculated using the follow-
ing formula: 

( ) ( )( ) ( )( )( )1
1

1AD 2 1 ln ln 1
n

i n i
i

n i x x
n + −

=

 = − − − + −  ∑       (37) 

where ( ) ( ){ }1 nx x< <  is the ordered sample of size n and ( )nF x  is the  

underlying theoretical distribution to which the sample is compared. The Chi- 
square goodness-of-fit test is applied to select the appropriate discrete claim 
frequency distribution while the K-S and A-D tests are used to select the conti-
nuous claim severity distributions. Therefore, for the GoF tests considered the 
null hypothesis that the sample data are taken from a population with the un-
derlying distribution ( )nF x  is rejected if the p-value is small than the criterion 
value at a given significance level α , such as 1% or 5%. 

For all the selected claims frequency and claims severity distributions that 
pass the GoF tests, information criterion, namely the Akaike’s information crite-
rion (AIC) developed by Akaike [15] is utilized for the selection of the most ap-
propriate distribution for the claims data. The AIC is not a test of the distribu-
tion in the sense of hypothesis testing; rather it compares between distribu-
tions—a tool for distribution selection. Given a data set, several fitted distribu-
tions may be ranked according to their AIC. The fitted distribution with the 
smallest AIC is selected as the most appropriate distribution for modeling the 
claims data. The AIC is defined by 

( )ˆAIC 2 2l x kθ= − +                       (38) 

where ( )ˆl xθ  is the log-likelihood function, θ̂  the estimated parameter vec-
tor of the model, x is the empirical data and k the length of the parameter vector. 
The first part ( )ˆ2l xθ−  is a measure of the goodness-of-fit of the selected 
model and the second part is a penalty term, penalizing the complexity of the 
model. In contrast to the AIC the Bayesian information criterion (BIC) or 
Schwarz Criterion (SBC), comprises of the number of observations in the penal-
ty term. Thus in BIC, the penalty for additional parameters is stronger than that 
of the AIC. Apart from that the BIC is similar to the AIC and is defined as 

( ) ( )ˆAIC 2 2logl x nθ= − +                 (39) 

where ( )ˆl xθ  is the log-likelihood function, θ̂  the estimated parameter vec-
tor of the model with length k and x the empirical data vector of length n. As the 
AIC, the first term is a measure of the goodness-of-fit and the second part is a 
penalty term, comprising of the number of parameters as well as the number of 
observations. Note that for both the AIC and BIC the model specification with 
the lowest value implies the best fit. 
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3. Empirical Results 
3.1. Data Description 

The data set used in modeling the claims frequency and claims severity distribu-
tions consists of three data sets: AutoCollision, dataCar and dataOhlsson ob-
tained from the R package insuranceData. Autocollision data set is a sample of 
32 observations due to [16] who considered 8942 collision losses from private 
passenger United Kingdom (UK) automobile insurance policies. The average 
severity is in Sterling Pounds adjusted for inflation. The dataCar dataset consists 
of 67,856 one-year motor vehicle insurance policies issued in 2004 and 2005. Fi-
nally, dataOhlsson dataset contains 64,548 aggregated claims data for motorcycle 
insurance policyholders on all insurance policies and claims during 1994-1998. 

Table 1 presents the summary statistics for the three claims frequency and 
claims severity datasets. The summary statistics include the number of observa-
tions, minimum, maximum, mean, median, standard deviation, skewness, and 
kurtosis. The Auto Collision data set has the highest mean for both the claims 
frequency and claims severity given that the number observations were only 32. 
For both data Car and data Ohlsson, the mean and the standard deviations are 
close to zero for the claim frequency. This is because the majority of the observa-
tions in the datasets are zeros. More specifically, throughout the analyzed period 
the descriptive statistics show that the Data Car and Data Ohlsson losses are 
more extreme with respect to skewness and kurtosis than the Auto Collision 
losses. All the datasets are thus significantly skewed to the right and exhibit 
excess kurtosis, especially the claims severity have high kurtosis values compared 
to claims frequency. This, in addition, confirms that the data sets do not follow 
the normal distribution. The descriptive statistics confirm the skewed nature of 
the claims data. As a result of these findings, the skewed-heavy tailed distribu-
tions are the most appropriate to fit this type of data since they account for 
skewness, excess kurtosis as well as heavy tails. 

 
Table 1. Descriptive statistics of the claims frequency and claims severity data. 

 AutoCollision dataCar dataOhlsson 

 Frequency Severity Frequency Severity Frequency Severity 

No. Obs 32 32 67,856 67,856 64,548 64,548 

Minimum 5.00 153.62 0.00 0.00 0.00 0.00 

Maximum 970 797.80 4 55,922 2 365,347 

Mean 279.44 276.35 0.073 137.27 0.01 264.02 

Median 208.00 250.53 0.00 0.00 0.00 0.00 

Std.dev 241.61 110.45 0.2828 1058.30 0.10 4690.42 

Skewness 1.19 3.22 4.07 17.50 10.5 30.6 

Kurtosis 3.84 15.67 21.50 482.9 121.30 1336.00 
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Figure 1 displays the histograms of the claims frequency and claims severity 
data. Most of the claims frequency and claims severity for data Car and data 
Ohlsson data are zero and it is clear that we have zero-inflation problem. For the 
Auto Collison dataset for claims frequency, most of the values are less than 200 
and the data is slightly positively skewed. The claims severity data values mostly 
lie between 200 and 300 and also we have very few extremely large values that lie 
between 700 and 800. Also, the histogram in Figure 1 illustrates that claims data 
in our case are skewed and exhibits heavy-tailed distributions. 

Table 2 reports the summary number of claims occurrences distribution rec-
orded and their respective percentages for the data Car and data Ohlsson data-
sets. The maximum numbers of reported claims occurrences are four in data Car 
and two in data Ohlsson respectively. The zero claim account for the significant 
percentage of the claim occurrences recorded. For data Car, the percentage of 
total zero claims occurrences are 93.18% and 98.96% for data Ohlsson respec-
tively. This kind of data is defined as zero-inflated because of the zero response 
of the unaffected policyholders. Therefore it is obvious that the distribution of 
claim occurrences should be one with a very high probability for a claim occur-
rence of zero. Such distributions would be discrete distributions with a large pa-
rameter (probability of success) since they have the mode at zero and the proba-
bility of the other values would become progressively smaller. When data dis-
plays over-dispersion, the most likely to be used distribution is the negative 
 

 
Figure 1. Histogram of the Claims frequency and claims severity data. 
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Table 2. The number of claims in the datasets. 

Occurrence dataCar dataOhlsson 

 Frequency Percentage Frequency Percentage 

0 63,232 93.18% 63,878 98.96% 

1 4333 6.39% 643 1.00% 

2 271 0.40% 27 0.04% 

3 18 0.03%   

4 2 0.00%   

Total 67,856 100% 64,548 100% 

 
binomial instead of Poisson distribution to model the data. 

Table 3 presents the descriptive statistics of the claims data without zero 
claims. The claims frequency in both data Car and data Ohlsson without zero 
claims still has a mean and standard deviation close to zero. All the datasets are 
still significantly skewed to the right and exhibit excess kurtosis. This still con-
firms the data sets do not follow the normal distribution. 

Figure 2 displays the histograms of logarithms of claims frequency and claims 
severity sets. The histograms look much promising for purposes of fitting the 
distributions compared to the raw data histograms in Figure 1 especially for the 
distribution of the claim severity datasets. The Auto Collison data has most of 
the observations concentrated at the center. The data Car and data Ohisson data 
sets for claims severity are skewed to the right and left respectively. 

3.2. Parameters Estimation 

The parameters of the claims frequency and claims severity fitted distributions 
are estimated using the maximum likelihood estimation method and is imple-
mented via packages in R statistical software. Table 4 represents the parameter 
estimates and their corresponding (asymptotic) standard errors, the maximum 
log likelihood function (LLF), AIC and BIC values for the fitted claims frequency 
distributions to the Auto Collision, data Car and data Ohlsson datasets. The pa-
rameter estimates for all the fitted distributions are obtained except for the LLF, 
AIC, and BIC for the binomial distribution for both data Car and data Ohlsson 
data. 

In order to have better comparisons among the fitted distributions, we us the 
LLF, AIC and BIC values of the fitted distributions. For the Auto Collision the 
geometric distribution has the lowest AIC followed by the negative binomial 
distribution. Both data Car and data Ohlsson have the Poisson distribution with 
the lowest AIC value followed by the negative binomial distribution. The 
over-dispersion observed in the data would suggest that Negative binomial or 
Geometric distributions might be good candidates for the modeling claims fre-
quency data. This will be verified later by the Chi-square goodness-of-fit test. 

Table 5 reports the estimated parameters their (asymptotic) standard errors,  
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Figure 2. The Histogram of logarithms of claims frequency and claims severity data. 

 
Table 3. Descriptive statistics of the claims data without zero claims. 

 dataCar dataOhlsson 

 Frequency Severity Frequency Severity 

Claims Count 67,856 4624 64,548 670 

Minimum 0.00 200 0.00 16 

Maximum 4 55,922 2 365,000 

Mean 0.073 2014 0.01 25,000 

Median 0.00 762 0.00 9015 

Std.dev 0.2828 3549.65 0.10 38729.83 

Skewness 4.07 5.04 10.46 3.10 

Kurtosis 21.50 43.20 121.20 17.52 

 
the likelihood function (LLF), AIC and BIC values for the fitted claims severity 
distributions. The parameter estimates for all the fitted distributions are ob-
tained for the three data sets except for those of the Pareto distribution in the 
Auto Collision data. The LLF, AIC and BIC criteria are employed for purposes 
of selecting the appropriate distribution among the fitted distributions. The dis-
tribution function with the maximum LLF and lowest AIC or BIC values is 
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Table 4. Estimated parameters for claims frequency distributions. 

Distribution Parameter(s) AutoCollision dataCar dataOhlsson 

Binomial 

n 

p 

(s.e) 

LLF 

AIC 

BIC 

8942 

0.03125122 

(0.00032496) 

−3249.72 

6501.441 

6502.907 

67856 

1.072227e−06 

(0.000000) 

− 

− 

− 

64548 

1.672889e−07 

(0.000000) 

− 

− 

− 

Geometric 

Probability 

(s.e) 

LLF 

AIC 

BIC 

0.003565857 

(0.00057441) 

−212.3061 

426.6122 

428.0779 

0.4836314 

(0.00511074) 

−6622.056 

13246.11 

13252.55 

0.4901244 

(0.0135207) 

−947.2655 

1896.531 

1901.038 

Negative Binomial 

size 

(s,e) 

mu 

(s.e) 

LLF 

AIC 

BIC 

1.216671 

(0.2757261) 

279.447627 

(44.8845448) 

−211.9508 

427.9016 

430.8331 

8.392017e+06 

(1.43127302) 

1.067867 

(0.01519796) 

−4840.089 

9684.177 

9697.055 

1.088848e+07 

(0.000000) 

1.040076 

(0.03939565) 

−688.1782 

1380.356 

1389.371 

Poisson 

Lambda 

(s.e) 

LLF 

AIC 

BIC 

279.4375 

(2.955068) 

−3144.531 

6291.062 

6292.528 

1.06769 

(0.01519544) 

−4840.088 

9682.177 

9688.616 

1.040299 

(0.03940408) 

−688.1781 

1378.356 

1382.863 

 
considered to be the best fit. The lognormal distribution as the highest log-like- 
lihood function and also the smallest AIC and BIC values hence the best fit 
amongst all the distributions fitted and for all three datasets. The log likelihood 
of the gamma distribution is reasonably closer to that of the lognormal and it is 
the second best fitting distribution. The other distributions have values that are 
extremely out of the range. However, the LLF, AIC and BIC at best shows which 
distributions are better than the competing distributions but do not necessarily 
qualify the chosen distributions as the most appropriate. To remedy this prob-
lem, the Kolmogorov Smirnov and Anderson-Darling goodness-of-fit tests are 
used to check for the goodness-of-fit of these claim severity distributions. These 
goodness-of-fit tests verify whether the proposed theoretical distributions pro-
vide a reasonable fit to the empirical data. 

3.3. Goodness-of-Fit Tests 

The purpose of goodness-of-fit tests is typically to measure the distance between 
the fitted parametric distribution and the empirical distribution: e.g., the  
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Table 5. Estimated parameters for claims severity distributions. 

Distribution Parameter(s) AutoCollision dataCar dataOhlsson 

Exponential 

Rate 

(s.e) 

LLF 

AIC 

BIC 

0.0036186 

(0.0005856) 

−211.8936 

425.7873 

427.253 

0.007284904 

(2.742692e−05) 

−401839.9 

803681.8 

803690.9 

0.003787624 

(1.376899e−05) 

−424468.7 

848939.4 

848948.5 

Gamma 

Shape 

(s.e) 

Scale 

(s.e) 

LLF 

AIC 

BIC 

10.14141 

(2.470826) 

0.036695 

(0.009158) 

−187.1523 

378.3046 

381.2361 

0.7500861 

(0.000000) 

2686.2118 

(0.000000) 

−39662.92 

79329.85 

79342.72 

0.5951737 

(0.000000) 

42728.44 

(0.000000) 

−7392.141 

14788.28 

14797.3 

Pareto 

Shape 

(s.e) 

Scale 

(s.e) 

LLF 

AIC 

BIC 

N/A 

2.046569 

(0.08776018) 

2206.086511 

(132.315102) 

−39169.85 

78343.7 

78356.58 

1.482972 

(0.211924) 

16839.7191 

(3878.686483) 

−7377.696 

14759.39 

14768.41 

Lognormal 

meanlog 

(s.e) 

sdlog 

(s.e) 

LLF 

AIC 

BIC 

5.5715751 

(0.05141875) 

0.2908684 

(0.03635662) 

−184.1801 

372.3603 

375.2917 

6.810081 

(0.01748793) 

1.189179 

(0.01236580) 

−38852.15 

77708.31 

77721.19 

9.104990 

(0.06241052) 

1.615456 

(0.04413083) 

−7372.376 

14748.75 

14757.77 

Weibull 

Shape 

(s.e) 

Scale 

(s.e) 

LLF 

AIC 

BIC 

2.459737 

(0.2704631) 

309.842046 

(23.7470479) 

−194.4251 

392.8502 

395.7817 

0.7857048 

(0.0081805) 

1690.905575 

(33.6783355) 

−39491.6 

78987.19 

79000.07 

0.7026427 

(0.02048285) 

20437.75 

(1089.2853) 

−7377.065 

14758.13 

14767.14 

 
distance between the fitted cumulative distribution function ( )F̂ x  and the em-
pirical distribution function ( )nF x . The Chi-square goodness-of-fit test is used 
to select the most appropriate claims frequency distribution among the fitted 
discrete probability distributions. Table 6 summarizes the Chi-square good-
ness-of-fit test-statistic values and the corresponding p-value to further compare 
fitted distributions. 

The p-values are used to determine whether or not to reject the null  
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Table 6. Chi-squared test for claim frequency distributions. 

Distribution AutoCollision dataCar dataOhlsson 

 
TestStatistic 

(p-value) 

TestStatistic 

(p-value) 

Test Statistic 

(p-value) 

Binomial 
1.9155e24 

(0.0000) 

98.734 

(0.0000) 

148.01 

(0.0000) 

Geometric 
1.015653 

(0.6018) 

1.868321 

(0.17166) 

54.58665 

(0.0000) 

Negative Binomial 
0.514027 

(0.4734) 

0.255171 

(0.61346) 

1.493632 

(0.22165) 

Poisson 
1.6768e17 

(0.0000) 

98.7294 

(0.0000) 

184.002 

(0.0000) 

 
hypotheses. The Negative-Binomial and geometric distributions have p-values 
greater than 0.01α =  in almost all cases except for the geometric distribution 
for data Ohlsson. The p-values for the binomial and Poisson distributions for all 
the three data sets are zero; hence the null hypothesis that claims data follows a 
particular distribution is rejected for the binomial and Poisson distributions with 
a 99% confidence level. Thus, the Chi-square goodness-of-fit test confirmed that 
both negative binomial and geometric distributions are appropriate distributions 
for modeling claims frequency while binomial and Poisson distributions provide 
the inappropriate fit. 

To select the most appropriate continuous distributions for the claims severi-
ty, two goodness-of-fit statistics are typically considered: K-S and A-D statistics 
[17] are used to test the suitability of fitted claims severity distributions to the 
data sets. Table 7 reports the K-S and A-D test statistic values for the claim se-
verity distributions that are used to model the claims severity data. The K-S and 
A-D test statistic values are used to compare the fit of competing distributions as 
opposed to an absolute measure of how a particular distribution fits the data. 
Smaller K-S and A-D test statistic values indicate that the distribution fits the 
data better. However, these statistics should be used cautiously especially when 
comparing fits of various distributions. The Kolmogorov-Smirnov and Ander-
son-Darling statistics computed for several claims severity distributions fitted on 
the same data set like in our case are hypothetically complicated to compare. 
Moreover, such a statistic, as K-S one, doesn't take into account the complexity 
of the distribution (i.e. the number of parameters). It is less problematic where 
the compared distributions are characterized by the same number of parameters, 
but again it could methodically encourage the selection of the more complex 
distributions. Both the K-S and A-D goodness-of-fit statistics based on the CDF 
distance choose the lognormal distribution, which is also the preference for the 
AIC and BIC values for all the datasets as the most appropriate claims severity 
distribution. 

https://doi.org/10.4236/jmf.2018.81012


C. O. Omari et al. 
 

 

DOI: 10.4236/jmf.2018.81012 158 Journal of Mathematical Finance 
 

Table 7. K-S and A-D test statistic values for claims severity distributions. 

Distribution K-S test statistic A-D test statistic 

Auto Collision   

Exponential 0.4695586 8.1269415 

Gamma 0.1605827 1.2760080 

Weibull 0.2339492 2.8469195 

Pareto - - 

Lognormal 0.1410449 0.8257456 

DataCar   

Exponential 0.1870179 341.7652236 

Gamma 0.1502237 191.3327388 

Weibull 0.1704634 139.5430172 

Pareto 0.1627262 87.9184259 

Lognormal 0.1021038 72.4949308 

DataOhlsson   

Exponential 0.21022191 59.0055091 

Gamma 0.09457255 7.97122388 

Weibull 0.07629782 4.48316734 

Pareto 0.05641147 3.01466283 

Lognormal 0.04244645 1.82690162 

4. Conclusions 

Non-life insurance companies require an accurate insurance pricing system that 
makes adequate provision for contingencies, expenses, losses, and profits. 
Claims incurred by an insurance company form a large part of the cash outgo of 
the company. An insurance company is required to model its claims frequency 
and severity in order to forecast future claims experience in order to prepare 
adequately for claims when they fall due. In this paper, selected discrete and 
continuous probability distributions are used as approximate distributions for 
modeling both the frequency and severity of claims made on automobile insur-
ance policies. The probability distributions are fitted to three datasets of insur-
ance claims in an attempt to determine the most appropriate distributions for 
describing non-life insurance claims data. 

The findings from empirical analysis indicate that claims severity distribution 
is more accurately modeled by a skewed and heavy-tailed distribution. Amongst 
the continuous claims severity distributions fitted, the lognormal distribution is 
selected as a reasonably good distribution for modeling claims severity. On the 
other hand, negative binomial and geometric distributions are selected as the 
most appropriate distributions for the claims frequency compared to other 
standard discrete distributions. These results may be considered as informative 
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assumed models for automobile insurance companies while choosing models for 
their claims experience and making liability forecasts. The forecasts obtained 
under such distributions are however suitable for projecting the short-term 
claims behavior. For long-term usage, it is recommended that the company uses 
its own claims experience to make necessary adjustments to the distributions. 
This would allow for anticipated changes in the portfolios and for company spe-
cific financial objectives. These proposed claims distributions would also be 
useful to insurance regulators in their own assessment of required reserve levels 
for various companies and in checking for solvency. 

A suggestion for further research, interested parties may look into extensions 
of the standard probability distributions covered here such as the zero-inflated 
models. Due to a large number of zeros in claims frequency data, there is need to 
consider other distributions such as the zero-truncated Poisson or ze-
ro-truncated negative binomial and zero-modified distributions from the class 
( ), ,1a b  to model this unique phenomenon. 
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