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Abstract 
A simple and fast approach based on eigenvalue similarity metric for Polari-
metric SAR image segmentation of Land Cover is proposed in this paper. The 
approach uses eigenvalues of the coherency matrix as to construct similarity 
metric of clustering algorithm to segment SAR image. The Mahalanobis dis-
tance is used to metric pairwise similarity between pixels to avoid the manual 
scale parameter tuning in previous spectral clustering method. Furthermore, 
the spatial coherence constraints and spectral clustering ensemble are employed 
to stabilize and improve the segmentation performance. All experiments are 
carried out on three sets of Polarimetric SAR data. The experimental results 
show that the proposed method is superior to other comparison methods. 
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1. Introduction 

The fully-polarimetric synthetic aperture radar (SAR) [1] [2] [3] has the ability 
to provide information in four channels HH, HV, VH and VV, and contains 
complete polarization information of electromagnetic waves’ effect on surface. 
We can obtain the information of land cover by analysis and interpretation of 
the polarization information. Segmentation for land cover is one of basic issues 
and also important applications. 

The segmentation process is based on the choice of features and classifier. Se-
lecting good features can obtain better segmentation result than only improving 
classifier. In the existing segmentation of polarimetric SAR, what is generally 
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used as features is polarimetric information, and the texture or gray information 
of image [4] [5]. The prior work has shown that the eigenvalues of coherency 
matrix include rich polarimetric information with good divisibility [6]. At the 
same time, the eigenvalue, which is obeying Gaussian distribution approximate-
ly, is easy to be metric. 

The existing classifier can be divided into the supervised and the unsupervised 
[7] [8]. Compared with the unsupervised clustering, the supervised needs par-
tially landcover labels, thus can often get better segmentation result [9] [10]. 
However, due to the landcover label of polarimetric SAR image is difficult to 
obtain, more researchers focus on the unsupervised cluster methods [11]-[19]. 
Cloude et al. have previously used the threshold of scattering entropy, scattering 
angle and inverse entropy to classify [11] [14] [15]. Freeman et al. have extracted 
three scattering powers and classified according to the proportion [17]. Lee et al. 
have proposed the maximum likelihood classifier based on complex Wishart 
distribution [18]. The above unsupervised clustering methods are faced up the 
choice of threshold that needs much artificial experience which is cost. So we 
choose the real unsupervised clustering method as classifier. 

Clustering usually means to group in accordance with the similarity between 
objects. The distance is the most common similarity metric, which reflects the 
similarity between objects by measuring the difference of the objects. In practical 
applications, the choice of distance depends on the characteristics of the object, 
and it is generally applied to cluster as similarity metric. In the used POL-SAR 
segmentation, according to the coherency matrix which is obeying the Wishart 
distribution, Anfinsen [20] and Ersahin [21] have chosen the Wishart distance 
with Gaussian kernel as the similarity metric, and applied it to spectral cluster-
ing. This kind of special distribution of the T-matrix limits the construction of 
similarity metric. And there are two problems calculating the similarity with 
Gaussian kernel between pixels: 1) the scale parameter of the Gaussian kernel σ 
needs to be manually set precisely in accordance with the experience, and the 
single scale parameter σ cannot capture category distribution information of 
multiple scales data well; 2) huge exponentiation consumption. 

In our method, firstly, we choose the eigenvalues of coherency matrix as the 
input features, which include the essential information of coherency matrix and 
represent the intensity of scattering. Secondly, we apply Mahalanobis distance as 
the similarity metric by studying the statistical properties of eigenvalues. And 
taking into account the neighborhood information of image, consistency con-
straints will be applied to the similarity metric. Thirdly, the above similarity me-
tric is applied to spectral clustering algorithm to complete the segmentation. At 
last, in order to improve and stabilize the segmentation results, the strategy of 
cluster ensemble is used. 

2. Feature Extraction and Its Similarity Metric 
2.1. Polarmetric Features Analysis 

The full-polarimetric SAR data can be expressed by complex scattering matrix 
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where, h  and v  represent horizontal and vertical polarization modes, respec-
tively. It is commonly assumed that natural targets exhibit reciprocity, hv vhS S= . 
The above scattering matrix also can then be expressed as the scattering vector 
k . 

[ ]1 , , 2
2 hh vv hh vv hvk S S S S S= + −                  (2) 

In order to better explain the physical meaning of the scattering process, the 
coherency matrix T is used: 

*T k k= ⋅                            (3) 

The coherency matrix is a Hermit matrix, T T ∗= , whose size is 3 × 3. 
In order to make better use of the polarization scattering matrix to reveal the 

physical mechanism, polarization data usually is broken down into different 
components by decomposition [14]. In [11], Cloude et al. have put forward 
Cloude decomposition which has very important significance in POL SAR data 
processing. The two parameters, scattering entropy and the scattering angle, ob-
tained from decomposition are widely used in image segmentation [18]. 

Cloude decomposition: 

[ ] [ ] [ ]
1

*T
3 2 3

3

0 0
0 0
0 0

T U U
λ

λ
λ

 
 =  
  

                  (4) 

where iλ  is eigenvalue, [ ]iU  is eigenvector corresponding to eigenvalue iλ , 
1,2,3i = . Each eigenvector represents a scattering mechanism, and the corres-

ponding eigenvalue represents the intensity of the scattering mechanisms.  
The eigenvalues and eigenvectors resulting from Cloude decomposition have 

been concerned and studied [22] [23] [24] [25]. Carlos Lopez-Martinez has 
made an in-depth analysis of the probability density function of the sample ei-
genvalues of the covariance or coherency matrix and proposed that Gaussian 
scattering assumption is valid to the sample eigenvalues distribution of homo-
geneous distributed scatters [22] [24]. In [22], the Gaussian Mixture Modes have 
been used in inhomogeneous areas. Based on different areas obeying Gaussian 
distribution with different parameter, expectation maximization algorithm has 
been applied to the segmentation of POL-SAR data.  

So we conclude that the eigenvalues of coherency matrix include rich polari-
zation information. And Gaussian distribution of eigenvalues makes it more 
convenient to measure than Wishart distribution of coherency matrix. 

2.2. Similarity Metric Based on Eigenvalue Analysis 

As described in the reference [22], we analyze the distribution characteristics of 
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eigenvalue. Figure 1(a) marked seven areas A-F, comes from a part of the 
POL-SAR data set Flevoland. 50 sample points are randomly selected from every 
area, respectively. Then, we make three eigenvalues of every point as coordinate 
and show them as is seen from Figure 1(b). We can see that the eigenvalues of 
different class have divisibility substantially. Then, we apply Gaussian Mixture 
Modes to simulate eigenvalues of every area, as is seen from Figure 1(c). We can 
conclude that eigenvalues are approximate Gaussian distribution with different 
parameter. 

Euclidean distance is the most widely used similarity metric, whose characte-
ristics are as follows: 1) the ranges of different features (Table 1) are ignored. As  

 

 
Figure 1. Distribution of different areas eigenvalues. 

 
Table 1. Comparison of range of three eigenvalues. 

 λ1 λ2 λ3 

The Maximum 0.0090 0.0525 0.5580 

The Minimum −0.0047 0.00005 0.0005 
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result, the Euclidean distance between two points depend on the feature 3λ  
largely. 2) Without considering the correlation between features, Euclidean dis-
tance treats features equally and only integrates the difference of each feature 
between two points. 3) Euclidean distance is applicable to the data obeying 
strictly Gaussian distribution. However, our data is not strictly Gaussian distri-
bution, just like the area A shown in Figure 1(c). 

In order to solve the above problems of Euclidean distance, Indian statistician 
P. C. Mahalanobis has proposed Mahalanobis distance based Multivariate Statis-
tics. It is an effective method of similarity metric between unknown sample sets, 
and is also called covariance distance. With respect to the Euclidean distance, 
Mahalanobis distance has the following advantages: 1) Mahalanobis distance is 
normalized distance of non-uniform distribution in the Euclidean space, ba-
lancing the ranges of different features. 2) Mahalanobis distance is based on the 
distribution of features in the entire space, therefore, to better describe the simi-
larity between two points. 3) Mahalanobis distance is applicable to the data ob-
eying Gaussian distribution approximately [26]. 

( ) ( )T
EuclideanS x y x y= − ⋅ − ,                   (5) 

( ) ( )T 1
MaS x y C x y−= − ⋅ ⋅ − ,                  (6) 

where, ,x y  are features of two points. C  is covariance matrix, varying with 
input data. Thus, the similarity metric with Mahalanobis distance is adaptive.  

2.3. Similarity Metric with Spatial Consistency Constraint 

In the process of segmentation and classification, the probability of pixels in the 
image and its neighborhood having the same class attributes is large, called spa-
tial coherence constraints. So, we choose the similarity metric with spatial cohe-
rence constraints [27]. 

In summary, the final used affinity matrix is:  

S Sα+                             (7) 

where,  

( ) ( )T 1
ij i j i jS x x C x x−= − ⋅ ⋅ − ,                 (8) 

( ) ( )T 11

r k
ij i r i r

x NR

S x x C x x
N

−

∈

= − ⋅ ⋅ −∑               (9) 

where, C  is covariance matrix, ,i jx x  are the features of the ith, jth image 
pixels. kN  are the pixels whose center is jx  and neighborhood window is 
k k× . RN  is the number of pixels included in window. 

As described in [28], this method of parameter α  is not sensitive. When 
3α ≥ , the result of algorithm is remained. And, when the size of the neighbor-

hood window 15k ≤ , the result is improved gradually. When 15k > , the result 
is bad gradually. Specific to each image, the k is decided by the texture. 

With above similarity metric, grouping data is to complete clustering. How-
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ever, some of the commonly used statistical-based clustering algorithm such as 
EM, demands obedience distribution, and is sensitive to the initialization. At the 
same time, when Gaussian fitting, the statistical properties of mixed-pixel is un-
stable. So EM algorithm is not suitable for the eigenvalues, just like the results 
displayed in Figure 2. As result, we choose the spectral clustering whose distri-
bution of data is not a requirement. 

2.4. Spectral Clustering Spatial Consistency 

Spectral clustering is a typical clustering algorithm based similarity metric. 
Spectral clustering algorithm is no longer required a convex structure of the data 
to ensure a good result, and which is also a discriminant method. Instead of 
making assumptions of the global structure of data, spectral clustering algorithm 
firstly collects local information to indicate the possibilities of whether two 
points belonging to the same class, then makes the global decision based on a 
clustering criterion to divide all the data points into irrelevant sets. 

Spectral clustering has good clustering results, but for larger POLSAR data, 
the application of classic spectral clustering algorithm has been limited [29]. 
Many fast spectral clustering algorithms are proposed [30] [31] [32] [33] [34]. In 
[30], Fowlkes et al. have put forward Nyström algorithm which is simple, effec-
tive, and greatly reduce the computational complexity. So we choose Nyström to 
cluster. Nyström is a digital approximation technique of solving the problem of  

 

 
Figure 2. The flow chart of our method. 

https://doi.org/10.4236/jgis.2018.101007


S. P. Gou et al. 
 

 

DOI: 10.4236/jgis.2018.101007 156 Journal of Geographic Information System 
 

the integral characteristic function. The method first randomly select a small 
part of sample from all of the samples as representative points to solve the cha-
racteristic problem, and then extend eigenvector to the similarity matrix for the 
entire sample set. 

The main steps of Nyström algorithm are as follows: 
Step 1. Randomly selected m sample points as sample subset; 
Step 2. Form the affinity matrix of the subset n nW R ×∈ , where  

( )2 2exp 2 , , 0ij i j iiW x x i j Wσ= − − ≠ = ; 

Step 3. Eigendecompose W, obtain the eigenvalues and the corresponding ei-
genvectors of W, then extrapolate eigenvectors of the entire similarity matrix; 

Step 4. Clustering first n-dimensional eigenvectors into n clustering via k-means, 
as the final segmentation results. 

Where, W  means similarity matrix between sample points to be cluster, and 
it contains all the information required to cluster. In our method, W  is con-
ducted as S Sα+ . 

2.5. Cluster Ensemble 

The clustering ensemble is a final division of multiple clustering results of given 
task, and the division has better robustness, novelty and stability. The key issue 
is how to obtain better clustering results based on combinations of different 
cluster results membership, also means the construction and choice of consensus 
function. 

Consensus function gives multiple clustering results a final division. In [29], 
the researcher has introduced three consensus functions: cluster-based similarity 
partitioning algorithm (CSPA), hyperGraph partitioning algorithm (HGPA), 
meta-Clustering algorithm (MCLA). All of them approach the problem by first 
transforming the set of clustering into a hypergraph representation, and obtain-
ing hypergraph minimum cut. Among of them, the complexity of MCLA is 
( )2 2O nk r , varying linearly with the number of samples. MCLA has superiority 

in complexity and the integrated quality, so we choose MCLA as consensus 
function.  

Nyström algorithm can effectively reduce the computational complexity. 
However, clustering results are instable as a result of the random sampling. So 
we make use of cluster ensembles to keep stable segmentation results. Apply 
Nyström algorithm for k times, and every time random sampling the same 
amount of sample to obtain clustering labels { }1 2, , , klabel label label . And 
map the labels into the final result with MCLA. 

3. Segmentation Algorithm and Experiment Results 
3.1. Algorithm Steps of Eigenvalue Similarity Metric Based  

Spectral Clustering Method 

Our algorithm process is divided into three steps: pretreatment, similarity me-
tric, spectral clustering ensemble. Pretreatment: refined Lee filter with window 7 

https://doi.org/10.4236/jgis.2018.101007


S. P. Gou et al. 
 

 

DOI: 10.4236/jgis.2018.101007 157 Journal of Geographic Information System 
 

× 7, and Cloude decompose to obtain eigenvalues as input features. Similarity 
metric: construct similarity matrix with Mahalanobis distance. Spectral cluster-
ing ensemble: spectral cluster for several times and ensemble with MCLA. The 
flow chart of eigenvalue similarity metric based spectral clustering is as shown in 
Figure 2. 

3.2. Experiment Data 

1) Flevoland Data Set：It is NASA/JPL AIRSAR L-Band POLSAR dataset of 
Flevoland, the Netherlands, which has the size of 1024 × 750 pixels. The pixel 
size is 6.6 m in the slant range direction and 12.10 m in the azimuth direction. In 
Figure 3(a), the image is shown with color composed by Pauli matrix represen-
tation: red for HH VV− , green for HV VH+  and blue for HH VV+ . The 
map shows an agricultural area, covered with different crops and water. 

2) San Francisco Data Set：It is the fully polarimetric L-band airborne SAR 
data acquired with the AIRSAR sensor of the NASA/JPL at the test site of San 
Francisco bay, which has a mixed scene of urban, vegetation and ocean. The 
original data has the size of 1024 × 900 pixels, and experimental data is the size 
of 800 × 500. In Figure 3(b), the image is shown with color composed by Pauli 
matrix representation: red for HH VV− , green for HV VH+  and blue for 
HH VV+ . 

3.3. Feature Analysis 

For clustering, the divisibility between two categories depends on the distance 
between them. So we make a comparison of Euclidean distance and Mahalanobis 
distance of each of the two categories in Figure 4(a) and Figure 4(b). We can 
see from ordinate that Mahalanobis distance increase the distance between the 
two similar classes and improve the divisibility. Simultaneously, the problem 
that the distances of each of the two categories are small, is to improve (In Fig-
ure 4(a), each color point is crossover.).  

And we also can see the results of Figure 4(a) and Figure 4(b), for the easy 
mixed categories (A blue, G brown), although the Mahalanobis distance can extend  

 

 
Figure 3. Experiment Data. (a) Flevoland data (b) San Francisco data. 
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Figure 4. A-G class were randomly taken 50 points, respectively calculate the distance between each class and all classes (including 
itself). Each class has its own color, which is consistent with the color of GroundTruth. (a) Euclidean distance. (b) Mahalanobis 
distance. (c) Pauli RGB composite and the areas marking. (d) Groundtruth. (e) The result of spectral clustering with Euclidean 
distance. (f) The result of spectral clustering with Mahalanobis distance. 
 

the distance between two categories, but still not enough to separate every point. 

3.4. Segmentation Result 

In order to better demonstrate the effectiveness of our method, we choose the 
contrast algorithms: 1) H/a/A_Wishart [19]; 2) spectral clustering_Wishart pro-
posed by Anfinsen et al. in [20]; 3) our method with Euclidean distance. 

a) OVER ALL Flevoland Data Set 
For image Flevoland, in our method,the number of random sample is 70, the 

size of neighborhood window 3k =  because this image doesn’t has fine texture 
but has small blocks, 3α = , the number of classes is 7. The number of classes of 
the algorithm (spectral clustering_Wishart) is also 7, and the algorithm 
(H/a/A_Wishart) is fixed 16 then mergered to be 7 manually.  

The ground truth does not provide a label for each pixel of the entire image so 
the accuracy calculation is limited to only those pixels where the ground-truth 
provides a label. Partial ground-truth map is shown in Figure 5(a). The overall 
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segmentation accuracy of four methods is shown in Table 2, and segmentation 
maps are shown in Figures 5(b)-(e). Overall segmentation accuracy P  is de-
fined 

( )
1 1,

1 ,
K K

i j i j
P Correct i j

N = = ≠

= ∑ ∑                   (10) 

where Correct is the number of pixels emergimg both in the ground truth and 
classifying result for each category terrain object, N is the total number of pixels, 
and K is the category number of terrain, i, j is the pixel from a kind of category. 

From Table 2 and Figure 5 it is seen that the performance of our method with 
Mahalanobis distance is much better than Euclidean distance. For the edge of 
region, our method is worse than others as a result of application of spatial in-
formation, and other methods make use of Wishart iteration or segmentation to 
keep clear edge. For the region consistence, our method is better as a result of 

 

 
Figure 5. Comparing experimental results of Flevoland data. (a) Partial ground-truth map. (b) H/a/A_Wishart. 
(c) Spectral clustering_Wishart. (d) Our method with Euclidean distance. (e) Our method with Mahalanobis 
distance. 

 
Table 2. The overall segmentation accuracy comparison of Flevoland area for method. 

Areas Accuracy        P  

H/a/A_Wishart — 0.90 0.82 — 0.72 0.32 0.85 0.72 

Spectral_Wishart 0.3 0.68 0.97 — 0.95 — 0.886 0.76 

Our Method__Eu — 0.88 — — 0.93 0.50 — 0.33 

Our Method__Ma 0.76 0.878 0.95 0.92 0.94 0.93 0.93 0.90 

https://doi.org/10.4236/jgis.2018.101007


S. P. Gou et al. 
 

 

DOI: 10.4236/jgis.2018.101007 160 Journal of Geographic Information System 
 

application of spatial information and Cluster ensembles. In addition, H/a/ 
A_Wishart and spectral clustering_Wishart have the similar results, but the lat-
ter can converge faster. 

b) PARTIAL Flevoland Data Set 
In order to improve the credibility of the contrast algorithm, and contrast 

with reference [21], we choose the same image (Figure 6(a)) which is retrieved 
from Figure 3(a). And GroundTruth also come from reference [20]. As de-
scribed in [20], the H/a/A_Wishart (0.68) and spectral clustering_Wishart (0.67) 
have the similar results, and its algorithm (0.75) outperform the H/a/A_Wishart 
by 7.1%. Though our method (0.745) outperform the H/a/A_Wishart by 6.5%, 
our method has less complex process and fewer parameter. 

c) San Francisco Data Set 
In order to demonstrate the robustness of our method, the San Francisco bay 

data is tested by four algorithms. The number of random sample is 70, 3k = , 
1α = , the number of classes is 3. The contrast algorithms results are mergered 

to be 3 manually. As can be seen from the two marked details, our method is 
superior to other methods in the shape. At the same time, ocean, city and forest 
are classified clearly, and the forest at the upper left corner has good regional 
consistency. The overall segmentation accuracy of four methods is shown in Ta-
ble 3, and segmentation maps are shown in Figures 7(a)-(d). 

 

 
Figure 6. Comparing experimental results of partial Flevoland data. (a) Pauli RGB 
composite. (b) Partial ground-truth map. (c) H/a/A_Wishart from the reference [19]. 
(d) Spectral clustering_Wishart from the reference [20]. (e) The algorithm from the 
reference [21]. (f) Our method with Mahalanobis distance. 

 
Table 3. The segmentation accuracy comparison of marked area of San Francisco for methods. 

Accuracy 
Area/GroudTruth 

H/a/A 
Wishart 

Spectral_ 
Wishart 

Our Method 
__Eu 

Our Method 
__Ma 

/   0.91  0.63  0.19  0.98 

/   0.78  0.31  0.66  0.87 
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Figure 7. Segmentation results of San Francisco data. (a) H/a/A_Wishart. (b) Spectral 
clustering_Wishart. (c) Our method with Euclidean distance. (d) Our method with Ma-
halanobis distance.  

 
In sum up, our method have good segmentation performance. The main ad-

vantages of this method are simple, fast and effective. In term of running time, 
for the image of Flevoland, the Nyström algorithm needs 40 s when we choose 
the sample number as 70. We choose the ensemble time N as 3, so the running 
time of the entire program is about 2 minutes. The affect on the images of San 
Francisco bay and Xi’an city is small by random sampling, so the process of 
cluster ensemble can be bypassed. And the contrast algorithms need the process 
of Wishart iteration, which consumes time. In the term of validity, our method 
can guarantee the accuracy of the overall segmentation, at the same time keep 
the details on good results.  

At the same time, we can see the method has good robustness from the above 
three images. This is because the eigenvalue expresses the main information of T 
matrix. 

4. Conclusion 

This paper introduces an approach for segmentation of the POLSAR data based 
on eigenvalue similarity metric. From the scientific and application point of 
view, it is a new approach of data processing. With analysis of the characteristic 
eigenvalue, we propose a new construction method of similarity metric. As a re-
sult, our method reduces the complexity of the spectral clustering for POL-SAR 
image segmentation, avoiding the choice of Gaussian kernel parameter and 
completing clustering effectively. From the experimental results, we can see that 
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the proposed method has low time cost. Therefore, our method satisfied processing 
level for the land cover observation with use of SAR image. At the same time, 
our method not only keeps the overall classification accuracy, but also has more 
details of land cover. So our method can be applied to polarimetric SAR image 
recognition. However, there are still some problems like the edge blur. Our fu-
ture work is to enhance the distinguish ability of the feature by adding other type 
features, such as texture and deep abstract features. 
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