
Open Journal of Statistics, 2018, 8, 159-186 
http://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2018.81011  Feb. 26, 2018 159 Open Journal of Statistics 
 

 
 
 

Adaptive Fractional Polynomial Modeling 

George J. Knafl 

School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 

 
 
 

Abstract 
Regression analyses reported in the applied research literature commonly as-
sume that relationships are linear in predictors without assessing this assump-
tion. Fractional polynomials provide a general approach for addressing non-
linearity through power transforms of predictors using real valued powers. An 
adaptive approach for generating fractional polynomial models is presented 
based on heuristic search through alternative power transforms of predictors 
guided by k-fold likelihood cross-validation (LCV) scores and controlled by to-
lerance parameters indicating how much a reduction in the LCV score can be 
tolerated at given stages of the search. The search optionally can generate geo-
metric combinations, that is, products of power transforms of multiple predic-
tors, thereby supporting nonlinear moderation analyses. Positive valued conti-
nuous outcomes can be power transformed as well as predictors. These methods 
are demonstrated using data from a study of family management for mothers of 
children with chronic physical conditions. The example analyses demonstrate 
that power transformation of a predictor may be required to identify that a rela-
tionship holds between that predictor and an outcome (dependent or response) 
variable. Consideration of geometric combinations can identify moderation ef-
fects not identifiable using linear relationships or power transforms of interac-
tions. Power transformation of positive valued continuous outcomes along with 
their primary predictors can resolve model assumption problems. 
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1. Introduction 

Regression analyses reported in the applied research literature commonly as-
sume that relationships are linear in predictors without assessing this assump-
tion. When addressed, nonlinear relationships are often based on standard po-
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lynomials, usually quadratic or cubic polynomials. However, these models can-
not handle general nonlinearity. For this reason, Royston and Altman [1] pro-
posed addressing nonlinearity with fractional polynomials based on power 
transforms of predictors using real valued powers. They proposed consideration 
of finite sets of powers. For example, they recommended the eight powers −2, −1, 
−0.5, 0, 0.5, 1, 2, 3 (with the 0 case corresponding to the natural log transform) 
for degree 1 fractional polynomials based on a single power transform (for more 
details on standard fractional polynomial modeling also see [2] [3]). Power 
transforms are also called Box-Tidwell transforms [4]. Box and Cox [5] pro-
posed a related set of transforms for transforming outcome (dependent or re-
sponse) variables. Carroll and Ruppert [6] used these Box-Cox transforms to 
transform both outcomes and predictors. 

The finite set of recommended powers can effectively model nonlinearity in 
many situations, but not always. Adaptive modeling generalizes standard frac-
tional polynomial modeling to address the complete set of real valued powers. 
Knafl et al. [7] first formulated adaptive modeling in the Poisson regression case. 
This was extended to handle generalized linear models and modeling of va-
riance/dispersions [8] and also to handle repeated measures modeling [9]. Knafl 
and Ding [10] provided a general adaptive approach for fractional polynomial 
modeling of univariate and multivariate continuous, discrete, and count out-
comes.  

This paper describes adaptive fractional polynomial modeling and demon-
strates the kinds of novel insights it can provide through example adaptive ana-
lyses of data from a study of family management by mothers of children with 
chronic physical conditions such as diabetes and Crohn’s disease [11]. These 
methods can be used in any area of the behavioral, health, and social sciences as 
well as any other application area that uses regression modeling. They can pro-
vide novel insights into the data not possible with standard regression methods. 

2. Methods 
2.1. Fractional Polynomials 

Power transforms pX  of a positive valued predictor X are well-defined for all 
real valued powers p. This can be extended to transforms ( ),f X p  for real va-
lued predictors X by defining ( ),f X p  as pX  for 0X > , as 0 for 0X = , 
and as ( )cos pp Xπ ⋅ ⋅  for 0X <  where cos denotes the cosine function, π  
is the usual constant, and X  is the absolute value of X. Note that the sign of 
( ),f X p  when 0X <  oscillates between ±1 as p varies. Indicator predictor 

variables X with values 0 and 1 do not require transformation. 
Fractional polynomials have the form 

( ) ( ) ( )1 1 1 2 2 2, , ,r r rf X p f X p f X pβ β β⋅ ⋅+⋅+ +�  

where, if any of the predictors iX  and jX  are the same, then the associated 
powers ip  and jp  are not the same. An intercept can be included by setting 
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1 1X = , that is, the unit predictor, with 1 1p = . When X is positive valued and 
0p = , ( ),0f X  corresponds to the natural log transform ( )log X  if the 

model contains an intercept parameter (demonstrated by taking the limit as 
0p → ); otherwise ( ),0f X  corresponds to the unit transform, adding in an 

intercept to the model. Royston and Altman [1] also consider fractional poly-
nomials to include interactions between transforms of predictors and their nat-
ural logs, but these are not considered here.  

2.2. Geometric Combinations 

Power transforms of interactions can be generalized to geometric combinations 
consisting of products of power transforms of multiple distinct predictors using 
possibly different powers. These have the form 

( ) ( ) ( )1 1 2 2, , ,m mf X p f X p f X p⋅ �  

where iX  are distinct for 1 i m≤ ≤ . They can replace standard terms  

( ),j jf X p  in fractional polynomials.  
Geometric combinations can be used to address the issue called moderation 

[12], also called effect modification, but generalized to handle nonlinearity. An 
adaptive model containing geometric combinations does not necessarily imply 
distinct moderation. That only holds if the model with the geometric combina-
tions substantially improves (as defined later) on the associated additive model. 

2.3. Likelihood Cross-Validation 

Let { }:1S s s n= ≤ ≤  denote indexes for the observations of a data set. Partition 
these indexes, and hence the data, into k disjoint subsets ( )S h  for 1 h k≤ ≤ ; 
these subsets are called folds. Let θ  denote the vector of model parameters, 
( ),L ⋅ θ  a likelihood function or a likelihood-like function such as the extended 

quasi-likelihood used with generalized linear models [13], and ( )Sθ  the esti-
mate of θ  obtained by maximizing ( ),L S θ  over θ . The associated k-fold li-
kelihood cross-validation score is given by 

( ) ( )( )( )1
1

LCV , \ .
n

h k
L S h S S h

≤ ≤

= ∏ θ  

In other words, the LCV score is the product of likelihoods for the data in the 
folds ( )S h  evaluated at parameter estimates computed with the data in the 
other folds ( )\S S h  and normalized by the sample size. Fold assignment is 
random, but using the same initial seed for models of the same outcome Y. In 
this way, the same fold assignments are used for all such models, and then their 
LCV scores are comparable. 

Larger LCV scores indicate better models, but not necessarily substantially (or 
distinctly) better models. This issue can be addressed using LCV ratio tests 
computed using the χ2 distribution as for standard likelihood ratio tests. These 
tests are expressed in terms of a threshold for a substantial (distinct) percent de-
crease in the LCV score, which varies with the sample size. The formula is given 
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in Section 4.4.2 of [10] and is computed conservatively with the 95th percentile 
3.84146 of the χ2 distribution with the smallest positive integer degrees of free-
dom DF 1= . 

If models 1M  and 2M  have LCV scores satisfying ( ) ( )1 2LCV LCVM M< , 
model 2M  provides a substantial (distinct) improvement over model 1M  if 
the percent decrease ( ) ( )( ) ( )2 1 2100% LCV LCV LCVM M M−⋅  in the LCV 
score is larger than the threshold for the data. Otherwise model 1M  is a com-
petitive alternative to model 2M . If model 1M  is also simpler, then it is pre-
ferable as a parsimonious competitive alternative. LCV ratio tests are more con-
servative than standard tests for zero slopes in the sense that the removal from 
the model of a predictor with a significant slope can generate a competitive LCV 
score compared to the model with the predictor included (an example is pro-
vided later).  

LCV scores should only be compared when computed for the same outcome 
variable Y. However, when Y is continuous and positive valued, it is possible to 
compute power-adjusted ( )LCV q  scores for power transforms qY  of Y (the 
formulation is given in Section 6.3 of [10]). The power 0q =  corresponds to 
the natural log transform ( )log Y . These scores can be compared to choose a 
power transform for Y along with power transforms for its predictors. Estimated 
means for transformed Y can be inversed transformed to generate estimated 
means for untransformed Y (i.e., using the power 1 q  for 0q ≠  and the ex-
ponential transform for 0q = ). 

2.4. Adaptive Modeling Process 

The adaptive modeling process is formulated in Chapter 20 of Knafl and Ding 
[10]. An overview is provided here. A base model is first expanded by systemati-
cally adding in power transforms of primary predictors. The transform added to 
the model next is the one generating the best LCV score for primary predictors 
currently under consideration for inclusion in the model. Next, the expanded 
model is contracted, removing power transforms from the model and adjusting 
the powers of the remaining transforms to improve the LCV score. When the 
contraction leaves the expanded model unchanged, the powers of the expanded 
model transforms are adjusted to improve the LCV score. 

The process is controlled by tolerance parameters indicating how much of de-
crease in the LCV score can be tolerated at given stages of the process. For ex-
ample, the contraction stopping tolerance is set using a LCV ratio test, so that 
the final model is parsimonious. Primary predictors are dropped from consider-
ation for inclusion in the expansion if the inclusion of their transforms decreases 
the LCV score by more than an associated tolerance parameter. Transforms are 
similarly dropped from consideration for removal in the contraction if their re-
moval decreases the LCV score by more than the associated tolerance parameter.  

The expansion process can optionally generate geometric combinations. Each 
power transform is multiplied together with the prior product of power trans-
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forms without adjusting the powers in those prior transforms, and so the final 
geometric combination is further power transformed to increase the LCV score. 
Transforming the whole geometric combination with a single power simplifies 
the process compared to adjusting each of the powers in the geometric combina-
tion separately. 

Fractional polynomial models can be generated for continuous outcomes us-
ing adaptive linear regression modeling with the identity link function (as dem-
onstrated later), for dichotomous outcomes using adaptive logistic regression 
modeling with the logit link function, for ordinal outcomes using adaptive or-
dinal regression modeling with the cumulative logit link function, for nominal 
outcomes using adaptive multinomial regression modeling with the generalized 
logit link function, and for count/rate outcomes using adaptive Poisson regres-
sion modeling with the natural log link function. These outcomes can be univa-
riate or multivariate. Fractional polynomial models are special cases of standard 
models, and so have the same assumptions. Furthermore, once the predictors 
and powers of a fractional polynomial are specified, efficiciency of estimation of 
associated slope parameters is the same as for standard models of the same type. 

The adaptive modeling process can be applied to generate fractional poly-
nomial models for only means (or expectations) assuming constant variances or 
unit dispersions. However, such assumptions need assessment. This can be 
conducted through adaptive modeling of both means and variances/dispersions 
using fractional polynomial transforms of primary predictors. The natural log 
link function is used for modeling the variances/dispersions. The assumption of 
constant variances or unit dispersions is reasonable if the associated adaptive 
model provides a competitive alternative to the adaptive model for both means 
and variances/dispersions in combination. 

2.5. Computational Support 

The adaptive modeling process has been implemented in the genreg (for general 
regression) SAS® (SAS Institute, Inc., Cary, NC) macro, which supports adaptive 
linear, logistic, and Poisson regression modeling of either univariate or multiva-
riate continuous, dichotomous, ordinal polytomous, nominal polytomous, and 
count/rate outcomes. The ypower SAS macro is available for generating power 
transforms Yq of positive valued continuous outcomes Y as well as power trans-
forms of their predictors. It uses a grid search to choose the power q. These ma-
cros report in their output the threshold for a substantial percent decrease in the 
LCV score. Knafl & Ding [10] provide extensive coding details on the use of 
both macros. Section 4 describes code for generating the adaptive analyses re-
ported here. 

2.6. Example Data 

Example adaptive analyses are conducted using data from a study of family 
management by parents of children with chronic physical conditions such as 
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diabetes and Crohn’s disease [11]. Data are available for both mothers and fa-
thers, but only the data for 344 partnered mothers and for 65 single mothers are 
used in the example analyses. The child’s functional status (CFS) is measured 
using the Functional Status II [14] assessing the child’s health status. Higher 
scores indicate better child functioning. The effort to manage the child's condi-
tion and the parental mutuality (PM) in managing the condition are measured 
using scales of the Family Management Measure [11]. Higher effort scores indi-
cate lower levels of family management of the condition while higher PM scores 
indicate better levels. PM is only collected for partnered parents. There are no 
missing data values for all reported analyses. 

Institutional Review Board approval was obtained for the original study and 
also for conducting secondary analyses of these data including the analyses re-
ported in this manuscript. 

3. Results 

The threshold for a substantial percent decrease in the LCV score for analyses of 
data for the 65 single mothers is 2.91% while it is 0.56% for analyses of data for 
the 344 partnered mothers. LCV scores are computed with 10k =  folds unless 
otherwise indicated. 

3.1. Adaptive Analyses of Data for Single Mothers 

Table 1 provides results for standard polynomial models of the outcome ef-
fort for single mothers as a function of the primary predictor CFS. The linear 
polynomial model generates the best LCV score 0.058705 but the associated F 
test is nonsignificant ( )0.051p = . Moreover, the constant model has LCV 
score 0.058412 with insubstantial percent decrease 0.50% (i.e., less than the 
threshold of 2.91% for the data), and so is a parsimonious, competitive alter-
native. F tests for the quadratic and cubic polynomial models are also nonsig-
nificant, and these generate inferior LCV scores. In this case, a standard po-
lynomial assessment of possible nonlinear dependence of effort on CFS leads 
to the conclusion that mean effort does not depend on CFS. 

Some authors feel that higher order integer power transforms should not be 
included in models without also including lower order integer powers [15]. 
To assess this issue for the single mother data, the model in only CFS2 has 
LCV score 0.058467 and so improves on the full quadratic polynomial model 
with LCV score 0.058188 (Table 1). In this case, the percent decrease 0.48% is 
insubstantial, but the model with only the quadratic term is simpler while also 
providing an improvement. On the other hand, the model in only CFS3 has 
LCV score 0.058269 while the full cubic polynomial model with LCV score 
0.054129 (Table 1) generates a substantial percent decrease of 7.10%. In this 
case, insisting on inclusion of lower order terms makes the model highly in-
effective. 

An adaptive expansion generates the model based on CFS−1 plus an intercept.  
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Table 1. Standard polynomial modeling of the outcome effort as a function of the 
primary predictor child functional status for single mothers. 

Model Terms 
10-fold LCV 

score 
Percent  

Decrease 
Model F  Test 

Constant 1 0.058412 0.50%  

Linear 1, CFS 0.058705 0.00% ( )1,63 3.95, 0.051F p= =  

Quadratic 1, CFS, CFS2 0.058188 0.88% ( )2,62 2.06, 0.136F p= =  

Cubic 
1, CFS, 

CFS2,CFS3 
0.054129 7.79% ( )3,61 1.57, 0.207F p= =  

LCV: likelihood cross-validation; CFS: child functional status. 

 
The associated slope is significantly ( )( )1 2.07, 0.043t p= =  nonzero. The 
LCV score is 0.059062, and so the constant model with insubstantial percent 
decrease in the LCV score of 1.10% is a parsimonious, competitive alternative. 
This is an example where the LCV ratio test is more conservative than the 
standard test for a zero slope. On the other hand, the adaptive contraction 
removes the intercept and adjusts the power for CFS from −1 to −0.4. This 
model has LCV score 0.060490 and provides a substantial improvement over 
the constant model with substantial percent decrease 3.44%. This is an exam-
ple where a zero intercept model is required to identify a substantial impact 
to a primary predictor. The percent decrease for the model linear in CFS is 
substantial at 2.95%, and so mean effort is distinctly nonlinear in CFS. The 
same adaptive model is generated with 5 and 15 folds, and so the results are 
robust to the choice of the number of folds. 

Figure 1 contains the plot of the raw data and the predicted value curve 
generated by the adaptive model for mean effort as a function of CFS. Mean 
effort decreases nonlinearly from 19.6 at the smallest observed value for CFS 
of 42.9 to 13.9 at the largest observed (and possible) value for CFS of 100. The 
estimated constant standard deviation is 3.9. The raw data indicate that the 
functional status for these children is relatively high (only seven or 10.8% of 
the children have CFS scores less than 70). The possible values for effort 
range from 4 to 20, and so these mean effort values are relatively high. 

3.2. Adaptive Analyses of Data for Partnered Mothers 

The model for mean effort for partnered mothers as a linear function of CFS has 
LCV score 0.061785 and provides a substantial improvement over the constant 
model with LCV score 0.057434 and percent decrease 7.04% (i.e., larger than the 
threshold of 0.56% for the data). Moreover, mean effort significantly decreases 
as would be expected with increased CFS (estimated slope −0.14, ( )1 7.46t = − , 

0.001p < ). On the other hand, the adaptive model for mean effort restricted to 
include at most one transform of CFS is based on CFS6 with an intercept. The 
LCV score for this model is 0.063383, providing a substantial improvement over 
the linear model in CFS with percent decrease 2.52%. Consequently, mean effort  
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Figure 1. Raw data and predicted value curve for the adaptive model 
for mean effort as a function of child functional status for single 
mothers. 

 
is distinctly nonlinear in CFS. Moreover, the best LCV score for the eight Roys-
ton and Altman powers for degree 1 fractional polynomials is 0.062620 achieved 
with CFS3 and with substantial percent decrease 1.20%. This is an example using 
actual, nonsimulated data where restricting to the Royston and Altman recom-
mended powers generates a substantially inferior model compared to using the 
adaptive modeling process. 

Using the adaptive modeling process applied to the means allowing for mul-
tiple transforms of CFS with constant variances generates the model for the 
means based on three transforms: CFS6, CFS2.8, and CFS−2.5 without an intercept 
and LCV score 0.064067. Under this model, mean effort (plot not provided) de-
creases from the lowest observed CFS value of 42.9 up to CFS 65.4, then increas-
es up to CFS 82.1, and then decreases after that up to the largest observed value 
for CFS of 100.  

The purpose of the parent study [11] that collected these data was to develop 
an instrument measuring family management of childhood chronic conditions. 
CFS was collected for construct validity purposes, and it was hypothesized that 
negative measures of family management like effort would decrease with in-
creased CFS. Thus, a monotonically decreasing relationship had been previously 
hypothesized, and so the generated nonmonotonic adaptive model was coun-
ter-intuitive. 

One way to assess monotonicity of mean effort in CFS is to restrict to a single 
power transform of CFS, but that is the model based on CFS6 with LCV score 
0.063383 and substantial percent decrease 1.07%. On the other hand, restricting 
the contraction not to remove the intercept generates the model based on the 
two transforms CFS5 and CFS6.12 with LCV score 0.063755 and insubstantial 
percent decrease 0.49%. Moreover, under this competitive model, mean effort is 
monotonically decreasing in CFS as would be expected. 

Figure 2 contains the plot of the raw data and the predicted value curve for  
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Figure 2. Raw data and predicted value curve for the adaptive model 
for mean effort as a function of child functional status for partnered 
mothers based on untransformed effort and restricted to include an 
intercept. 

 
the monotonic model. Mean effort decreases slowly up to about CFS 90 and then 
decreases quickly up to CFS 100. The estimated constant standard deviation is 
3.8. This plot suggests the possibility that mean effort is constant for CFS 90≤ . 
The adaptive model in CFS bounded to be no lower than 90, that is, max 
(CFS,90) is based on the single transform max(CFS,90)6 with an intercept and a 
competitive LCV score 0.063885 with insubstantial percent decrease 0.28%. The 
same adaptive model is generated with 5 and 15 folds, and so the results are ro-
bust to the choice of the number of folds. Under this model, mean effort (plot 
not provided) is constant at 15.6 up to CFS 90 and then decreases to 11.4 at CFS 
100. 

The adaptive model for both the means and variances in terms of max(CFS,90) 
has means based on max(CFS,90)6 with an intercept and variances based on 
max(CFS,90)1.3 without an intercept. The LCV score is 0.064329, substantially 
improving on the constant variances model in max(CFS,90) with substantial 
percent decrease 0.69%, indicating that the variances are nonconstant in 
max(CFS,90). Mean effort is constant at 15.6 up to CFS 90 and then decreases to 
11.4 at CFS 100 while the standard deviation for effort is constant at 3.4 up to 
CFS 90 and then increases to 4.1 at CFS 100 (plots not provided). However, this 
model generates two extreme outliers with standardized residuals −3.39 and 
−3.10. The standardized residuals are also skewed towards the low end ranging 
from −3.39 to 2.11, suggesting model assumption problems. 

An adaptive search over power transforms for effort along with power trans-
forms of max(CFS,90) for modeling mean transformed effort with constant va-
riances identifies the power 1.5q =  with the best power-adjusted score  

( )LCV 1.5 0.064814= . This is a substantial improvement over the model for 
untransformed effort with power-adjusted score ( )LCV 1 0.063885=  (the same 
as its non-power-adjusted LCV score) and substantial percent decrease 1.43%. 
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Mean effort1.5 is based on the one transform: max(CFS,90)−4 without an inter-
cept. The adaptive model for the means and variances in max(CFS,90) pro-
vides an improvement with larger LCV score 0.064897 but the associated con-
stant variances model generates an insubstantial percent decrease 0.13%. Con-
sequently, mean effort1.5 is reasonably considered to have variances constant in 
max(CFS,90). 

Figure 3 contains the plot of the raw data and the predicted value curve for 
mean untransformed effort as a function of bounded CFS generated by the 
adaptive constant variances model for effort1.5 (obtained by inverse transforming 
estimated mean effort1.5 using the power 1 2 3q = . Mean effort is constant at 
15.8 up to CFS 90 and then decreases to 11.9 at CFS 100. 

Standardized residuals for transformed effort range from −2.77 to 2.43, and so 
there are no extreme outliers and the skewness has been reduced. Figure 4 con-
tains the associated normal (probability) plot, which is reasonably close to linear. 
Adaptive transformation of effort has resolved model assumption problems, in-
cluding outliers, skewness, and nonconstant variances. 

3.3. Adaptive Moderation Analyses of Data for Partnered Mothers 

Mean untransformed effort decreases significantly with untransformed max 
(CFS,90) assuming constant variances (estimated slope −0.42, ( )1 9.03t = − , 

0.001p < ; estimated standard deviation 3.8). Whether this effect is moderated 
by PM can be addressed with a standard linear moderation analysis by adding 
PM and the interaction max(CFS,90)∙PM into the model. The slope for this in-
teraction is nonsignificant ( ( )1 0.51t = − , 0.609p = ), indicating that linear mod-
eration does not hold. The adaptive additive (i.e., without considering interac-
tions) model for the means in max(CFS,90) and PM depends on max(CFS,90)6 
and 0.1PM−  without an intercept and with LCV score 0.064201. The adaptive 
model in only max(CFS,90) is a competitive alternative with LCV score 0.063885 
(as reported earlier) and insubstantial percent decrease 0.49%. 
 

 
Figure 3. Raw data and predicted value curve for the adaptive model 
for mean effort as a function of bounded child functional status for 
partnered mothers based on transformed effort. 
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Figure 4. Normal plot generated by standardized residuals for the 
adaptive model for mean transformed effort as a function of bounded 
child functional status for partnered mothers. 

 
One way to address the possibility of nonlinear moderation is to generate 

the adaptive model for mean effort based on the three primary predictors 
max(CFS,90), PM, and max(CFS,90)∙PM, then compare its LCV score to that of 
the adaptive additive model in max(CFS,90) and PM. The generated model is the 
same as the adaptive additive model suggesting that nonlinear moderation does 
not hold. 

The more general way to address the possibility of nonlinear moderation is to 
generate the adaptive model for mean effort based on the two primary predictors 
max(CFS,90) and PM along with geometric combinations in max(CFS,90) and  

PM. The generated model is based on ( )( ) 0.1599362PM max CFS,90
−−− ⋅ ,  

( )( ) 0.052PM max CFS,90
−− ⋅  and ( )( )1.55 2.3max CFS,90 PM−⋅  without an intercept  

and with LCV score 0.064666. This model provides a substantial improvement 
over the adaptive additive model with percent decrease 0.72%. Consequently, 
nonlinear moderation does hold, but can only be identified using geometric 
combinations.  

Figure 5 contains predicted value curves for mean effort as a function of 
max(CFS,90) for selected values of PM. For CFS up to 90, mean effort is con-
stant, at lower levels with increased PM, and with less of a decrease with in-
creasing levels of PM. For CFS from 90 to 100, mean effort decreases with in-
creased CFS close to linearly, at lower levels and with steeper rates with in-
creased PM, and with less of a change with increasing levels of PM. Assessments 
of moderation using transformed effort and nonconstant variances as well as of 
model assumptions are needed but are not addressed here for brevity. 

3.4. Simulation 

An example was presented earlier where the recommended set of degree 1 pow-
ers had too restrictive a range to effectively identify a power well outside of that  
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Figure 5. Predicted value curves for the adaptive model for mean 
untransformed effort as a function of bounded child functional status 
moderated by parental mutuality for partnered mothers. 

 
range. Knafl and Ding [10] (Section 2.12) provide a simulation demonstrating 
that this holds more generally. The true power for the simulated data was −7. 
The adaptively generated power was −6.9, and the model based on the true pow-
er was a competitive alternative to the one based on the estimated power. The 
best recommended power was −2, which generated a very substantial percent 
decrease of 55.8% compared to a threshold of 0.19% (due to a sample size of 
1001 observations). 

However, the issue of whether the recommended set of powers can be ineffec-
tive when the true power is in between the extreme values of −2 and 3 has not 
yet been addressed. For that reason, the following simulation was conducted. 
The predictor xsim had 101 equally spaced values from 0 to 1, and so 0.01 units 
apart. The outcome ysim satisfied 

( )1.5ysim 0.5 1 xsim 1.5= + ⋅ +   

where   was normally distributed with mean 0 and standard deviation 0.01. 
The normalizing constant 1.5 was set to the maximum value for the numerator 
rounded to 1 decimal digit so that ysim values were bounded by 1. This meant 
that after rounding the true intercept was 0.33, the true slope 0.67, and the true 
standard deviation 0.0067. These data are plotted in Figure 6. The threshold for 
a substantial percent decrease in the LCV score for these data was 1.86%. 

Using 10k =  folds, the adaptive model for mean ysim with constant va-
riances was based on the true power 1.5. Rounded estimated values for the in-
tercept, slope, and standard deviation were 0.33, 0.67, and 0.0067, respectively; 
all equal to the true values. The LCV score was 34.8004. The best LCV score for 
the recommended powers was generated by the power 2 with value 10.0569 and 
very substantial percent decrease of 71.1%. These results demonstrate that the 
set of recommended powers in between the extreme powers of −2 and 3 can also 
produce ineffective models when the variability in the data is small, as for these 
simulated data. 
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Figure 6. Simulated data with mean of the simulated y variable a 
function of the simulated x variable raised to the power 1.5. 

4. Overview of Adaptive Fractional Polynomial Modeling in  
SAS 

The genreg and ypower macros can be loaded into SAS using %include state-
ments. The version is indicated by the date in the name of the macro. The ver-
sion of genreg used in reported analyses was created on 3/19/2017 and the ver-
sion of the ypower macro on 2/25/2017. These versions of the macros as well as 
code to generate reported analyses are available at  
http://www.unc.edu/~gknafl/AFPM2.html (accessed February 4, 2018).  

Assume that a data set with name partnered has been created in the SAS de-
fault library. Also assume that this data set contains the variables named effort, 
CFS, and mutuality containing values for the effort to manage the child's chronic 
condition, the child functional status, and parental mutuality in managing the 
condition, respectively, for 344 partnered mothers. 

4.1. Standard Regression Modeling 

A standard linear polynomial model for mean effort as a linear function of CFS 
with constant variances is generated as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,xvars=CFS,procmod=y); 

The genreg macro is invoked by attaching a percent sign (%) to its name, fol-
lowed by a list of settings for its macro parameters separated by commas and in 
parentheses. The modtype parameter determines the likelihoods used to gener-
ate parameter estimates and LCV scores. In this case, the value “norml” means 
that the outcome is continuous and to be analyzed using linear regression mod-
els and likelihoods based on the normal distribution. Other choices include “lo-
gis” for discrete outcomes and “poiss” for count outcomes. The datain parameter 
provides the name of the data set to use in the analysis, in this case the partnered 
data set. The yvar parameter names the outcome (or y) variable to be the varia-
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ble effort. The xvars parameter provides a list of names for predictor (or x) va-
riables, in this case only the single predictor CFS. The procmod parameter is 
used to generate SAS output for the appropriate SAS procedure (or PROC), in 
this case PROC REG. The value “y” is short for yes. The other possible value is 
“n” for no. 

All other macro parameters take on their default values (as specified in the 
genreg code). For example, the default value for the xintrcpt parameter is “y” in-
dicating that the model for the means should include an intercept parameter. 
Consequently, the model generated in the above code is the standard linear po-
lynomial model for mean effort with an intercept. The foldcnt macro parameter 
is used to set the number of folds. In this case, its default value of “10” is used. 

In the above code, the xpowers macro parameter also has its default empty 
setting meaning not to transform the xvars variables (or equivalently, transform 
them with power 1). To generate a standard quadratic polynomial model in CFS 
use the settings “xvars=CFS CFS” and “xpowers=1 2”.  

4.2. Adaptive Regression Modeling 

An adaptive model for mean effort as a function of at most one transform of CFS 
can be generated as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,  
           expand=y,expxvars=CFS, multtrns=n,contract=y); 

The base model for this analysis is the constant model for mean effort due to the 
default settings “xintrcpt=y” and “xvars=” (i.e., the empty setting for xvars 
meaning include no predictors). The setting “expand=y” requests that this base 
model be expanded by including power transforms of the variables listed in the 
expxvars parameter setting, in this case only the variable CFS. The setting 
“multtrns=n” means that multiple transforms of the expxvars variables are not 
to be included in the expanded model. The setting “contract=y” means contract 
the expanded model, adjusting powers for remaining transforms with each re-
moval of a transform. In this case, the base constant model is expanded to in-
clude the single transform of CFS with power 6. The contraction leaves the ex-
panded model unchanged. 

To allow for multiple transforms of CFS in the model, change to “multtrns=y”, 
which is the default setting; so removing “multtrns=n” from the code has the 
same effect. In this case, the base constant model is expanded to include three 
transforms of CFS with powers 6, 5, and −2.5 in that order. The contraction re-
moves the intercept, adjusts the three powers to 6, 2.8, and −2.5, and then stops. 
This model can be generated directly as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,xintrcpt=n, 
xvars=CFS CFS CFS,xpowers=6 2.8 −2.5); 

By default, the contraction considers removal of the intercept from the model 
for the means. This is controlled by the nocnxint (for no contraction of the x in-
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tercept) macro parameter with default setting “n”. Add “nocnxint=y” to the 
above code to restrict the contraction not to remove the intercept. As before, the 
base constant model is expanded to include the three transforms of CFS with 
powers 6, 5, and −2.5, but now the contraction removes the transform with 
power −2.5 rather than the intercept, adjusts the other two powers to 5 and 6.12, 
and then stops.  

This model (see Figure 2) suggests that mean effort is constant up to the value 
90 for CFS. This can be assessed by generating the adaptive model in the variable 
bnddCFS, defined to equal CFS bounded to be at least 90, assuming this variable 
has been added to the partnered data set (using the code “bnddCFS=max 
(CFS,90);”). The adaptively generated model in bnddCFS provides a competitive 
alternative to the one in unbounded CFS and so bnddCFS is used in subsequent 
analyses instead of CFS. 

4.3. Adaptive Variance Modeling 

The genreg macro also supports adaptive modeling of the variances (or the dis-
persions for logistic and Poisson regression) in terms of fractional polynomial 
models. The log of the variances is modeled in terms of fractional polynomials to 
guarantee that the variances are positive valued. At each step of the expansion, a 
best transform is identified for expanding the model for the means and also for 
the model for the variances. The choice with the better LCV score is added next 
to the model. Similarly, at each step of the contraction, the next term removed is 
the one for either the means or the variances generating the better LCV score.  

An adaptive model for both means and variances of effort in bnddCFS is re-
quested as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,expand=y, 
    expxvars=bnddCFS,expvvars=bnddCFS,contract=y); 

The expvvars macro parameter requests that the expansion and contraction also 
consider transforms of bnddCFS for modeling the variances. There are several 
parameters like expvvars for modeling the variances (or the v component) ana-
logous to those for modeling the means (or x component) like expxvars. For 
example, the vintrcpt and vvars parameters control the base model for the va-
riances with default settings “vintrcpt=y” and “vvars=”, thereby generating the 
constant variances model. Consequently, the above code requests a base model 
with constant means and variances.  

The first two pages of the genreg output contain details on macro parameter 
settings, including the value for the threshold for a substantial percent decrease 
in the LCV score, rounding in this case to 0.56%. The third page contains results 
for the base model. Part of this output is in Table 2. The sample size in number 
of measurements denoted by m was 344. The estimated constant mean was 13.5. 
The estimated log of the constant variance was 2.86 so that exponentiating and 
taking the square root gives an estimated standard deviation of 4.18 (this value is 
reported in the output, but that has not been included in Table 2). The last entry 
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described as the “mth root of the likelihood using deleted predictions” is the 
LCV score, which equals 0.057434. 

Page 4 of the output describes settings of macro parameters controlling the 
expansion. Page 5 describes the expanded model. Part of this output is in Table 
3. The expansion first adds the transform of bnddCFS to the power 6 to the 
model for the means (order = 1), next it adds the power transform of bnddCFS 
to the power 3 to the model for the variances (order = 2), and then stops. The 
LCV score rounds to 0.064183. 

Page 6 of the output describes settings of macro parameters controlling the 
contraction. Page 7 describes the contracted model. Part of this output is in Ta-
ble 4. The contraction removes the intercept from the model for the variances 
(order = 1), adjusts the power for bnddCFS in the model for the variances to 1.3, 
leaves the power for bnddCFS in the model for the means unchanged at 6, and 
then stops. The LCV score improves to 0.064329. 

4.4. Outcome Transformation 

The nonconstant variances model in bnddCFS provides a substantial improve-
ment in the LCV score over the associated constant variances model (as reported 
 
Table 2. Part of the output describing the constant base model for mean effort with 
constant variances for partnered mothers. 

m, the number of measurements:                                      344 

base expectation component 

predictor power estimate 

XINTRCPT 1 13.510756 

base log variance component 

predictor power estimate 

VINTRCPT 1 2.8628203 

mth root of the likelihood using deleted predictions:                      0.057434 

 
Table 3. Part of the output describing the expanded model for both means and variances 
of effort as a function of bounded child functional status (bnddCFS) for partnered 
mothers. 

expanded expectation component 

predictor power estimate score order 

XINTRCPT 1 20.280044 0.057434 0 

bnddCFS 6 −8.87E−12 0.0638847 1 

expanded log variance component 

predictor power estimate score order 

VINTRCPT 1 1.45469 0.057434 0 

bnddCFS 3 1.3631E−6 0.0641826 2 

mth root of the likelihood using deleted predictions:                          0.0641826 
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Table 4. Part of the output describing the contracted model for both means and variances 
of effort as a function of bounded child functional status (bnddCFS) for partnered moth-
ers. 

contracted expectation component 

predictor old power new power estimate 

XINTRCPT 1 1 20.280639 

bnddCFS 6 6 -8.87E-12 

contraction component unchanged 

contracted log variance component 

predictor old power new power estimate 

bnddCFS 3 1.3 0.0070624 

discarded old power score order 

  0.0641826 0 

VINTRCPT 1 0.0643285 1 

mth root of the likelihood using deleted predictions:                         0.0643285 

 
earlier), indicating that the usual assumption of constant variances is not appro-
priate for these data. This model also has extreme outliers and the residuals are 
distinctly skewed. Outcome transformation has the potential to remedy such 
problems. This is addressed using the ypower macro. 

The following code requests generation of power adjusted LCV(q) scores for 
adaptive modeling of mean transformed effort as a function of bnddCFS over a 
grid of powers q. 

%ypower(datain=partnered,yvar=effort,yfst=−2.5,ycnt=11,ystp=0.5, 
expand=y, expxvars=bnddCFS,contract=y); 

The datain, yvar, expand, expxvars, and contract macro parameters have the 
same meanings as for the genreg macro. The requested values for the outcome 
powers q range from −2.5 to 2.5 by steps of size 0.5. The first value for q is set to 
−2.5 by the yfst macro parameter. The step size of 0.5 is set by the ystp macro 
parameter. The ycnt macro parameter determines how many powers to consid-
er; 11 in this case so that the last power is 2.5. Only constant variances were con-
sidered to reduce the computation times. The ypower macro invokes the genreg 
macro to generate the adaptive model for mean transformed effort in terms of 
bnddCFS for each requested power q, then uses genreg output to compute asso-
ciated LCV(q) scores. Part of the output for the above code is provided in Table 
5. The best LCV(q) score of 0.064814 is generated by the power 1.5. A grid 
search around 1.5 over multiples of 0.1 from 1.1 to 1.9 can be generated by 
changing to the settings “yfst=1.1”, “ystp=0.1”, and “ycnt=9”. The best score is 
still generated by the power 1.5. 

The adaptive model for both the means and variances of effort transformed by 
the power 1.5 is generated with the following code. 
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Table 5. Part of the output for choosing an outcome transformation for effort with its 
means a function of bounded child functional status (bnddCFS) for partnered mothers. 

Power for Transforming effort Power-Adjusted LCV Score 

−2.5 0.0000002 

−2.0 0.0000277 

−1.5 0.0020992 

−1.0 0.0162368 

−0.5 0.0397838 

0.0 0.0548231 

0.5 0.0605673 

1.0 0.0638847 

1.5 0.0648138 

2.0 0.0636068 

2.5 0.0607855 

 

%ypower(datain=partnered,yvar=effort,yfst=1.5,ycnt=1,expand=y, 
           expxvars=bnddCFS,expvvars=bnddCFS,contract=y,nogprint=n); 

The settings “yfst=1.5” and “ycnt=1” guarantee that only the power 1.5 is consi-
dered. The nogprint macro parameter requests that genreg output be generated 
along with ypower output. The default setting is “nogprint=y”, indicating not to 
generate any genreg output. 

4.5. Adaptive Moderation 

Assume the variable interact has been added to the partnered data set (using 
code “interact=bnddCFS*mutuality;”). A standard linear moderation model can 
be generated as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,  
          xvars=bnddCFS mutuality interact,procmod=y); 

The setting “procmod=y” requests standard PROC REG output including the p 
value for the test of a significant interaction term, which in this case is 0.609. 

The adaptive additive model in bnddCFS and mutuality is generated as fol-
lows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,expand=y, 
expxvars=bnddCFS mutuality,contract=y); 

The generated model for the means is based on bnddCFS transformed by the 
power 6 and mutuality transformed by the power −0.1 without an intercept. The 
adaptive model in bnddCFS, mutuality, and interact is generated as follows, but 
it is the same as the adaptive additive model. 

%genreg(modtype=norml,datain=partnered,yvar=effort,expand=y, 
   expxvars=bnddCFS mutuality interact,contract=y); 
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Geometric combinations in bnddCFS and mutuality are requested as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,expand=y, 
        geomcmbn=y, expxvars=bnddCFS mutuality,contract=y); 

The setting “geomcmbn=y” requests that the expansion consider geometric 
combinations. The default setting is “geomcmbn=n”, which restricts to additive 
models. The generated model is described earlier and can be generated directly 
as follows. 

%genreg(modtype=norml,datain=partnered,yvar=effort,xintrcpt=n, 
         xgcs=mutuality −2 bnddCFS −36 : mutuality −2 bnddCFS 1: 

        bnddCFS 5 mutuality −2.3, xgcpowrs=−0.1599 −0.05 1.5); 

The xgcs macro parameter describes geometric combinations to include in the 
model for the means (or x component). Geometric combinations are determined 
by lists of variables and powers separated by colons(:). For example, “mutuality 
−2 bnddCFS −36” means raise mutuality to the power −2, raise bnddCFS to the 
power −36, and multiply these two transforms together. The xgcpowrs macro 
parameter provides associated powers for transforming the geometric combina-
tions of the xgcs macro parameter in the same order; for example, the geometric 
combination associated with “mutuality −2 bnddCFS −36” is transformed by the 
power −0.1599. 

5. Discussion 

Consideration of general power transforms of a primary predictor may be re-
quired to identify that a relationship holds between that predictor and an out-
come. For example, standard linear, quadratic, and cubic polynomial models for 
mean effort for single mothers as a function of child functional status (CFS) 
suggested that mean effort was constant in CFS. However, the adaptive model 
identified a distinctly nonlinear relationship (Figure 1) between mean effort and 
CFS. Moreover, this was only possible with consideration of zero intercept models. 

Consideration of general powers can identify distinctly better models than re-
stricting to the Royston and Altman recommended set of powers. For example, 
mean effort for partnered mothers depended on CFS6 which provided a substan-
tial improvement on the best recommended degree 1 power transform CFS3 for 
this case.  

Adaptive fractional polynomial modeling can identify distinctly nonlinear re-
lationships even when there is a significant linear relationship. For example, 
mean effort for partnered mothers was significantly related to untransformed 
CFS, but adaptively transforming CFS generated a substantially better model 
based on a nonlinear relationship. This model was counter-intuitively not mo-
notonically decreasing in CFS. However, the model generated by restricting the 
adaptive search not to remove the intercept was competitive monotonic alterna-
tive (Figure 2), indicating that monotonicity was a reasonable conclusion for 
these data. 
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5.1. Bounding Predictors 

The model of Figure 2 suggested that mean effort was constant in CFS up to a 
value of 90 and then decreased after that, and the associated bounded CFS model 
provided a competitive alternative. Bounded CFS is a special case of splines as 
often used in nonparametric modeling, for example, in multiple adaptive regres-
sion splines (MARS) [16]. Its applicability to these data provides the useful in-
sight into the relationship between mean effort and CFS that effort can only be 
improved (lowered) by increasing CFS to relatively high levels.  

CFS might not lend itself well to intervention, but suppose mean effort was 
constant in low values of a measure amenable to intervention like family func-
tioning. An intervention that produces only small to moderate improvements in 
family functioning would only be beneficial for families with relatively high le-
vels of family functioning to start with and so would have too low of a scientific 
premise to justify an efficacy study. On the other hand, suppose mean effort de-
creased distinctly for improvements in family functioning at low to moderate 
levels but was reasonably considered to be constant for high levels of family 
functioning. If a study to improve family functioning included substantial num-
bers of families with high levels of family functioning, the intervention would 
have little effect on mean effort for these families, and the efficacy of the inter-
vention would likely not be supported. However, if having a low to moderate 
level of family functioning was an inclusion criterion, the intervention would be 
likely to produce distinct reductions in effort supporting its efficacy. 

5.2. Zero Intercept Models 

Models commonly include an intercept even when it is nonsignificant, and so 
zero intercept models may seem inappropriate to consider. However, these 
models are quite simple to understand in the continuous outcome context; they 
mean that the mean outcome is zero when the predictors all have value zero. 
Moreover, they can generate competitive alternatives to nonzero intercept mod-
els more parsimoniously, and substantially better models in some cases (as 
demonstrated in the example analyses). However, the adaptive modeling process 
can be constrained not to remove the intercept, and the associated adaptive 
models can provide useful insights into the data (as in the above example sup-
porting an expected monotonic relationship). 

5.3. LCV Ratio Tests 

LCV ratio tests can be more conservative than standard tests for zero coefficients. 
For example, mean effort depended significantly on CFS transformed with the 
power −1, but the associated LCV score was not substantially better than the 
score for the constant model. This is not an isolated case. For example, for the 21 
significant cases considered in [17], the constant model was a competitive alter-
native using LCV scores in 5 (23.8%) of these cases; this also held for 10 (83.3%) 
of the 12 significant cases considered in [18] and for 12 (56.1%) of 21 significant 
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cases considered in [19]. This is an important property of LCV scores, indicating 
that adaptive modeling usually generates more parsimonious models than model 
selection procedures based on standard p values, thereby reducing the chance of 
overfitting. Knafl and Ding [10] provided the following partial justification for 
why this would hold in general. Model selection based on LCV scores is asymp-
totically equivalent to model selection based on Akaike information criterion 
(AIC) scores [20] as long as these are appropriately transformed into larger is 
better scores. Associated AIC ratio tests use more conservative thresholds for 
significance than standard likelihood ratio tests. Since the recommended ap-
proach for multiple fractional polynomial modeling [2] [3] is based on standard 
likelihood ratio tests, it would be more likely to produce more complex models 
and with more of a potential to overfit the data. 

5.4. Adaptive Moderation 

Adaptive moderation modeling can identify moderation effects not identifiable 
using linear moderation modeling. Moreover, consideration of geometric com-
binations may be needed to identify nonlinear moderation compared to only 
considering power transforms of interactions. For example, mean untrans-
formed effort for partnered mothers depended significantly on untransformed 
bounded CFS, but including parental mutuality (PM) in the model along with its 
interaction with bounded CFS generated a nonsignificant slope for the interac-
tion. An adaptive analysis considering transforms of the interaction (and so with 
bounded CFS and PM raised to the same power) suggested that nonlinear mod-
eration did not hold. However, consideration of geometric combinations (and so 
with different powers for bounded CFS and PM) identified nonlinear modera-
tion of the dependence of mean effort on bounded CFS by PM (Figure 5). 

Linear moderation of an effect to a predictor X on a continuous outcome Y by 
a third variable Z can be addressed by also including Z as a covariate and its in-
teraction X Z⋅  in the model for the mean of Y and then testing for a zero slope 
for the interaction. An alternative approach is to test for a significant change in 
R2 for the model with the interaction compared to the covariate model including 
X and Z without the interaction using an F test. In the adaptive nonlinear setting, 
the first approach based on a test for a zero coefficient cannot be extended, but 
the other approach can be. First, generate the adaptive model allowing for sepa-
rate transforms of X and Z along with geometric combinations in X and Z. If the 
generated model contains no geometric combinations, then adaptive moderation 
does not hold. However, if the generated model does contain geometric combi-
nations, adaptive moderation might still not hold. In that case, also generate the 
adaptive additive model in X and Z, that is, only considering separate transforms 
of X and Z without geometric combinations. Adaptive moderation holds if this 
adaptive additive model generates a substantial percent decrease in the LCV 
score compared to the model allowing for geometric combinations (as was the 
case in the example analyses).  
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5.5. Outcome Transformation 

Consideration of power transforms of positive valued continuous outcomes as 
well as of predictors can generate distinctly better models and can resolve model 
assumption problems. For example, variances for untransformed effort for part-
nered mothers were distinctly nonconstant, and the associated adaptive model 
generated skewed standardized residuals with two extreme outliers. On the other 
hand, modeling mean effort1.5 as a function of bounded CFS generated a model 
(Figure 3) that provided a substantial improvement over not transforming effort 
with variances reasonably treated as constant, without outliers, with reduced 
skew, and with a reasonably linear normal plot (Figure 4). However, this might 
not always be the case. The need for nonconstant variances is not a problem be-
cause variances can be appropriately modeled using adaptive methods. If there 
are still outliers after outcome transformation, sensitivity analyses can be con-
ducted removing outliers systematically to assess whether the outliers are highly 
influential on what models for the means and/or variances are generated. 

High levels of skewness may not be resolved through power transforms of a 
positive continuous outcome. In such cases, the outcome can be categorized into 
ordinal levels. Conventional categorizations of the outcome can be used if avail-
able. If not, percentile splits could be used. For example, the outcome could be 
categorized based on a median split and then modeled using adaptive logistic 
regression. Alternatively, the outcome could be categorized based on a tertile or 
quartile split and modeled using adaptive ordinal regression.  

5.6. Testing for a Bivariate Relationship 

Suppose a relationship has been hypothesized between an outcome Y and a pre-
dictor X. The conventional approach for assessing this involves testing for a sig-
nificantly nonzero slope for X using a bivariate regression model (or equivalent-
ly for a zero correlation). If this test is nonsignificant, a nonlinear relationship 
still might hold between Y and X. This can be assessed adaptively using an ex-
pansion of a constant base model restricted to at most one transform of X. If the 
expansion leaves the constant model unchanged, then a nonlinear relationship 
does not hold between Y and X. However, if the generated model does contain a 
transform of X, the heuristics of the expansion do not guarantee that this rela-
tionship would be significant. This could be assessed with a standard test for ze-
ro slope for transformed X. Even if this test is significant, the relationship might 
not be substantial, which could be addressed using a LCV ratio test comparing 
the model with transformed X to the constant model. Equivalently, the expanded 
model could be subjected to a contraction holding the intercept fixed in the 
model. The relationship is substantial if the contraction does not remove trans-
formed X from the model. 

5.7. Applicability 

Linear relationships are typically assumed or implied in theories used in the be-
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havioral, health, and social sciences. However, a variety of exceptions within the 
behavioral science context are discussed by Hayes and Preacher [21]. In any case, 
nonlinearity can hold even when theories hypothesize exact linear relationships. 

The reported analyses used data from the family psychology literature, but 
adaptive methods apply more generally to all areas providing deeper insights in-
to relationships between arbitrary outcomes and their continuous predictors. 
Adaptive methods could be used to conduct purely exploratory analyses similar 
to those reported here to identify nonlinear dependence of outcomes on indi-
vidual transformed predictors and/or on multiple transformed predictors in 
combination and possibly interacting (through geometric combinations). 

However, they can also be used to supplement standard analyses based on 
theoretical considerations. For example, suppose a pretest/posttest experiment 
was conducted with participants randomized to either an intervention to reduce 
depressive symptoms (or to affect any other appropriate outcome) compared to 
a control condition. Suppose that the pre-specified approach to assess the effica-
cy of the intervention was to model mean post-baseline depressive symptoms in 
terms of the indicator for being in the intervention group while controlling for 
baseline depressive symptoms. If the intervention group indicator has a signifi-
cant effect in this theory-based model supporting the efficacy of the intervention, 
the next natural issue to address is how that conclusion is affected by controlling 
for covariates. If one includes all available covariates in the model and the inter-
vention group effect becomes nonsignificant, this could be a meaningful conclu-
sion or alternatively a consequence of overfitting the model with too many non-
significant covariate terms.  

This issue could be addressed adaptively as follows. Conduct an adaptive 
analysis starting from the model for the means based on the intervention group 
indicator by itself, expand the model considering baseline depressive symptoms 
and all available covariates as primary predictors, then contract the expanded 
model adjusting powers of remaining transforms but restricting the contraction 
not to remove the intervention group indicator (or also the intercept). Because 
that indicator was included in the model based on theory, it would be reasonable 
to use a standard test for zero slope to assess whether the intervention effect still 
held after accounting adaptively for transforms of the baseline value and the co-
variates. This kind of modeling could be considered semi-adaptive.  

If a quasi-experimental or comparative design was used instead with two 
nonequivalent groups, the issue of covariates becomes even more important. 
One possibility would be to conduct an adaptive logistic regression analysis 
modeling treatment group membership in terms of available covariates and use 
the generated adaptive model to compute propensity score weights or scores for 
models assessing the efficacy of the intervention.  

Suppose that depressive symptoms (or any other appropriate outcome) were 
collected at baseline and also longitudinally at multiple post-baseline times and 
that the efficacy of the intervention was supported by a significant group-by- 
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time interaction using a standard repeated measures analysis. A parsimonious 
model of how mean depressive symptoms changes over time separately within 
each of the two groups can be addressed using adaptive linear mixed modeling 
allowing for temporal correlation. Conduct an adaptive moderation analysis 
with time and the intervention group indicator as primary predictors while al-
lowing for geometric combinations in these two predictors to account for dif-
ferent nonlinear trajectories for the two groups. In this case, geometric combina-
tions would be the same as power transforms of the interaction since indicator 
variables are unaffected by power transformation. 

Any standard model used to establish the effect of an intervention on a conti-
nuous outcome might have nonconstant variances or the outcomes may be 
skewed, making the conclusion that the intervention was efficacious questiona-
ble. This could be assessed through adaptive modeling allowing for nonconstant 
variances and/or outcome transformation. The model for the mean could be left 
unchanged so it would be theory-based or it could be adjusted as above for cova-
riates. For discrete or count outcomes, the need for nonunit dispersions could be 
assessed using adaptive modeling comparing the model allowing for nonunit 
dispersion to the associated unit dispersions model, once again holding a 
theory-based model for the means fixed or adjusting it for covariates. 

5.8. Comparison to Standard Fractional Polynomial Modeling 

The example analyses demonstrate that the range of the recommended powers 
can be too restrictive when the appropriate power is outside that range. This is 
further supported by a simulation provided by Knafl and Ding [10] (Section 
2.12). A simulation was also provided here that demonstrates this can also hap-
pen when the true power is strictly within the range of recommended powers. 
On the other hand, the recommended set of powers will often generate a com-
petitive choice for actual data sets compared to the associated adaptive model. 
When the selected recommended power has an extreme value of −2 or 3, it 
would be prudent to expand the search through more extreme powers. In any 
case, when the data have little variability, it would also be prudent to expand the 
search over powers nearby the selected recommended power. 

The advantage of standard fractional polynomial modeling [2] [3] is that it is 
supported by other statistical software, not just SAS as is adaptive modeling. The 
advantages of adaptive modeling include use of LCV ratio tests rather than 
standard likelihood ratio tests, consideration of general real valued powers not 
just fixed sets, allowing for the more general case of both nonzero and zero in-
tercept models, ability to model variances/dispersions as well as means, support 
for adaptive moderation analyses including geometric combinations generalizing 
power transforms of interactions, and support for multivariate outcomes not just 
univariate outcomes. On the other hand, standard fractional polynomial model-
ing has been extended to handle time-to-event outcomes while adaptive model-
ing of such outcomes is currently under development. 
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5.9. Limitations 

Adaptive modeling is not directly supported in standard statistical software. 
However, SAS macros have been developed for conducting adaptive modeling as 
described in this paper. Code for conducting the analyses reported here includ-
ing these macros are available at http://www.unc.edu/~gknafl/AFPM2.html (ac-
cessed February 4, 2018). The data used in these analyses are also available at this 
URL. Example code for conducting analyses like those reported here is provided 
above. More extensive analyses of this kind and associated code are provided in 
Chapters 2 - 7 of [10]. Data and code for those analyses as well as for analyses 
reported in other chapters are at http://www.unc.edu/~gknafl/AdaptReg.html 
(accessed February 4, 2018). Mediation [12] has not been addressed here. That 
requires a more complex approach based on adaptive path modeling [22]. 

Models based on arbitrary power transforms can be difficult to interpret, es-
pecially geometric combinations based on multiple powers (as in the example 
analyses). Selected powers have little meaning since competitive models could be 
generated by replacing those selected powers by many alternative, nearby powers. 
Adaptive models can only be fully understood through visualization of estimated 
relationships. Figures 1-3 give examples of visualizing models based on single 
predictor transforms. Figure 5 provides an example of visualizing a model based 
on two predictor transforms (i.e., plot the mean outcome as a function of one of 
the predictors for selected values of the second predictor). Three predictor 
transforms could be handled by several plots like Figure 5, visualizing the rela-
tionship in two of the transforms at selected values of the third transform. Mod-
els based on more than three transforms would be difficult to visualize. Adaptive 
modeling can be constrained to include at most three transforms in order to 
guarantee that the generated model could be visualized. 

The possibility of overfitting is of concern for all regression models. The use 
of LCV scores reduces the possibility of overfitting by an adaptively selected 
model. Overfitting results when a model relies too heavily on small exceptional 
subsets of the data (e.g., outliers), but such subsets are likely to fall mostly, if not 
entirely, in one fold. While such a model will fit that fold very well, it is unlikely 
to fit the other folds well, thereby generating an inferior LCV score compared to 
models not overfitting the data. However, the possibility of overfitting should 
still be assessed. For example, Figure 3 is the plot for the final selected model for 
mean effort as a function of CFS for partnered mothers. The smallest observed 
value for CFS is 42.9, more than 7 units less than the next smallest observed val-
ue of 50. However, Figure 3 indicates that neither of these two data points af-
fects estimated mean effort values over the associated range of CFS values very 
much. These estimates are controlled more by the next smallest observed CFS 
value of 53.6 with five associated observations. Had the estimated curve at CFS = 
42.9 been very close to the associated observed effort value of 20, the model 
could have overfit the relationship at the low end of CFS values, especially if its 
slope changed quite a bit soon after that. 
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Other methods that are directly supported in standard statistical software 
could have been used instead, including classification and regression trees 
(CART) [23], generalized additive models (GAMs) [24], and MARS models. 
Fractional polynomial modeling is likely to generate smoother curves than these 
other methods due to the differentiability of power transforms. However, these 
other methods do not address nonconstant variances or outcome transformation. 
Knafl and Ding [10] provided comparisons of adaptive modeling to the use of 
GAMs and MARS, demonstrating that adaptive modeling can generate im-
proved LCV scores using more parsimonious models and sometimes distinctly 
better models. In none of those example analyses did GAMs outperform adap-
tive modeling. However, in one exceptional example analysis, MARS modeling 
outperformed adaptive modeling, but that MARS model could be improved 
through adaptive adjustments (i.e., by power transforming MARS generated 
splines). 

6. Summary 

Adaptive fractional polynomial modeling has been described and demonstrated. 
Reported analyses demonstrate the kinds of novel insights into the data that are 
possible with adaptive modeling. Specifically, fractional polynomials can out-
perform standard polynomials and consideration of only standard polynomials 
can lead to the incorrect conclusion that a relationship does not hold when in 
fact a nonlinear relationship exists. Zero intercept models are important to con-
sider because the associated models are simpler and relationships in some cases 
can only be supported allowing for a zero intercept. While the recommended 
Royston and Altman powers will often generate effective models, there are cases 
where the recommended powers are inadequate to effectively model the data. 
This had only been demonstrated for powers outside the range of the recom-
mended powers before using simulated data, not actual data as demonstrated in 
the example analyses. Furthermore, the example simulation analyses demon-
strate for the first time that this also holds when the true power is strictly within 
the range of the recommended powers. Allowing for nonconstant variances can 
provide distinct improvements over making the usual constant variances as-
sumption and provides an objective way to assess that assumption as opposed to 
subjective inspection of residual plots. Power transforms of positive valued con-
tinuous outcomes can provide distinct improvements over modeling untrans-
formed outcomes. Basing the choice on power-adjusted LCV scores provides an 
objective way to choose an appropriate outcome power as opposed to subjec-
tively inspecting scatter plots for selected power-transformed outcomes. Nonli-
near moderation relationships can hold when linear moderation does not hold. 
Moreover, this can sometimes only be identified using general geometric com-
binations rather than standard interactions. The reported analyses provide the 
first known example of this. 

In summary, adaptive modeling can provide novel insights into data com-
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pared to standard regression modeling. While only analyses of univariate conti-
nuous outcomes have been addressed here, there can be similar benefits to adap-
tive modeling of univariate discrete and count outcomes (for examples see [17] 
[18] [19]) as well as multivariate continuous, discrete, and count outcomes (for 
examples see [10]). 
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