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Abstract 

There is a growing interest in the diagnosis and treatment of patients with 
dementia and cognitive impairment at an early stage. Recent imaging studies 
have explored neural mechanisms underlying cognitive dysfunction based on 
brain network architecture and functioning. The dorsal anterior cingulate 
cortex (dACC) is thought to regulate large-scale intrinsic brain networks, and 
plays a primary role in cognitive processing with the anterior insular cortex 
(aIC), thus providing salience functions. Although neural mechanisms have 
been elucidated at the connectivity level by imaging studies, their under-
standing at the activity level still remains unclear because of limited time-based 
resolution of conventional imaging techniques. In this study, we investigated 
temporal activity of the dACC during word (verb) generation tasks based on 
our newly developed event-related deep brain activity (ER-DBA) method us-
ing occipital electroencephalogram (EEG) alpha-2 powers with a time resolu-
tion of a few hundred milliseconds. The dACC exhibited dip-like temporal 
waveforms indicating deactivation in an initial stage of each trial when ap-
propriate verbs were successfully generated. By contrast, monotonous increase 
was observed for incorrect responses and a decrease was detected for no res-
ponses. The dip depth was correlated with the percentage of success. Addi-
tionally, the dip depth linearly increased with increasing slow component of 
the DBA index at rest across all subjects. These findings suggest that dACC 
deactivation is essential for cognitive processing, whereas its activation is re-
quired for goal-oriented behavioral outputs, such as cued speech. Such dACC 
functioning, represented by the dip depth, is supported by the activity of the 
upper brainstem region including monoaminergic neural systems. 
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1. Introduction 

Cognitive control is essential for performing daily activities. It allows the brain 
to vary adaptive behavior according to current goals and tasks, rather than re-
maining rigid and inflexible. Cognitive behavior is altered, in a number of neu-
rodegenerative and psychiatric diseases, lowering the quality of life. Enormous 
effort has been addressed to eliciting underlying neurophysiological mechanisms 
of the affected individual [1]-[8]. Functional magnetic resonance imaging (fMRI) 
studies reveal that neurophysiological mechanisms underlying cognitive disord-
ers involve disrupted large-scale brain networks, including the default mode 
network (DMN) consisting of the ventromedial prefrontal cortex (VmPFC), 
posterior cingulate cortex (PCC), inferior parietal lobule, and hippocampus; the 
salience network (SN) consisting of the dorsal anterior cingulate cortex (dACC) 
and insular; and the central executive network (CEN) consisting of the dorsola-
teral prefrontal cortex (DLPFC) and intra-parietal sulcus (IPS) [9]-[18]. 

To elicit mechanisms of cognitive dysfunction, there has been a significant in-
terest in understanding networks that manage cognitive function. Recent fMRI 
studies have revealed a negative correlation between the DMN, a task-negative 
network, and the CEN, a task-positive network [19] [20] [21] [22]. However, 
these networks are not always anti-correlated [23] [24] [25] [26]. Such countere-
vidence to the conventional anti-correlation-based brain network architectures 
[27] is thought to originate from dynamic interactions [28]. Using a graph 
theory [29] [30], correlations across the entire brain have been investigated us-
ing fMRI data measured both during rest and while actively performing tasks to 
explore how the human brain is functionally organized [31] [32].  

Although the brain intrinsically follows an anti-correlated architecture, the 
organized networks are reconfigurably associated with not only aging [33] but 
also external situations [34] [35] [36]. To understand mechanisms underlying 
contextual reconfiguration of brain networks, an event-related fMRI paradigm 
has been developed [37] [38]. Data given by this paradigm reflect temporal in-
formation associated with hemodynamics. To elicit the mechanisms, such data 
are desired to be integrated with data derived from more direct electrophysio-
logical measurements including electroencephalography [39]. However, blood 
oxygen level dependent signals of fMRI are too slow to capture temporally 
changing network dynamics, compared with electroencephalogram (EEG) sig-
nals. This discrepancy interferes with the integration of fMRI and EEG para-
digms. 
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In this study, we aimed to investigate temporal behavior of dACC for explor-
ing the temporal dynamics of task-oriented brain networks recruited for cogni-
tive processing. We adopted a single word generation task [40] [41] [42] follow-
ing conventional trial-by-trial protocols, where subjects were asked to pro-
nounce a semantically appropriate verb for a presented noun at each trial. It is 
well known that the left inferior prefrontal cortex (IPFC) and dACC are acti-
vated during word generation tasks. This activation of dACC and IPFC is attri-
buted to semantic processing and target-oriented attention control, respectively 
[43]. Therefore, to elicit the dynamics of cognitive processing for generating 
contextual verbs, the dACC was considered as the target to measure during 
tasks.  

We adopted an electroencephalographic (EEG) technique for numerically 
evaluating the activity of dACC in the derivations of the occipital EEG alpha-2 
(10 - 13 Hz) power fluctuations. The occipital EEG alpha rhythms were thought 
to come from neocortical structures, and enormous effort had been addressed to 
explore which areas are correlated with the EEG alpha rhythms [44] [45] [46] 
[47]. More recently, it has been shown that regional activity is dependent on the 
frequency range of the occipital alpha-2 power fluctuations; a faster component 
(≥0.04 Hz) represents the metabolic activity of dACC, whereas a slower compo-
nent (≤0.04 Hz) represents the upper brainstem [48]. Based on this finding, we 
developed an event-related deep brain activity (ER-DBA) assessment paradigm 
using trial-by-trial tasks. This paradigm provides event-related traces in the de-
rivation of the arithmetic mean of alpha-2 power streams with a high time reso-
lution of hundreds of ms. This enabled numerical evaluation of the temporal ac-
tivity of dACC as a member of the deep brain structures, for the first time, 
beyond the capability of conventional event-related fMRI techniques. 

2. Materials and Methods 

2.1. Subjects 

Student volunteers from the Kobe Co-medical College (grade: 1st, major: training 
course for speech-language-hearing therapy) were screened for their medical 
history declared in clinical interviews, and students currently receiving treat-
ment for neurological and/or psychiatric disorders were eliminated. Twelve 
healthy subjects (6 males and 6 females; mean age 25.0 ± 1.8 years) were selected 
to participate in this study according to a criterion stating that subjects should be 
native Japanese speakers who grew up in Japan. Written informed consent was 
obtained from subjects according to the guidelines of the ethics committee of 
Kobe University Graduate School of Health Sciences. 

2.2. Stimuli 

A series of auditory stimuli consisting of 60 pairs of sounds S1 and S2 were used 
for this study (Figure 1). S1 represented the sound of a single familiar Japanese 
noun, while S2 was a beep sound used as a speech onset cue. Sounds S1 and S2  
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Figure 1. Schematic representation of a series of auditory stimuli and paradigm design [40] for noun repetition task (NRT) and 
verb generation task (VGT). 

 
were separated by an interval of 1125 ms. Nouns were pronounced with natural 
prosodies, and each beep sound had a duration of 50 ms at 2000 Hz. Each trial 
comprised of an S1 and an S2 sound and was 2250 ms long. 

2.3. Paradigm Design 

Subjects were asked to respond to auditory instructions, according to which they 
were expected to repeat the noun (noun repetition task; NRT) or generate the 
associated verb (verb generation task; VGT) as soon as they heard the beep 
sound. The verbal response of each subject was recorded using a digital voice 
recorder. Scalp EEG of the subjects were recorded Scalp EEGs were also record-
ed with using Ag/AgCl electrodes arranged according to the international 10 - 20 
method. The EEG recordings were carried out with a digital electroencephalo-
graph, which provided recording channels with a 24-bit voltage resolution and a 
sampling rate of 512 Hz. The EEG signals were re-referenced to the mastoid 
electrodes (A1 and A2) and band-pass filtered in the 0.1 - 45 Hz range to elimi-
nate artifacts. EEG recording during tasks was performed with the eyes closed. 

2.4. Behavioral Performance Analysis 

Verbal responses of subjects were analyzed linguistically and prosodically, and 
categorized into three behavioral groups: correct response (CR), incorrect re-
sponse (IR), and no responses (NR) groups. The response of a subject was cate-
gorized as IR if it was linguistically incorrect, e.g., an adjective, instead of a verb, 
was generated by the subject or a different verb, not relatively close to the noun, 
was generated; or prosodically incorrect, e.g., the response exhibited an abnor-
mal rhythm, such as stuttering or partially repeating the same word. Examples of 
linguistic and prosodic errors are provided in Table 1. If no response was rec-
orded in the voice recorder, it was categorized as NR. 
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Table 1. Examples of error assessment. 

Stimulus Response Assessment 
Blood pressure High Grammatical error: adjective generation 

Pine cricket Eat Perseveration: the same verb generation 
Alarm s-set Abnormal rhythm: stuttering 

2.5. EEG Data Analysis 

Occipital EEG alpha-2 powers were numerically extracted at both O1 and O2 
sites using a digital band-pass (10 - 13 Hz) filter in a 2-s epoch. DBA index was 
defined as an average of two time series’ signals. The DBA index waveforms ob-
served in a window of 2200 ms were considered as the fast component of DBA, 
indicating the dACC activity, whereas average DBA indices in a larger time span 
of >25 s corresponding to the frequency of 0.04 Hz represented the slow com-
ponent of DBA, indicating the upper brain-stem activities. The slow component 
of DBA indices was used for explaining personal differences in cognitive per-
formance, whereas the fast component was used for investigating network dy-
namics during cognitive processing. 

2.6. Event-Related DBA Index Analysis 

An event-related design, which can be applied to the fast component of DBA in-
dices, was developed following a conventional event-related potential (ERP) pa-
radigm. Additional processing was performed with data extracted in a limited 
time range of approximately 2 s from original DBA index data based on S1 as 
event markers, excluding outliers. The averaged temporal waveforms were de-
fined as event-related (ER) DBA indices (Figure 2). Baseline correction was 
performed 200 ms prior to the onset of noun presentation (S1). The 
event-related features of dACC activities were numerically estimated using the 
ER-DBA indices, avoiding background spontaneous brain activities. The time 
resolution was expected to be approximately 0.3 s, taking into account that the 
alpha-2 (10 - 13 Hz) frequency band was regarded as an occupied sin-
gle-side-band modulation band including temporal information [49] ER-DBA 
index traces under this time resolution were expected to distinguish between a 
few events per second. 

Here, performance-dependent ER-DBA indices were used to examine the 
temporal dACC activity patterns during cognitive processing and elucidate the 
underlying network dynamics. A conventional subtraction technique used wide-
ly for analyzing ERP data [50] was applied to the two ER-DBA indices measured 
during NRT and VGT. The VGT was assumed to involve additional cognitive 
processing of memory retrieval and decision-making associated with the genera-
tion of an optimal verb. Thus, the subtracted ER-DBA indices would indicate 
brain activities related to additional cognitive processing during VGT [51]. 
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Figure 2. Two time series signals of deep brain activity (DBA) index. (a) The slow component of DBA index corresponding to the 
frequency of 0.04 Hz; (b) The fast component of DBA index. Additional processing was performed with data extracted in a limited 
time range of approximately 2 s from the original DBA index data based on the onset markers of S1 as event markers, excluding 
outliers. The averaged temporal waveforms were defined as event-related (ER) DBA indices. Baseline correction was performed 
200 ms prior to the onset of noun presentations (S1). 

2.7. Event-Related Potential Analysis 

Conventional event-related potential (ERP) measurement was performed with 
EEG signals at Cz for evaluating contingent negative variation (CNV) during 
tasks. The CNV, associated with the CEN during focusing of attention [52], is 
expected to support our claim based on the event-related DBA index analysis, 
which addresses roles of the dACC in cognitive processing. 

2.8. Statistical Analysis 

Statistical analysis of data was performed using the t-test to determine signifi-
cant differences in error rate between NRT and VGT, and in ER-DBA indices 
among response types and groups. Statistical significance was primarily assessed 
by the p value (p), which was confirmed by the power and Cohen’s d value (d). 
Total error incidence was further evaluated by measuring the interval of stimu-
lus number between two consecutive errors. The measured interval data were 
statistically analyzed to determine probability density functions (PDFs) for the 
error incidence. PDFs were then used to examine whether committing the error 
affected post-error task performances. 

3. Results 

3.1. Behavioral Performance Data 

We assessed the behavioral performance of subjects as CR, IR, or NR for each 
NRT and VGT trial, according to the criteria described in Materials and Me-
thods. Table 2 lists the assessed results for all subjects. Error rates were signifi-
cantly lower for NRT than for VGT (p < 0.001) (Figure 3). 
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Table 2. Behavioral performance data recorded for 12 subjects while performing noun repetition task (NRT) and verb generation 
task (VGT). 

(a) 

Subject 
ID 

Noun repetition task (NRT) 

Response
a
 (%) Error trial

b
 

CR IR NR IR NR 
1 58 (96.7) 0 (0) 2 (3.3) － 2, 27 
2 60 (100) 0 (0) 0 (0) － － 
3 57 (95.0) 3 (5.0) 0 (0) 29, 37, 47 － 
4 55 (91.7) 5 (8.3) 0 (0) 2, 3, 21 － 
5 58 (96.7) 2 (3.3) 0 (0) 1, 2 － 
6 59 (98.3) 1 (1.7) 0 (0) 40 － 
7 59 (98.3) 1 (1.7) 0 (0) 1 － 
8 60 (100) 0 (0) 0 (0) － － 
9 59 (98.3) 1 (1.67) 0 (0) 47 － 

10 59 (98.3) 1 (1.67) 0 (0) 18 － 
11 － － － － － 
12 59 (98.3) 1 (1.67) 0 (0) 1 － 

(b) 

Subject 
ID 

 
Verb generation task (VGT) 

Response
a
 (%) Error trial

b
 

CR IR NR IR NR 

1 
44 

(73.3) 
1 

(1.7) 
15 

(25.0) 
28 

5, 7, 12, 14, 17, 19, 20, 
23, 24, 26, 39, 45, 50, 51, 55 

2 
40 

(66.7) 
12 

(20.0) 
8 

(13.3) 
2, 9, 14, 19, 20, 21, 

32, 33, 44, 48, 50, 57 
1, 24, 36, 38, 39, 51, 53, 60 

3 
38 

(63.3) 
20 

(33.3) 
2 

(3.3) 
1, 2, 5, 11 - 15, 24, 26, 29, 32, 
33, 36, 39, 47, 51, 55, 59, 60 

16, 17 

4 
40 

(66.7) 
5 

(8.3) 
15 

(25.0) 
3, 28 - 30, 52 

5, 19, 20, 23, 24, 33, 37, 
39, 44, 45, 47, 55, 56, 58, 60 

5 
43 

(71.7) 
13 

(21.7) 
4 

(6.7) 
1, 20, 24, 27, 28, 30, 

34, 38, 39, 45, 54, 58, 60 
7, 12, 33, 53 

6 
50 

(83.3) 
3 

(5.0) 
7 

(11.7) 
27, 28, 43 24, 33, 36, 39, 45, 51, 60 

7 
38 

(63.3) 
22 

(36.7) 
0 

(0) 
1, 14, 23, 24, 26 - 28, 30, 31, 33, 38, 
40, 43, 45, 47, 48, 53, 55, 56, 58, 60 － 

8 
45 

(75.0) 
15 

(25.0) 
0 

(0) 
14, 17, 20, 24, 25, 30, 32, 

39, 50, 51, 53, 55, 56, 58, 59 － 

9 
30 

(50.0) 
15 

(25.0) 
15 

(25.0) 
6, 7, 14, 16, 19, 28, 30, 

32, 33, 37, 40, 51, 52, 58 
8, 20, 23, 24, 26, 27, 36, 
39, 44, 45, 53, 55, 59, 60 

10 
36 

(60.0) 
20 

(33.3) 
4 

(6.7) 
9, 15, 19, 22, 24, 26 - 30, 

33, 36 - 39, 45, 53, 56, 58, 60 
10, 14, 32, 54 

11 
46 

(76.7) 
6 

(10.0) 
8 

(13.3) 
10, 14, 15, 23, 30, 45 19, 24, 31, 36, 38, 39, 51, 53 

12 
44 

(73.3) 
15 

(25.0) 
1 

(1.7) 
19, 20, 22 - 24, 27 - 29, 
32, 33, 39, 44, 58 - 60 

14 

aNumbers indicated for each response represent the number of times that response was given by the subject out of a total of 60 trials. Numbers in paren-
theses indicate the percentages. CR: correct response, IR: incorrect response, NR: no response bNumbers indicate the nth trial that categorized as IR or NR. 
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Figure 3. Comparison of total error rates for 
noun repetition task (NRT) and verb generation 
task (VGT). Error rates were significantly lower 
for NRT (Total error rate (%): mean ± SE: 2.3 ± 
0.8) than for VGT (31.4 ± 2.6) (n = 12, ***: p < 
0.001 (p = 6.8e−8), d = 4.4). n, sample size; d, 
Cohen’s d. 

3.2. Event-Related (ER) DBA Indices 

The ER-DBA index waveforms were derived from DBA index data of all subjects 
in a window of 2200 ms by arithmetic mean We found that the waveforms cal-
culations. Waveforms exhibited performance differences (Figure 4(a)). The CR 
group showed a dip below the baseline just posterior to the onset of the auditory 
noun presentations (S1). The group also produced a mild increase several hun-
dreds of ms prior to the arrival of the speech cues (S2). The IR group showed a 
sharp increase above the baseline accompanied with a negligible dip. By contrast, 
the NR group showed a steep dip spanning the entire time slot between the two 
auditory cuing signals of S1 and S2. We also calculated the ER-DBA waveforms 
for CR and IR groups of NRT (Figure 4(b)). A comparison between CR groups 
of NRT and VGT revealed significant differences (p < 0.001) with the dip for CR 
group of VGT being significantly deeper than that of NRT (Figure 4(c)). 

3.3. ERPs 

Calculations based on the conventional arithmetic mean paradigm were respec-
tively done in the Cz deviations using data of all subjects for all behavioral 
groups (CR, IR, and NR) of VGT. The calculated ERP waveforms were 
represented in a time window of 2200 ms prior to the arrival of the auditory 
noun stimulus (S1) in 200-ms intervals (Figure 5(a)). The ERP waveform was 
characterized for all groups by sustained broad negativities. No significant dif-
ferences were determined between these waveforms; however, the CR group en-
hanced the negativity compared with the other performance groups. The ERPs  
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Figure 4. Event-related analyses on DBA index data. (a) CR (n = 335), IR (n = 101), and NR (n = 51) data for VGT. The CR group 
showed a dip below the baseline [***: p < 0.001 (p = 1.9e−20), power = 1]. The dip of the IR group was not significant (p = 0.42, 
power = 0.13); (b) CR (n = 554) and IR (n = 15) data for NRT; (c) Comparison of DBA indices between CR groups of NRT and 
VGT [***: p < 0.001 (p = 1.2e−13), d = 0.52]. n, sample size; d, Cohen’s d. 

 
were also calculated in the same electrode deviations for the CR group of NRT 
(Figure 5(b)). Similar broad negativities were obtained following sustained ne-
gativities. 

3.4. Subtraction Analyses 

ER-DBA index and ERP waveforms. The CR group of NRT was used as a control 
for subtraction processing (Figure 6). The ER-DBA index waveform produced a 
broad sustained negativity covering the entire time range from the onset of the 
noun presentations (S1) to the arrival of the speech cues (S2), whereas the ERP  
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Figure 5. Event-related potential (ERP) waveforms. (a) ERP waveforms calculated for different three CR (n = 221), IR (n = 66), 
and NR (n = 35) behavioral groups of VGT; (b) ERP waveform calculated for the CR (n = 460) group of NRT. n, sample size. 

 

 
Figure 6. Conventional subtraction analysis for the ER-DBA index (a) and the ERP waveforms (b). 

 
waveform showed negativity in a limited range between S1 and S2. 

3.5. Personal Differences 

We were especially interested in errors committed during VGT, because this 
task was associated with higher-order cognitive functions. Therefore, we inves-
tigated personal differences in behavioral performance based on the DBA index 
of each subject. The average DBA index showed a strong negative correlation 
with the total error rate including IR and NR groups, and a strong positive cor-
relation with the dip depth of the ER-DBA index waveform of the CR group 
(Figure 7(b)). 
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Figure 7. The average DBA index at rest versus (a) the total error rate and (b) the dip depth. The errors included both IR and NR. 
(a) r (Pearson’s correlation coefficient) = −0.63, p < 0.05 (p = 0.03); (b) r = 0.90, p < 0.001 (p = 5.2e−5). 

4. Discussion 

4.1. Cognitive Processes Predicted by the Dip in ER-DBA  
Index Trace 

We found that ER-DBA index traces exhibited a dip immediately after the onset 
of the auditory word (noun) presentations for correct responses during the VGT 
(Figure 4(a)). As the fast component of DBA index reflects the dACC activity, 
the dip in ER-DBA indicates deactivation of dACC. The duration of the dip was 
approximately 600 ms, which suggests that optimal verb retrieval was performed 
during the dip. The IPFC associated with the frontotemporal network is deacti-
vated during semantic processing and word retrieving [53] [54]. A previous 
electrocorticogram (ECoG) study revealed that the PCC is also deactivated dur-
ing semantic processing [55]. Together, these data suggest that dACC and IPFC 
are co-deactivated during optimal verb retrieval, further indicating that dACC is 
coupled with IPFC. This co-deactivation of dACC and IPFC is thought to origi-
nate from direct memory access with word processing under the speed-accuracy 
tradeoff condition for achieving the best task performance [56] [57]. 

It has also been shown that the DMN is coupled with task-positive networks, 
including the IPFC [19]. Hence, it is possible that the coupling between dACC 
and IPFC supports dACC-mediated deactivation of DMN during the verb re-
trieval task. Consequently, de-activation of large-scale brain networks, including 
SN and DMN, is thought to be essential for early-stage cognitive processing. On 
the other hand, such coupling increases the susceptibility of the subject to dis-
traction by co-activation during tasks [58]. The risk is brought by excessive ac-
tivation of the anterior insular cortex (aIC) responding to unpredictable sti-
muli [59] [60]. The IRs, given by the positive DBA index (Figure 4(a) and 
Figure 4(b)) corresponding to dACC activation, may be attributed to the 
dACC-activation-induced distraction. 
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We also found that whether or not the verb retrieval was successful, the dACC 
exhibited subsequent increase in an interval of several hundred ms from the on-
set of word presentation. This increase corresponds to the behavior of the ACC 
when a solution is hit [43]. This suggests that dACC may couple with the CEN 
for performing goal-oriented processing, including decision-making and motor 
preparation for speech. This raises the question as to why such deactivation is 
needed for processing information. A possible explanation of the role of “deac-
tivation” is attributed to the function of γ-aminobutyric acid (GABA) [61], 
which inhibits spontaneous neural spiking with no information [62] [63] or 
prohibits the incoming unnecessary impulses [64] [65] [66]. Such deactivation is 
beneficial for highlighting target information [67]. Figure 8 illustrates a sche-
matic diagram for explaining dACC-oriented dynamic cognitive processing 
supported by the above findings. 

4.2. Temporal Dynamics Predicted by Subtraction Analyses 

We further found performance-specific DBA index and ERP traces from sub-
traction analyses data. Figure 9 shows a schematic diagram of cognitive 
processing predicted during NRT and VGT. By subtracting the common 
processes, we obtained the difference given by the additional processes of VGT, 
including verb retrieval and decision-making for selecting a verb suitable to the 
presented noun. The negativity of the subtracted DBA index difference over the 
time window from the onset of the word (noun) presentation to arrival of the 
speech cue (Figure 6(a)) is given by sustained attention for the VGT-specific 
cognitive processes as mentioned above. Such durable attention is consistent 
with the previous finding that the working-memory remains active during tasks 
while the DMN is deactivated [22]. 

On the other hand, the negativity of the subtracted ERP trace at Cz (Figure 
6(b)), reflecting the readiness potential of the motor cortex [68] [69], emerged 
posterior to the dip bottom of the DBA index. The temporal discrepancy be-
tween the subtracted DBA index and ERP traces indicates that the word 
processing and motor preparation are dissociable. This dissociation is attributed 
to the salience function of dACC, which regulates the motor system by imme-
diately breaking off the coupling with the IPFC for engaging the cued speech.  
 

 
Figure 8. Schematic representation of performance-dependent dynamic interactions between dACC, IPFC, and CEN/motor sys-
tem during cognitive processing. 
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Figure 9. A schematic diagram of cognitive processing predicted during the two tasks of 
NRT and VGT. 
 
The flexible intra-coupling aspects of dACC with altered coupling states between 
the default and executive networks are essential for its salience function [70]. 
This flexibility supports the reconfigurable human brain networks for engaging a 
wide variety of cognitive demands [71] [72]. Our results are the first evidence for 
such network architectures. 

4.3. Personal Differences 

Deep brain structures are characterized by monoaminergic neural systems, espe-
cially the dopaminergic system at the ventral tegmental area (VTA) involved in 
the upper brainstem. This neural system is not only essential for reward [73], but 
also improves connectivity of large-scale networks of the human brain [74] [75] 
[76]. By contrast, according to small-scale network architectures [77] [78], net-
work connectivity is dependent on the modularity of neural systems. As the 
number of impulses pending processing increase at the synapse with decreasing 
the modularity, the network connectivity is improved at the cost of metabolic 
stress [77] [79]. Hence, connectivity and metabolic cost are counterbalanced. 

In this study, we found that the dip depth of ER-DBA index traces was posi-
tively correlated with the slow component of the DBA index (Figure 7(b)), i.e., 
the activity of the dopaminergic neural system at the VTA. This suggests that 
those who possess higher dopaminergic neural activity at rest can improve their 
brain network connectivity for achieving best performance during tasks against 
higher metabolic cost. Assuming that task performance is correlated with net-
work connectivity, performance and metabolic cost are also counterbalanced. 
Hence, personal differences of cognitive behaviors are determined according to 
the cost of each task [80]. 

4.4. Error Incidence 

It is known that sustained influence of errors commission is avoided by post er-
ror slowing (PES), supported by brain activation [81]. Taking into account that 

https://doi.org/10.4236/jbbs.2018.82006


E. Imai, Y. Katagiri 
 

 

DOI: 10.4236/jbbs.2018.82006 106 Journal of Behavioral and Brain Science 

 

performance accuracy is affected by emotional stimuli or internal motivation 
[82] [83], we hypothesized that the dynamic performance of the dACC promotes 
the brain activation associated with PES. 

When post-error influence is avoided by PES, there is no correlation in error 
commission. Hence, if the random error incidence is confirmed in our experi-
mental results, it will be appreciated that the dACC will contribute to maintain-
ing performance accuracy during tasks. 

To examine this hypothesis, we statistically analyzed error intervals, derived 
from the number of errors listed in Table 2. The PDFs determined for most of 
the subjects exhibited good correspondence (p < 0.05) with exponential distribu-
tion derived from Erlang distribution, 

( ) ( )
( ) ( )

1

exp
1 !

n
p n n

n

κλ λ
λ

−

= −
−

                    (1) 

where κ = 1 for exponential distribution (Figure 10). The exponential PDF is 
derived from random stochastic processes as observed in the natural science 
fields addressing, for example, a many-body problem in quantum physics [84]. 
Hence, the random error incidence as shown in Figure 10(a) is evidential to our 
hypothesis. 

Indeed, some subjects provided exceptional performance depicting 
non-exponential PDF, which was rather approximated with a higher-order (κ > 
1) Erlang distribution function (Figure 10(b)). It was considered that such 
higher order Erlang distribution was attributed to excessive activation of the 
dACC, which would intensively suppress successive error commission. Hence, 
such exceptions still support our claim, although they are not associated with  

 

 
Figure 10. Probability density functions (PDFs) of error intervals across subjects. Solid lines indicate individual data. (a) 72% of 
the subjects provided PDFs fitted with the exponential distribution (p < 0.05), corresponding to κ = 1 in the Erlang distribution, 
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 (b) 20% of the subjects produced exceptional examples deviant from the exponential distribution, 

best fitted with κ = 8 of the Erlang distribution under statistical significance (p < 0.001). 

https://doi.org/10.4236/jbbs.2018.82006


E. Imai, Y. Katagiri 
 

 

DOI: 10.4236/jbbs.2018.82006 107 Journal of Behavioral and Brain Science 

 

random stochastic processes. 

4.5. Limitations 

This study has a few limitations. First, the study was limited to healthy subjects. 
Future studies should apply the novel event-related DBA index method to assess 
symptoms of patients with cognitive dysfunctions in clinical fields. Second, the 
study was limited to word-based paradigms because our primary goal is to un-
derstand cognitive processing during word retrieval. Therefore, future studies 
should examine the method for investigating more general cognition schemes 
typically including visual processing. 

5. Conclusions 

We investigated the dynamic behavior of dACC during word generation tasks 
using a newly developed ER-DBA index for elucidating mechanisms underlying 
SN-dominant cognitive processing. We found remarkable performance-dependent 
ER-DBA traces accompanied with a dip in DBA corresponding to subsequent 
dACC deactivation after word presentation. We also found personal depen-
dence, according to which the DBA dip becomes stronger for those who exhibit 
higher average DBA index at rest. These findings suggest that the dACC is deac-
tivated during cognitive processing from predicted task-negative regions, in-
cluding the IPFC, but is activated during the execution stage with task-positive 
regions, including the CEN and motor system. Data also suggested that such 
dACC function in cognitive processing is supported by the monoaminergic 
neural systems at the upper brainstem region. 

Future studies will be conducted to understand neural mechanisms underly-
ing performance-based difference reflected in ER-DBA traces during cognitive 
tasks and those involved in cognitive impairment observed in various diseases. 
Hence, characterization of ER-DBA traces during cognitive tasks will be highly 
valuable for providing precise diagnosis of a wide range of diseases with cogni-
tive impairment in clinical settings. 
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Appendix 
Abbreviation Collection 

Abbreviation Term 

CEN Central executive network 

CNV Contingent negative variation 

CR Correct response 

DBA Deep brain activity 

DLPFC Dorsolateral prefrontal cortex 

DMN Default mode network 

ECoG Electrocorticogram 

EEG Electroencephalogram 

ER-DBA Event-related deep brain activity 

ERP Event-related potential 

GABA γ-aminobutyric acid 

IPFC Inferior prefrontal cortex 

IPS Intra-parietal sulcus 

IR Incorrect response 

NR No response 

NRT Noun repetition task 

PCC Posterior cingulate cortex 

PDF Probability density function 

PES Post error slowing 

SN Salience network 

VGT Verb generation task 

VTA Ventral tegmental area 

aIC Anterior insular cortex 

dACC Dorsal anterior cingulate cortex 

fMRI Functional magnetic resonance imaging 
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