The Commutativity of a *-Ring with Generalized Left *- α-Derivation

Ahmet Oğuz Balcı ${ }^{1}$, Neşet Aydin ${ }^{1}$, Selin Türkmen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
${ }^{2}$ Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
Email: a.oguz.balci@icloud.com, neseta@comu.edu.tr, selinvurkac@gmail.com

How to cite this paper: Balcı, A.O., Aydin, N. and Türkmen, S. (2018) The Commutativity of a *-Ring with Generalized Left ${ }^{*}$ - α-Derivation. Advances in Pure Mathematics, 8, 168-177.
https://doi.org/10.4236/apm.2018.82009

Received: December 21, 2017
Accepted: February 23, 2018
Published: February 26, 2018

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, it is defined that left ${ }^{*}$ - α-derivation, generalized left ${ }^{*}$ - α-derivation and ${ }^{*}$ - α-derivation, generalized ${ }^{*}$ - α-derivation of a ${ }^{*}$-ring where α is a homomorphism. The results which proved for generalized left ${ }^{*}$-derivation of R in [1] are extended by using generalized left ${ }^{*}$ - α-derivation. The commutativity of a ${ }^{*}$-ring with generalized left ${ }^{*}$ - α-derivation is investigated and some results are given for generalized ${ }^{*}$ - α-derivation.

Keywords

${ }^{*}$-Ring, Prime *-Ring, Generalized Left * - α-Derivation, Generalized
*- α-Derivation

1. Introduction

Let R be an associative ring with center $Z(R) . x y+y x$ where $x, y \in R$ is denoted by (x, y) and $x y-y x$ where $x, y \in R$ is denoted by $[x, y]$ which holds some properties: $[x y, z]=x[y, z]+[x, z] y$ and $[x, y z]=[x, y] z+y[x, z]$. An additive mapping α which holds $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in R$ is called a homomorphism of R. An additive mapping β which holds $\beta(x y)=\beta(y) \beta(x)$ for all $x, y \in R$ is called an anti-homomorphism of R. A homomorphism of R is called an epimorphism if it is surjective. A ring R is called a prime if $a R b=(0)$ implies that either $a=0$ or $b=0$ for fixed $a, b \in R$. In private, if $b=a$, it implies that R is a semiprime ring. An additive mapping *: $R \rightarrow R$ which holds $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$ is called an involution of R. A ring R which is equipped with an involution ${ }^{*}$ is called a ${ }^{*}$-ring. A^{*}-ring R is called a prime ${ }^{\star}$-ring (resp. semiprime ${ }^{\star}$-ring) if R is prime (resp. semiprime). A ring R is called a ${ }^{\star}$-prime ring if $a R b=a R b^{*}=(0)$
implies that either $a=0$ or $b=0$ for fixed $a, b \in R$.
Notations of left *-derivation and generalized left ${ }^{*}$-derivation were given in $a b u$: Let R be a ${ }^{*}$-ring. An additive mapping $d: R \rightarrow R$ is called a left *-derivation if $d(x y)=x^{*} d(y)+y d(x)$ holds for all $x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized left ${ }^{*}$-derivation if there exists a left *-derivation d such that $F(x y)=x^{*} F(y)+y d(x)$ holds for all $x, y \in R$. An additive mapping $T: R \rightarrow R$ is called a right ${ }^{*}$-centralizer if $T(x y)=x^{*} T(y)$ for all $x, y \in R$. It is clear that a generalized left ${ }^{*}$-derivation associated with zero mapping is a right ${ }^{*}$-centralizer on ${ }^{*}$-ring.

A *-derivation on a^{*}-ring was defined by Bresar and Vukman in [2] as follows: An additive mapping $d: R \rightarrow R$ is said to be a ${ }^{*}$-derivation if $d(x y)=d(x) y^{*}+x d(y)$ for all $x, y \in R$.

A generalized ${ }^{*}$-derivation on a ${ }^{*}$-ring was defined by Shakir Ali in Shakir: An additive mapping $F: R \rightarrow R$ is said to be a generalized ${ }^{*}$-derivation if there exists a ${ }^{*}$-derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y^{*}+x d(y)$ for all $x, y \in R$.
In this paper, motivated by definition of a left ${ }^{*}$-derivation and a generalized left ${ }^{*}$-derivation in [1], it is defined that a left ${ }^{*}$ - α-derivation and a generalized left ${ }^{*}$ - α-derivation are as follows respectively: Let R be a ${ }^{*}$-ring and α be a homomorphism of R. An additive mapping $d: R \rightarrow R$ such that $d(x y)=x^{*} d(y)+\alpha(y) d(x)$ for all $x, y \in R$ is called a left ${ }^{*}-\alpha$-derivation of R. An additive mapping f is called a generalized left ${ }^{*}$ - α-derivation if there exists a left ${ }^{*}$ - α-derivation d such that $f(x y)=x^{*} f(y)+\alpha(y) d(x)$ for all $x, y \in R$. Similarly, motivated by definition of a *-derivation in [2] and a generalized ${ }^{*}$-derivation in [3], it is defined that a^{*} - α-derivation and a generalized ${ }^{*}$ - α-derivation are as follows respectively: Let R be a ${ }^{*}$-ring and α be a homomorphism of R. An additive mapping t which holds $t(x y)=t(x) y^{*}+\alpha(x) t(y)$ for all $x, y \in R$ is called a ${ }^{*}$ - α-derivation of R. An additive mapping g is called a generalized ${ }^{*}$ - α-derivation if there exists a^{*} - α-derivation t such that $g(x y)=g(x) y^{*}+\alpha(x) t(y)$ holds for all $x, y \in R$.

In [4], Bell and Kappe proved that if $d: R \rightarrow R$ is a derivation holds as a homomorphism or an anti-homomorphism on a nonzero right ideal of R which is a prime ring, then $d=0$. In [5], Rehman proved that if $F: R \rightarrow R$ is a nonzero generalized derivation with a nonzero derivation $d: R \rightarrow R$ where R is a 2-torsion free prime ring holds as a homomorphism or an anti homomorphism on a nonzero ideal of R, then R is commutative. In [6], Dhara proved some results when a generalized derivation acting as a homomorphism or an an-ti-homomorphism of a semiprime ring. In [7], Shakir Ali showed that if $G: R \rightarrow R$ is a generalized left derivation associated with a Jordan left derivation $\delta: R \rightarrow R$ where R is 2-torsion free prime ring and G holds as a homomorphism or an anti-homomorphism on a nonzero ideal of R, then either R is commutative or $G(x)=x q$ for all $x \in R$ and $q \in Q_{l}\left(R_{C}\right)$. In [1], it is proved that if $F: R \rightarrow R$ is a generalized left ${ }^{*}$-derivation associated with a left
-derivation on R where R is a prime ${ }^{}$-ring holds as a homomorphism or an an-ti-homomorphism on R, then R is commutative or F is a right ${ }^{*}$-centralizer on R.

The aim of this paper is to extend the results which proved for generalized left *-derivation of R in [1] and prove the commutativity of a *-ring with generalized left ${ }^{*}$ - α-derivation. Some results are given for generalized ${ }^{*}$ - α-derivation.

The material in this work is a part of first author's Master's Thesis which is supervised by Prof. Dr. Neşet Aydin.

2. Main Results

From now on, R is a prime ${ }^{*}$-ring where $*: R \rightarrow R$ is an involution, α is an epimorphism on R and $f: R \rightarrow R$ is a generalized left ${ }^{\star}$ - α-derivation associated with a left ${ }^{*}$ - α-derivation d on R.

Theorem 1

1) If f is a homomorphism on R, then either R is commutative or f is a right *-centralizer on R.
2) If f is an anti-homomorphism on R, then either R is commutative or f is a right ${ }^{*}$-centralizer on R.

Proof. 1) Since f is both a homomorphism and a generalized left ${ }^{*}$ - α-derivation associated with a left ${ }^{*}$ - α-derivation d on R, it holds that for all $x, y, z \in R$

$$
\begin{aligned}
f(x y z) & =f(x(y z))=x^{*} f(y z)+\alpha(y z) d(x) \\
& =x^{*} f(y) f(z)+\alpha(y) \alpha(z) d(x)
\end{aligned}
$$

That is, it holds for all $x, y, z \in R$

$$
\begin{equation*}
f(x y z)=x^{*} f(y) f(z)+\alpha(y) \alpha(z) d(x) \tag{1}
\end{equation*}
$$

On the other hand, it holds that for all $x, y, z \in R$

$$
f(x y z)=f((x y) z)=f(x y) f(z)=x^{*} f(y) f(z)+\alpha(y) d(x) f(z)
$$

So, it means that for all $x, y, z \in R$

$$
\begin{equation*}
f(x y z)=x^{*} f(y) f(z)+\alpha(y) d(x) f(z) \tag{2}
\end{equation*}
$$

Combining Equation (1) and (2), it is obtained that for all $x, y, z \in R$

$$
x^{*} f(y) f(z)+\alpha(y) \alpha(z) d(x)=x^{*} f(y) f(z)+\alpha(y) d(x) f(z)
$$

This yields that for all $x, y, z \in R$

$$
\alpha(y)(\alpha(z) d(x)-d(x) f(z))=0
$$

Replacing y by $y r$ where $r \in R$ in the last equation, it implies that

$$
\alpha(y) \alpha(R)(\alpha(z) d(x)-d(x) f(z))=(0)
$$

for all $x, y, z \in R$. Since α is surjective and R is prime, it follows that for all $x, z \in R$

$$
\begin{equation*}
\alpha(z) d(x)=d(x) f(z) \tag{3}
\end{equation*}
$$

Replacing x by $x y$ where $y \in R$ in the last equation, it holds that for all $x, y, z \in R$

$$
\alpha(z) x^{*} d(y)+\alpha(z) \alpha(y) d(x)=x^{*} d(y) f(z)+\alpha(y) d(x) f(z)
$$

Using Equation (3) in the last equation, it implies that for all $x, y, z \in R$

$$
\left[\alpha(z), x^{*}\right] d(y)+[\alpha(z), \alpha(y)] d(x)=0
$$

Since α is surjective, it holds that for all $x, y, z \in R$

$$
\left[z, x^{*}\right] d(y)+[z, \alpha(y)] d(x)=0
$$

Replacing z by x^{*} in the last equation, it follows that for all $x, y \in R$

$$
\left[x^{*}, \alpha(y)\right] d(x)=0
$$

Since α is a surjective, it holds that $\left[x^{*}, y\right] d(x)=0$ for all $x, y \in R$. Replacing y by $y z$ where $z \in R$ in the last equation, it gets $\left[x^{*}, y\right] z d(x)=0$ for all $x, y, z \in R$. So, it implies that for all $x, y \in R$

$$
\left[x^{*}, y\right] \operatorname{Rd}(x)=(0)
$$

Since R is prime, it follows that $\left[x^{*}, y\right]=0$ or $d(x)=0$ for all $x, y \in R$. Let $A=\left\{x \in R \mid\left[x^{*}, y\right]=0, \forall y \in R\right\}$ and $B=\{x \in R \mid d(x)=0\}$. Both A and B are additive subgroups of R and R is the union of A and B. But a group can not be set union of its two proper subgroups. Hence, R equals either A or B.

Assume that $A=R$. This means that $\left[x^{*}, y\right]=0$ for all $x, y \in R$. Replacing x by x^{*} in the last equation, it gets that $[x, y]=0$ for all $x, y \in R$. Therefore, R is commutative.

Assume that $B=R$. This means that $d(x)=0$ for all $x \in R$. Since f is a generalized left ${ }^{*}$ - α-derivation associated with d, it follows that f is a right *-centralizer on R.
2) Since f is both an anti-homomorphism and a generalized left ${ }^{*}$ - α-derivation associated with a left ${ }^{*}$ - α-derivation d on R, it holds that

$$
f(x y)=f(y) f(x)=x^{*} f(y)+\alpha(y) d(x)
$$

for all $x, y \in R$. It means that for all $x, y \in R$

$$
f(y) f(x)=x^{*} f(y)+\alpha(y) d(x)
$$

Replacing y by $x y$ in the last equation and using that f is an an-ti-homomorphism, it follows that for all $x, y \in R$

$$
x^{*} f(y) f(x)+\alpha(y) d(x) f(x)=x^{*} f(y) f(x)+\alpha(x) \alpha(y) d(x)
$$

which implies that for all $x, y \in R$

$$
\begin{equation*}
\alpha(y) d(x) f(x)=\alpha(x) \alpha(y) d(x) \tag{4}
\end{equation*}
$$

Replacing y by $z y$ where $z \in R$ in the last equation, it holds that for all $x, y, z \in R$

$$
\alpha(z) \alpha(y) d(x) f(x)=\alpha(x) \alpha(z) \alpha(y) d(x)
$$

Using Equation (4) in the above equation, it gets
$[\alpha(z), \alpha(x)] \alpha(y) d(x)=0$ for all $x, y, z \in R$. Since α is surjective, it holds
that $[z, \alpha(x)] y d(x)=0$ for all $x, y, z \in R$. That is, for all $x, z \in R$

$$
[z, \alpha(x)] R d(x)=(0)
$$

Since R is prime, it implies that $[z, \alpha(x)]=0$ or $d(x)=0$ for all $x, z \in R$. Let $K=\{x \in R \mid[z, \alpha(x)]=0, \forall z \in R\}$ and $L=\{x \in R \mid d(x)=0\}$. Both K and L are additive subgroups of R and R is the union of K and L. But a group cannot be set union of its two proper subgroups. Hence, R equals either K or L.

Assume that $K=R$. This means that $[z, \alpha(x)]=0$ for all $x, z \in R$. Since α is surjective, it holds that $[z, x]=0$ for all $x, z \in R$. It follows that R is commutative.

Assume that $L=R$. Now, required result is obtained by applying similar techniques as used in the last paragraph of the proof of 1).

Lemma 2 If f is a nonzero homomorphism (or an anti-homomorphism) and $f(R) \subset Z(R)$ then R is commutative.
Proof. Let f be either a nonzero homomorphism or an anti-homomorphism of R. From Theorem 1, it implies that either R is commutative or f is a right *-centralizer on R. Assume that R is noncommutative. In this case, f is a right *-centralizer on R. Since $f(R)$ is in the center of R, it holds that $\left[f\left(x^{*} y\right), r\right]=0$ for all $x, y, r \in R$. Using that f is a right ${ }^{*}$-centralizer and $f(R) \subset Z(R)$, it yields that for all $x, y, r \in R$

$$
0=\left[f\left(x^{*} y\right), r\right]=[x f(y), r]=[x, r] f(y)
$$

which follows that for all $x, y, r \in R$

$$
[x, r] f(y)=0
$$

Since $f(R)$ is in the center of R, it is obtained that for all $x, y, r \in R$

$$
[x, r] \operatorname{Rf}(y)=(0) .
$$

Using primeness of R, it is implied that either $[x, r]=0$ or $f(y)=0$ for all $x, y, r \in R$. Since f is nonzero, it means that R is commutative. This is a contradiction which completes the proof.

Theorem 3 If fis a nonzero homomorphism (or an anti-homomorphism) and $f([x, y])=0$ for all $x, y \in R$ then R is commutative.
Proof. Let f be a homomorphism of R. It holds that R is commutative or f is a right ${ }^{*}$-centralizer on R from Theorem 1. Assume that R is noncommutative. In this case, f is a right ${ }^{*}$-centralizer on R. From the hypothesis, it gets that $f([x, y])=0$ for all $x, y \in R$. Since f is a homomorphism, it holds that for all $x, y \in R$

$$
0=f([x, y])=f(x y-y x)=f(x) f(y)-f(y) f(x)=[f(x), f(y)]
$$

i.e., for all $x, y \in R$

$$
[f(x), f(y)]=0
$$

Replacing x by $x^{*} z$ in the last equation, using that f is a right ${ }^{*}$-centralizer on R and using the last equation, it holds that
$0=\left[f\left(x^{*} z\right), f(y)\right]=[x f(z), f(y)]=[x, f(y)] f(z)$ for $\quad x, y, z \in R$. So, it follows that for all $x, y, z \in R$

$$
[x, f(y)] f(z)=0
$$

Replacing x by $x r$ where $r \in R$ and using the last equation, it holds that $[x, f(y)] r f(z)=0$ for all $x, y, z, r \in R$. This implies that for all $x, y, z \in R$

$$
[x, f(y)] R f(z)=(0)
$$

Using the primeness of R, it is obtained that either $[x, f(y)]=0$ or $f(z)=0$ for all $x, y, z \in R$. Since f is nonzero, it follows that $f(R) \subset Z(R)$. Using Lemma 2 , it is obtained that R is commutative. This is a contradiction which completes the proof.

Let f be an anti-homomorphism of R. This holds that R is commutative or f is a right ${ }^{*}$-centralizer on R from Theorem 1 . Assume that R is noncommutative. In this case, f is a right ${ }^{*}$-centralizer on R. From the hypothesis, it gets that $f([x, y])=0$ for all $x, y \in R$. Since f is an anti-homomorphism, it holds that for all $x, y \in R$

$$
0=f([x, y])=f(x y-y x)=f(y) f(x)-f(x) f(y)=-[f(x), f(y)]
$$

i.e., for all $x, y \in R$

$$
[f(x), f(y)]=0 .
$$

After here, the proof is done by the similarly way in the first case and same result is obtained.

Theorem 4 If f is a nonzero homomorphism (or an anti-homomorphism), $a \in R$ and $[f(x), a]=0$ for all $x \in R$ then $a \in Z(R)$ or R is commutative.
Proof. Let f be either a homomorphism or an anti-homomorphism of R. It holds that R is commutative or f is a right ${ }^{*}$-centralizer on R from Theorem 1 . Assume that R is noncommutative. In this case, f is a right ${ }^{*}$-centralizer on R. From the hypothesis, it yields that for all $x, y \in R$

$$
0=\left[f\left(x^{*} y\right), a\right]=[x f(y), a]=x[f(y), a]+[x, a] f(y)=[x, a] f(y)
$$

i.e., for all $x, y \in R$

$$
[x, a] f(y)=0
$$

Replacing x by $x r$ where $r \in R$, it holds that $[x, a] r f(y)=0$ for all $x, y, r \in R$. This implies that $[x, a] R f(y)=(0)$ for all $x, y \in R$. Using the primeness of R, it implies that $[x, a]=0$ or $f(y)=0$ for all $x, y \in R$. Since f is nonzero, it follows that $a \in Z(R)$. That is, it is obtained that either $a \in Z(R)$ or R is commutative.
Theorem 5 If f is a nonzero homomorphism (or an anti-homomorphism) and $f([x, y]) \in Z(R)$ for all $x, y \in R$ then R is commutative.
Proof. Let f be a nonzero homomorphism of R. It implies that either R is commutative or f is a right ${ }^{*}$-centralizer on R from Theorem 1. Assume that R is noncommutative. In this case, f is a right ${ }^{*}$-centralizer on R. Since f is a homo-
morphism and $f([x, y]) \in Z(R)$ for all $x, y \in R$, it holds that for all $x, y \in R$

$$
\begin{aligned}
f([x, y]) & =f(x y-y x)=f(x y)-f(y x) \\
& =f(x) f(y)-f(y) f(x)=[f(x), f(y)]
\end{aligned}
$$

i.e., for all $x, y \in R$

$$
[f(x), f(y)] \in Z(R)
$$

It means that $[[f(x), f(y)], r]=0$ for all $x, y, r \in R$. Replacing x by $x^{*} z$ where $z \in R$ in the last equation, it holds that for all $x, y, z, r \in R$

$$
\begin{aligned}
0 & \left.=\left[f\left(x^{*} z\right), f(y)\right], r\right]=[[x f(z), f(y)], r] \\
& =[x, r][f(z), f(y)]+[[x, f(y)], r] f(z)+[x, f(y)][f(z), r]
\end{aligned}
$$

which implies that for all $x, y, z, r \in R$

$$
[x, r][f(z), f(y)]+[[x, f(y)], r] f(z)+[x, f(y)][f(z), r]=0
$$

Replacing x by $f(y)$ and r by $f(z)$, it is obtained that for all $x, y, z \in R$

$$
[f(y), f(z)][f(z), f(y)]=0
$$

The last equation multiplies by r from right and using that $[f(x), f(y)] \in Z(R)$ for all $x, y \in R$, it follows that for all $x, y, z, r \in R$

$$
[f(y), f(z)] r[f(z), f(y)]=0
$$

i.e., for all $x, y, z, r \in R$.

$$
[f(z), f(y)] R[f(z), f(y)]=(0)
$$

Using primeness of R, it is implied that for all $y, z \in R$

$$
[f(z), f(y)]=0
$$

From Theorem 4, it holds that either $f(y) \in Z(R)$ for all $y \in R$ or R is commutative. By using Lemma 2, it follows that R is commutative. This is a contradiction which completes the proof.

Let f be a nonzero anti-homomorphism of R. It implies that either R is commutative or f is a right ${ }^{*}$-centralizer on R from Theorem 1. Assume that R is noncommutative. In this case, f is a right ${ }^{\star}$-centralizer on R. From the hypothesis, it gets that $f([x, y]) \in Z(R)$ for all $x, y \in R$. Since f is an anti-homomorphism, it is obtained that for all $x, y \in R$

$$
f([x, y])=f(x y-y x)=f(y) f(x)-f(x) f(y)=-[f(x), f(y)]
$$

i.e., for all $x, y \in R$

$$
[f(x), f(y)] \in Z(R)
$$

After here, the proof is done by the similar way in the first case and same result is obtained.

Theorem 6 If fis a nonzero homomorphism (or an anti-homomorphism) and $f((x, y))=0$ for all $x, y \in R \quad$ then R is commutative.

Proof. Let f be a homomorphism of R. It holds that R is commutative or f is a right *-centralizer on R from Theorem 1. Assume that R is noncommutative. In this case, f is a right ${ }^{*}$-centralizer on R. So, it gets that for all $x, y \in R$

$$
0=f((x, y))=f(x y+y x)=f(x y)+f(y x)=f(x) f(y)+f(y) f(x)
$$

It means that for all $x, y \in R$

$$
f(x) f(y)+f(y) f(x)=0
$$

Replacing x by $x^{*} z$ where $z \in R$ in the above equation and using that f is a right * the last equation, it is obtained that

$$
0=f\left(x^{*} z\right) f(y)+f(y) f\left(x^{*} z\right)=x f(z) f(y)+f(y) x f(z)
$$

Using that $f(x) f(y)=-f(y) f(x)$ for all $x, y \in R$ in the last equation

$$
\begin{aligned}
0 & =x f(z) f(y)+f(y) x f(z)=-x f(y) f(z)+f(y) x f(z) \\
& =[f(y), x] f(z)
\end{aligned}
$$

i.e. for all $x, y, z \in R$

$$
[f(y), x] f(z)=0
$$

Replacing x by $x r$, it follows that $[f(y), x] R f(z)=(0)$ for all $x, y, z \in R$. Using primeness of R, it holds that either $[f(y), x]=0$ or $f(z)=0$ for all $x, y, z \in R$. Since f is nonzero, it implies that $f(R) \subset Z(R)$. Using Lemma 2, it yields that R is commutative. This is a contradiction which completes the proof.

Let f be an anti-homomorphism of R. It holds that R is commutative or f is a right ${ }^{*}$-centralizer on R from Theorem 1. Assume that R is noncommutative. In this case f is a right *-centralizer on R. Using hypothesis, it gets that for all $x, y \in R$

$$
0=f((x, y))=f(x y+y x)=f(x y)+f(y x)=f(y) f(x)+f(x) f(y)
$$

i.e., for all $x, y \in R$

$$
f(y) f(x)+f(x) f(y)=0
$$

After here, the proof is done by the similar way in the first case and same result is obtained.

Now, $g: R \rightarrow R$ is a generalized ${ }^{*}$ - α-derivation associated with a ${ }^{*}$ - α-derivation t on R.

Theorem 7 Let R be a^{*}-prime ring where ${ }^{*}$ be an involution, α be a homomorphism of R and $g: R \rightarrow R$ be a generalized ${ }^{\star}$ - α-derivation associated with a *- α-derivation t on R. If g is nonzero then R is commutative.

Proof. Since g is a generalized ${ }^{\star}$ - α-derivation associated with a ${ }^{\star}$ - α-derivation t on R, it holds that $g(x y)=g(x) y^{*}+\alpha(x) t(y)$ for all $x, y \in R$. So it yields that for all $x, y, z \in R$

$$
\begin{aligned}
g(x y z) & =g((x y) z)=g(x y) z^{*}+\alpha(x y) t(z) \\
& =\left(g(x) y^{*}+\alpha(x) t(y)\right) z^{*}+\alpha(x) \alpha(y) t(z) \\
& =g(x) y^{*} z^{*}+\alpha(x) t(y) z^{*}+\alpha(x) \alpha(y) t(z)
\end{aligned}
$$

that is, it holds that for all $x, y, z \in R$

$$
\begin{equation*}
g(x y z)=g(x) y^{*} z^{*}+\alpha(x) t(y) z^{*}+\alpha(x) \alpha(y) t(z) \tag{5}
\end{equation*}
$$

On the other hand, it implies that for all $x, y, z \in R$

$$
\begin{aligned}
g(x y z) & =g(x(y z))=g(x)(y z)^{*}+\alpha(x) t(y z) \\
& =g(x) z^{*} y^{*}+\alpha(x)\left(t(y) z^{*}+\alpha(y) t(z)\right) \\
& =g(x) z^{*} y^{*}+\alpha(x) t(y) z^{*}+\alpha(x) \alpha(y) t(z)
\end{aligned}
$$

so, it gets that for all $x, y, z \in R$

$$
\begin{equation*}
g(x y z)=g(x) z^{*} y^{*}+\alpha(x) t(y) z^{*}+\alpha(x) \alpha(y) t(z) \tag{6}
\end{equation*}
$$

Now, combining the Equations (5) and (6), it holds that for all $x, y, z \in R$

$$
\begin{aligned}
& g(x) y^{*} z^{*}+\alpha(x) t(y) z^{*}+\alpha(x) \alpha(y) t(z) \\
& =g(x) z^{*} y^{*}+\alpha(x) t(y) z^{*}+\alpha(x) \alpha(y) t(z)
\end{aligned}
$$

which follows that

$$
g(x)\left[y^{*}, z^{*}\right]=0
$$

for all $x, y, z \in R$. Replacing y by y^{*} and z by z^{*}, it holds that for all $x, y, z \in R$

$$
g(x)[y, z]=0 .
$$

Replacing y by $r y$ where $r \in R$ in the last equation, it yields that for all $x, y, z, r \in R$

$$
0=g(x)[r y, z]=g(x) r[y, z]+g(x)[r, z] y .
$$

Using $g(x)[y, z]=0$ for all $x, y, z \in R$ in above equation, it is obtained that for all $x, y, z, r \in R$

$$
\begin{equation*}
g(x) r[y, z]=0 \tag{7}
\end{equation*}
$$

i.e., for all $x, y, z \in R$

$$
\begin{equation*}
g(x) R[y, z]=(0) . \tag{8}
\end{equation*}
$$

Replacing y by y^{*} and z by $-z^{*}$, it follows that for all $x, y, z \in R$

$$
\begin{equation*}
g(x) R([y, z])^{*}=(0) . \tag{9}
\end{equation*}
$$

Now, combining the Equations (8) and (9),

$$
g(x) R[y, z]=g(x) R([y, z])^{*}=(0)
$$

is obtained for all $x, y, z \in R$. Using *-primeness of R, it follows that $g(x)=0$ or $[y, z]=0$ for all $x, y, z \in R$. Since g is nonzero, R is commutative.

Theorem 8 Let R be a semiprime *-ring where * be an involution, α be an homomorphism of R and $g: R \rightarrow R$ be a nonzero generalized ${ }^{*}$ - α-derivation associated with $a^{*}-\alpha$-derivation t on R then $g(R) \subset Z(R)$.

Proof. Equation (7) multiplies by s from left, it gets that for all $x, y, z, r, s \in R$

$$
\begin{equation*}
\operatorname{sg}(x) r[y, z]=0 \tag{10}
\end{equation*}
$$

Replacing r by $s r$ in the Equation (7), it holds that for all $x, y, z, r, s \in R$

$$
\begin{equation*}
g(x) s r[y, z]=0 \tag{11}
\end{equation*}
$$

Now, combining the Equation (10) and (11),

$$
\operatorname{sg}(x) r[y, z]=g(x) \operatorname{sr}[y, z]
$$

is obtained for all $x, y, z, r, s \in R$. It follows that for all $x, y, z, r, s \in R$

$$
[s, g(x)] r[y, z]=0
$$

This implies that

$$
[s, g(x)] R[y, z]=(0)
$$

for all $x, y, z, s \in R$. Replacing s by y and z by $g(x)$ in the last equation, it yields that

$$
[y, g(x)] R[y, g(x)]=(0)
$$

for all $x, y \in R$. Using semiprimeness of R, it is implied that for all $x, y \in R$

$$
[y, g(x)]=0
$$

That is,

$$
g(R) \subset Z(R)
$$

which completes the proof.

References

[1] Rehman, N., Ansari, A.Z. and Haetinger, C. (2013) A Note on Homomorphisms and Anti-Homomorphisms on *-Ring. Thai Journal of Mathematics, 11, 741-750.
[2] Bresar, M. and Vukman, J. (1989) On Some Additive Mappings in Rings with Involution. Aequationes Mathematicae, 38, 178-185. https://doi.org/10.1007/BF01840003
[3] Ali, S. (2012) On Generalized *-Derivations in *-Rings. Palestine Journal of Mathematics, 1, 32-37.
[4] Bell, H.E. and Kappe, L.C. (1989) Ring in Which Derivations Satisfy Certain Algebraic Conditions. Acta Mathematica Hungarica, 53, 339-346.
https://doi.org/10.1007/BF01953371
[5] Rehman, N. (2004) On Generalized Derivations as Homomorphisms and An-ti-Homomorphisms. Glasnik Matematicki, 39, 27-30.
https://doi.org/10.3336/gm.39.1.03
[6] Dhara, B. (2012) Generalized Derivations Acting as a Homomorphism or An-ti-Homomorphism in Semiprime Rings. Beiträge zur Algebra und Geometrie, 53, 203-209. https://doi.org/10.1007/s13366-011-0051-9
[7] Ali, S. (2011) On Generalized Left Derivations in Rings and Banach Algebras. Aequationes Mathematicae, 81, 209-226. https://doi.org/10.1007/s00010-011-0070-5

