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Abstract 

In this paper, it is defined that left *-α-derivation, generalized left 
*-α-derivation and *-α-derivation, generalized *-α-derivation of a *-ring 
where α is a homomorphism. The results which proved for generalized left 
*-derivation of R in [1] are extended by using generalized left *-α-derivation. 
The commutativity of a *-ring with generalized left *-α-derivation is investi-
gated and some results are given for generalized *-α-derivation. 
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1. Introduction 

Let R be an associative ring with center ( )Z R . xy yx+  where ,x y R∈  is 
denoted by ( ),x y  and xy yx−  where ,x y R∈  is denoted by [ ],x y  which 
holds some properties: [ ] [ ] [ ], , ,xy z x y z x z y= +  and [ ] [ ] [ ], , ,x yz x y z y x z= + . 
An additive mapping α which holds ( ) ( ) ( )xy x yα α α=  for all ,x y R∈  is 
called a homomorphism of R. An additive mapping β which holds 
( ) ( ) ( )xy y xβ β β=  for all ,x y R∈  is called an anti-homomorphism of R. A 

homomorphism of R is called an epimorphism if it is surjective. A ring R is 
called a prime if ( )0aRb =  implies that either 0a =  or 0b =  for fixed 

,a b R∈ . In private, if b a= , it implies that R is a semiprime ring. An additive 
mapping : R R∗ →  which holds ( )xy y x∗ ∗ ∗=  and ( )x x

∗∗ =  for all ,x y R∈  
is called an involution of R. A ring R which is equipped with an involution * is 
called a *-ring. A *-ring R is called a prime *-ring (resp. semiprime *-ring) if R is 
prime (resp. semiprime). A ring R is called a *-prime ring if ( )0aRb aRb∗= =  
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implies that either 0a =  or 0b =  for fixed ,a b R∈ . 
Notations of left *-derivation and generalized left *-derivation were given in 

abu : Let R be a *-ring. An additive mapping :d R R→  is called a left 
*-derivation if ( ) ( ) ( )d xy x d y yd x∗= +  holds for all ,x y R∈ . An additive 
mapping :F R R→  is called a generalized left *-derivation if there exists a left 
*-derivation d such that ( ) ( ) ( )F xy x F y yd x∗= +  holds for all ,x y R∈ . An 
additive mapping :T R R→  is called a right *-centralizer if ( ) ( )T xy x T y∗=  
for all ,x y R∈ . It is clear that a generalized left *-derivation associated with ze-
ro mapping is a right *-centralizer on a *-ring. 

A *-derivation on a *-ring was defined by Bresar and Vukman in [2] as fol-
lows: An additive mapping :d R R→  is said to be a *-derivation if 
( ) ( ) ( )d xy d x y xd y∗= +  for all ,x y R∈ . 
A generalized *-derivation on a *-ring was defined by Shakir Ali in Shakir: An 

additive mapping :F R R→  is said to be a generalized *-derivation if there ex-
ists a *-derivation :d R R→  such that ( ) ( ) ( )F xy F x y xd y∗= +  for all 

,x y R∈ . 
In this paper, motivated by definition of a left *-derivation and a generalized 

left *-derivation in [1], it is defined that a left *-α-derivation and a generalized 
left *-α-derivation are as follows respectively: Let R be a *-ring and α be a ho-
momorphism of R. An additive mapping :d R R→  such that 
( ) ( ) ( ) ( )d xy x d y y d xα∗= +  for all ,x y R∈  is called a left *-α-derivation of R. 

An additive mapping f is called a generalized left *-α-derivation if there exists a 
left *-α-derivation d such that ( ) ( ) ( ) ( )f xy x f y y d xα∗= +  for all ,x y R∈ . 
Similarly, motivated by definition of a *-derivation in [2] and a generalized 
*-derivation in [3], it is defined that a *-α-derivation and a generalized 
*-α-derivation are as follows respectively: Let R be a *-ring and α be a homomor-
phism of R. An additive mapping t which holds ( ) ( ) ( ) ( )t xy t x y x t yα∗= +  for 
all ,x y R∈  is called a *-α-derivation of R. An additive mapping g is called a 
generalized *-α-derivation if there exists a *-α-derivation t such that 
( ) ( ) ( ) ( )g xy g x y x t yα∗= +  holds for all ,x y R∈ . 
In [4], Bell and Kappe proved that if :d R R→  is a derivation holds as a 

homomorphism or an anti-homomorphism on a nonzero right ideal of R which 
is a prime ring, then 0d = . In [5], Rehman proved that if :F R R→  is a non-
zero generalized derivation with a nonzero derivation :d R R→  where R is a 
2-torsion free prime ring holds as a homomorphism or an anti homomorphism 
on a nonzero ideal of R, then R is commutative. In [6], Dhara proved some re-
sults when a generalized derivation acting as a homomorphism or an an-
ti-homomorphism of a semiprime ring. In [7], Shakir Ali showed that if 

:G R R→  is a generalized left derivation associated with a Jordan left deriva-
tion : R Rδ →  where R is 2-torsion free prime ring and G holds as a homo-
morphism or an anti-homomorphism on a nonzero ideal of R, then either R is 
commutative or ( )G x xq=  for all x R∈  and ( )l Cq Q R∈ . In [1], it is proved 
that if :F R R→  is a generalized left *-derivation associated with a left 
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*-derivation on R where R is a prime *-ring holds as a homomorphism or an an-
ti-homomorphism on R, then R is commutative or F is a right *-centralizer on R. 

The aim of this paper is to extend the results which proved for generalized left 
*-derivation of R in [1] and prove the commutativity of a *-ring with generalized 
left *-α-derivation. Some results are given for generalized *-α-derivation. 

The material in this work is a part of first author’s Master’s Thesis which is 
supervised by Prof. Dr. Neşet Aydin.  

2. Main Results 

From now on, R is a prime *-ring where : R R∗ →  is an involution, α is an 
epimorphism on R and :f R R→  is a generalized left *-α-derivation asso-
ciated with a left *-α-derivation d on R. 

Theorem 1 
1) If f is a homomorphism on R, then either R is commutative or f is a right 

*-centralizer on R. 
2) If f is an anti-homomorphism on R, then either R is commutative or f is a 

right *-centralizer on R. 
Proof. 1) Since f is both a homomorphism and a generalized left *-α-derivation 

associated with a left *-α-derivation d on R, it holds that for all , ,x y z R∈  

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ).

f xyz f x yz x f yz yz d x

x f y f z y z d x

α

α α

∗

∗

= = +

= +
 

That is, it holds for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( ).f xyz x f y f z y z d xα α∗= +               (1) 

On the other hand, it holds that for all , ,x y z R∈  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).f xyz f xy z f xy f z x f y f z y d x f zα∗= = = +  

So, it means that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( ).f xyz x f y f z y d x f zα∗= +               (2) 

Combining Equation (1) and (2), it is obtained that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).x f y f z y z d x x f y f z y d x f zα α α∗ ∗+ = +  

This yields that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( )( ) 0.y z d x d x f zα α − =  

Replacing y by yr where r R∈  in the last equation, it implies that 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )0y R z d x d x f zα α α − =  

for all , ,x y z R∈ . Since α is surjective and R is prime, it follows that for all 
,x z R∈  

( ) ( ) ( ) ( ).z d x d x f zα =                        (3) 

Replacing x by xy where y R∈  in the last equation, it holds that for all 
, ,x y z R∈  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).z x d y z y d x x d y f z y d x f zα α α α∗ ∗+ = +  

Using Equation (3) in the last equation, it implies that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ), , 0.z x d y z y d xα α α∗  + =     

Since α is surjective, it holds that for all , ,x y z R∈  

( ) ( ) ( ), , 0.z x d y z y d xα∗  + =     

Replacing z by x∗  in the last equation, it follows that for all ,x y R∈  

( ) ( ), 0.x y d xα∗  =   

Since α is a surjective, it holds that ( ), 0x y d x∗  =   for all ,x y R∈ . Replac-
ing y by yz where z R∈  in the last equation, it gets ( ), 0x y zd x∗  =   for all 

, ,x y z R∈ . So, it implies that for all ,x y R∈  

( ) ( ), 0 .x y Rd x∗  =   

Since R is prime, it follows that , 0x y∗  =   or ( ) 0d x =  for all ,x y R∈ . Let 

{ } | , 0,A x R x y y R∗ = ∈ = ∀ ∈   and ( ){ } | 0B x R d x= ∈ = . Both A and B are  

additive subgroups of R and R is the union of A and B. But a group can not be 
set union of its two proper subgroups. Hence, R equals either A or B. 

Assume that A R= . This means that , 0x y∗  =   for all ,x y R∈ . Replacing 
x by x∗  in the last equation, it gets that [ ], 0x y =  for all ,x y R∈ . Therefore, 
R is commutative. 

Assume that B R= . This means that ( ) 0d x =  for all x R∈ . Since f is a 
generalized left *-α-derivation associated with d, it follows that f is a right 
*-centralizer on R. 

2) Since f is both an anti-homomorphism and a generalized left *-α-derivation 
associated with a left *-α-derivation d on R, it holds that 

( ) ( ) ( ) ( ) ( ) ( )f xy f y f x x f y y d xα∗= = +  

for all ,x y R∈ . It means that for all ,x y R∈  

( ) ( ) ( ) ( ) ( ).f y f x x f y y d xα∗= +  

Replacing y by xy in the last equation and using that f is an an-
ti-homomorphism, it follows that for all ,x y R∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x f y f x y d x f x x f y f x x y d xα α α∗ ∗+ = +  

which implies that for all ,x y R∈  

( ) ( ) ( ) ( ) ( ) ( ).y d x f x x y d xα α α=                  (4) 

Replacing y by zy where z R∈  in the last equation, it holds that for all 
, ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).z y d x f x x z y d xα α α α α=  

Using Equation (4) in the above equation, it gets  
( ) ( ) ( ) ( ), 0z x y d xα α α =    for all , ,x y z R∈ . Since α  is surjective, it holds 
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that ( ) ( ), 0z x yd xα =    for all , ,x y z R∈ . That is, for all ,x z R∈  

( ) ( ) ( ), 0 .z x Rd xα =    

Since R is prime, it implies that ( ), 0z xα =    or ( ) 0d x =  for all ,x z R∈ . 
Let ( ){ } | , 0,K x R z x z Rα= ∈ = ∀ ∈    and ( ){ } | 0L x R d x= ∈ = . Both K and 
L are additive subgroups of R and R is the union of K and L. But a group cannot 
be set union of its two proper subgroups. Hence, R equals either K or L. 

Assume that K R= . This means that ( ), 0z xα =    for all ,x z R∈ . Since α 
is surjective, it holds that [ ], 0z x =  for all ,x z R∈ . It follows that R is com-
mutative. 

Assume that L R= . Now, required result is obtained by applying similar 
techniques as used in the last paragraph of the proof of 1). 

Lemma 2 If f is a nonzero homomorphism (or an anti-homomorphism) and 
( ) ( )f R Z R⊂  then R is commutative. 
Proof. Let f be either a nonzero homomorphism or an anti-homomorphism of 

R. From Theorem 1, it implies that either R is commutative or f is a right 
*-centralizer on R. Assume that R is noncommutative. In this case, f is a right 
*-centralizer on R. Since ( )f R  is in the center of R, it holds that 

( ) , 0f x y r∗  =   for all , ,x y r R∈ . Using that f is a right *-centralizer and 
( ) ( )f R Z R⊂ , it yields that for all , ,x y r R∈  

( ) ( ) [ ] ( )0 , , ,f x y r xf y r x r f y∗ = = =     

which follows that for all , ,x y r R∈  

[ ] ( ), 0.x r f y =  

Since ( )f R  is in the center of R, it is obtained that for all , ,x y r R∈  

[ ] ( ) ( ), 0 .x r Rf y =  

Using primeness of R, it is implied that either [ ], 0x r =  or ( ) 0f y =  for all 
, ,x y r R∈ . Since f is nonzero, it means that R is commutative. This is a contra-

diction which completes the proof. 
Theorem 3 If f is a nonzero homomorphism (or an anti-homomorphism) and 
[ ]( ), 0f x y =  for all ,x y R∈  then R is commutative. 

Proof. Let f be a homomorphism of R. It holds that R is commutative or f is a 
right *-centralizer on R from Theorem 1. Assume that R is noncommutative. In 
this case, f is a right *-centralizer on R. From the hypothesis, it gets that 

[ ]( ), 0f x y =  for all ,x y R∈ . Since f is a homomorphism, it holds that for all 
,x y R∈  

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , ,f x y f xy yx f x f y f y f x f x f y= = − = − =     

i.e., for all ,x y R∈  

( ) ( ), 0.f x f y =    

Replacing x by x z∗  in the last equation, using that f is a right *-centralizer on 
R and using the last equation, it holds that  
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( ) ( ) ( ) ( ) ( ) ( )0 , , ,f x z f y xf z f y x f y f z∗ = = =         for , ,x y z R∈ . So, it 
follows that for all , ,x y z R∈  

( ) ( ), 0.x f y f z =    

Replacing x by xr where r R∈  and using the last equation, it holds that 
( ) ( ), 0x f y rf z =    for all , , ,x y z r R∈ . This implies that for all , ,x y z R∈  

( ) ( ) ( ), 0 .x f y Rf z =    

Using the primeness of R, it is obtained that either ( ), 0x f y =    or 
( ) 0f z =  for all , ,x y z R∈ . Since f is nonzero, it follows that ( ) ( )f R Z R⊂ . 

Using Lemma 2, it is obtained that R is commutative. This is a contradiction 
which completes the proof. 

Let f be an anti-homomorphism of R. This holds that R is commutative or f is 
a right *-centralizer on R from Theorem 1. Assume that R is noncommutative. 
In this case, f is a right *-centralizer on R. From the hypothesis, it gets that 

([ , ]) 0f x y =  for all ,x y R∈ . Since f is an anti-homomorphism, it holds that 
for all ,x y R∈  

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , ,f x y f xy yx f y f x f x f y f x f y= = − = − = −     

i.e., for all ,x y R∈  

( ) ( ), 0.f x f y =    

After here, the proof is done by the similarly way in the first case and same 
result is obtained. 

Theorem 4 If f is a nonzero homomorphism (or an anti-homomorphism), 
a R∈  and ( ) , 0f x a =    for all x R∈  then ( )a Z R∈  or R is commutative. 

Proof. Let f be either a homomorphism or an anti-homomorphism of R. It 
holds that R is commutative or f is a right *-centralizer on R from Theorem 1. 
Assume that R is noncommutative. In this case, f is a right *-centralizer on R. 
From the hypothesis, it yields that for all ,x y R∈  

( ) ( ) ( ) [ ] ( ) [ ] ( )0 , , , , ,f x y a xf y a x f y a x a f y x a f y∗ = = = + =         

i.e., for all ,x y R∈  

[ ] ( ), 0.x a f y =  

Replacing x by xr where r R∈ , it holds that [ ] ( ), 0x a rf y =  for all 
, ,x y r R∈ . This implies that [ ] ( ) ( ), 0x a Rf y =  for all ,x y R∈ . Using the 

primeness of R, it implies that [ ], 0x a =  or ( ) 0f y =  for all ,x y R∈ . Since f 
is nonzero, it follows that ( )a Z R∈ . That is, it is obtained that either 

( )a Z R∈  or R is commutative. 
Theorem 5 If f is a nonzero homomorphism (or an anti-homomorphism) and 
[ ]( ) ( ),f x y Z R∈  for all ,x y R∈  then R is commutative. 

Proof. Let f be a nonzero homomorphism of R. It implies that either R is 
commutative or f is a right *-centralizer on R from Theorem 1. Assume that R is 
noncommutative. In this case, f is a right *-centralizer on R. Since f is a homo-
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morphism and [ ]( ) ( ),f x y Z R∈  for all ,x y R∈ , it holds that for all ,x y R∈  

[ ]( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

,

f x y f xy yx f xy f yx

f x f y f y f x f x f y

= − = −

= − =   
 

i.e., for all ,x y R∈  

( ) ( ) ( ), .f x f y Z R∈    

It means that ( ) ( ), , 0f x f y r  =     for all , ,x y r R∈ . Replacing x by x z∗  
where z R∈  in the last equation, it holds that for all , , ,x y z r R∈  

( ) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

0 , , ] , ,

, , , , ( ) , ,

f x z f y r xf z f y r

x r f z f y x f y r f z x f y f z r

∗   = =     
 = + +               

 

which implies that for all , , ,x y z r R∈  

[ ] ( ) ( ) ( ) ( ) ( ) ( ), , , , , , 0.x r f z f y x f y r f z x f y f z r + + =                 

Replacing x by ( )f y  and r by ( )f z , it is obtained that for all , ,x y z R∈  

( ) ( ) ( ) ( ), , 0.f y f z f z f y =        

The last equation multiplies by r from right and using that 
( ) ( ) ( ),f x f y Z R∈    for all ,x y R∈ , it follows that for all , , ,x y z r R∈  

( ) ( ) ( ) ( ), , 0f y f z r f z f y =        

i.e., for all , , ,x y z r R∈ . 

( ) ( ) ( ) ( ) ( ), , 0 .f z f y R f z f y =        

Using primeness of R, it is implied that for all ,y z R∈  

( ) ( ), 0.f z f y =    

From Theorem 4, it holds that either ( ) ( )f y Z R∈  for all y R∈  or R is 
commutative. By using Lemma 2, it follows that R is commutative. This is a con-
tradiction which completes the proof. 

Let f be a nonzero anti-homomorphism of R. It implies that either R is com-
mutative or f is a right *-centralizer on R from Theorem 1. Assume that R is 
noncommutative. In this case, f is a right *-centralizer on R. From the hypothesis, 
it gets that [ ]( ) ( ),f x y Z R∈  for all ,x y R∈ . Since f is an anti-homomorphism, 
it is obtained that for all ,x y R∈  

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,f x y f xy yx f y f x f x f y f x f y= − = − = −     

i.e., for all ,x y R∈  

( ) ( ) ( ), .f x f y Z R∈    

After here, the proof is done by the similar way in the first case and same re-
sult is obtained. 

Theorem 6 If f is a nonzero homomorphism (or an anti-homomorphism) and 
( )( ), 0f x y =  for all ,x y R∈  then R is commutative. 
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Proof. Let f be a homomorphism of R. It holds that R is commutative or f is a 
right *-centralizer on R from Theorem 1. Assume that R is noncommutative. In 
this case, f is a right *-centralizer on R. So, it gets that for all ,x y R∈  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , .f x y f xy yx f xy f yx f x f y f y f x= = + = + = +  

It means that for all ,x y R∈  

( ) ( ) ( ) ( ) 0.f x f y f y f x+ =  

Replacing x by x z∗  where z R∈  in the above equation and using that f is a 
right * the last equation, it is obtained that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 .f x z f y f y f x z xf z f y f y xf z∗ ∗= + = +  

Using that ( ) ( ) ( ) ( )f x f y f y f x= −  for all ,x y R∈  in the last equation 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0

,

xf z f y f y xf z xf y f z f y xf z

f y x f z

= + = − +

=   
 

i.e. for all , ,x y z R∈  

( ) ( ), 0.f y x f z =    

Replacing x by xr, it follows that ( ) ( ) ( ), 0f y x Rf z =    for all , ,x y z R∈ . 
Using primeness of R, it holds that either ( ) , 0f y x =    or ( ) 0f z =  for all 

, ,x y z R∈ . Since f is nonzero, it implies that ( ) ( )f R Z R⊂ . Using Lemma 2, it 
yields that R is commutative. This is a contradiction which completes the proof. 

Let f be an anti-homomorphism of R. It holds that R is commutative or f is a 
right *-centralizer on R from Theorem 1. Assume that R is noncommutative. In 
this case f is a right *-centralizer on R. Using hypothesis, it gets that for all 

,x y R∈  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 ,f x y f xy yx f xy f yx f y f x f x f y= = + = + = +  

i.e., for all ,x y R∈  
( ) ( ) ( ) ( ) 0.f y f x f x f y+ =  

After here, the proof is done by the similar way in the first case and same re-
sult is obtained. 

Now, :g R R→  is a generalized *-α-derivation associated with a *-α-derivation 
t on R. 

Theorem 7 Let R be a *-prime ring where * be an involution, α be a homo-
morphism of R and :g R R→  be a generalized *-α-derivation associated with a 
*-α-derivation t on R. If g is nonzero then R is commutative. 

Proof. Since g is a generalized *-α-derivation associated with a *-α-derivation t 
on R, it holds that ( ) ( ) ( ) ( )g xy g x y x t yα∗= +  for all ,x y R∈ . So it yields 
that for all , ,x y z R∈  

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

g xyz g xy z g xy z xy t z

g x y x t y z x y t z

g x y z x t y z x y t z

α

α α α

α α α

∗

∗ ∗

∗ ∗ ∗

= = +

= + +

= + +
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that is, it holds that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ).g xyz g x y z x t y z x y t zα α α∗ ∗ ∗= + +           (5) 

On the other hand, it implies that for all , ,x y z R∈  

( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

g xyz g x yz g x yz x t yz

g x z y x t y z y t z

g x z y x t y z x y t z

α

α α

α α α

∗

∗ ∗ ∗

∗ ∗ ∗

= = +

= + +

= + +

 

so, it gets that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ).g xyz g x z y x t y z x y t zα α α∗ ∗ ∗= + +           (6) 

Now, combining the Equations (5) and (6), it holds that for all , ,x y z R∈  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

g x y z x t y z x y t z

g x z y x t y z x y t z

α α α

α α α

∗ ∗ ∗

∗ ∗ ∗

+ +

= + +
 

which follows that 

( ) , 0g x y z∗ ∗  =   

for all , ,x y z R∈ . Replacing y by y∗  and z by z∗ , it holds that for all 
, ,x y z R∈  

( )[ ], 0.g x y z =  

Replacing y by ry where r R∈  in the last equation, it yields that for all 
, , ,x y z r R∈  

( )[ ] ( ) [ ] ( )[ ]0 , , , .g x ry z g x r y z g x r z y= = +  

Using ( )[ ], 0g x y z =  for all , ,x y z R∈  in above equation, it is obtained 
that for all , , ,x y z r R∈  

( ) [ ], 0g x r y z =                          (7) 

i.e., for all , ,x y z R∈  

( ) [ ] ( ), 0 .g x R y z =                         (8) 

Replacing y by y∗  and z by z∗− , it follows that for all , ,x y z R∈  

( ) [ ]( ) ( ), 0 .g x R y z
∗
=                        (9) 

Now, combining the Equations (8) and (9), 

( ) [ ] ( ) [ ]( ) ( ), , 0g x R y z g x R y z
∗

= =  

is obtained for all , ,x y z R∈ . Using *-primeness of R, it follows that ( ) 0g x =  
or [ ], 0y z =  for all , ,x y z R∈ . Since g is nonzero, R is commutative. 

Theorem 8 Let R be a semiprime *-ring where * be an involution, α be an 
homomorphism of R and :g R R→  be a nonzero generalized *-α-derivation 
associated with a *-α-derivation t on R then ( ) ( )g R Z R⊂ . 

Proof. Equation (7) multiplies by s from left, it gets that for all , , , ,x y z r s R∈  

( ) [ ], 0.sg x r y z =                          (10) 
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Replacing r by sr in the Equation (7), it holds that for all , , , ,x y z r s R∈  

( ) [ ], 0.g x sr y z =                          (11) 

Now, combining the Equation (10) and (11), 

( ) [ ] ( ) [ ], ,sg x r y z g x sr y z=  

is obtained for all , , , ,x y z r s R∈ . It follows that for all , , , ,x y z r s R∈  

( ) [ ], , 0.s g x r y z =    

This implies that 

( ) [ ] ( ), , 0s g x R y z =    

for all , , ,x y z s R∈ . Replacing s by y and z by ( )g x  in the last equation, it 
yields that 

( ) ( ) ( ), , 0y g x R y g x =        

for all ,x y R∈ . Using semiprimeness of R, it is implied that for all ,x y R∈  

( ), 0.y g x =    

That is, 

( ) ( )g R Z R⊂  

which completes the proof. 
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