
Open Access Library Journal 
2018, Volume 5, e4365 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 
 
 
 

Spreading Dynamic of a PLSGP Giving up 
Smoking Model on Scale-Free Network 

Yanling Fei*, Xiongding Liu 

School of Electronics and Information, Yangtze University, Jingzhou, China 

 
 
 

Abstract 
A new PLSGP (potential smokers-light smokers-persistent smokers-giving up 
smokers-potential smokers) model with birth and death rates on complex he-
terogeneous networks is presented. Using the mean-field theory, we obtain 
the basic reproduction number 0R  and find that basic reproduction number 
for constant contact is independent of the topology of the underlying net-
works. When 0 1R < , the smoking-free equilibrium is globally asymptotically 
stable, then the smoking will disappear. When 0 1R > , the smoking-present 
equilibrium is global attractivity, then the number of smoker will remain sta-
ble and smoking will become endemic. Numerical simulations illustrated 
theoretical results. Our result shows that the model is very important to con-
trol the spread of the smoking. 
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1. Introduction 

Smoking is closely related to health, and smoking ranks fourth among the top 10 
risk factors for health, according to the World Health Organization report. To-
bacco has been identified as a primary carcinogen around the world. Smokers 
are 10 to 30 times more likely to develop lung cancer than non-smokers. Smok-
ing problem of people has become a significant public health concern. The beha-
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vior of smoking often causes a range of negative consequences. Long-term 
smoking produces negative changes in the heart, such as heart rate and blood 
pressure rise. Smoking damages almost all parts of the human body and contri-
butes to a number of human diseases including lung cancer, respiratory disease, 
heart disease, alimentary canal effect and eventually death. Due to the increasing 
in the number of smokers, tobacco use is also as a disease to be treated.  

In recent years, many types of epidemic models are discussed, such as virus 
dynamics models [1] [2], tuberculosis models [3] [4], and HIV models [5] [6]. 
One of the famous representative works in this area was done by Pastor-Satorras 
and Vespignani [7]. They presented a detailed analytical and numerical study on 
an SIS epidemic model in the highly heterogeneous networks (i.e., scale-free 
networks). The most striking result is that they found the absence of the epi-
demic threshold in these networks. That is, the threshold approaches zero in the 
limit of a large number of edges and nodes, and even a quite small infectious rate 
can produce a major epidemic outbreak. Liu XD et al. [8] presented an SIS (sus-
ceptible-infected-susceptible) epidemic model with infective medium and feed-
back mechanism on scale-free networks. They found that the epidemic is not 
only spread between individuals by direct contacts but also transmitted by me-
dium, people’s initial response when epidemic disease outbreaks have been also 
considered. Moreno et al. [9] also found these similar conclusions for an SIR 
(susceptible-infected-removed) epidemic model on scale-free networks. The epi-
demic model is constantly evolving, such as SIRS (susceptible-infected-removed- 
susceptible), SEIR (susceptible-infected-exposed-removed), SIQRS (suscepti-
ble-infected-quarantined-recovered-susceptible) [10] [11] [12] [13] [14]. 

Studying of smoking behavior has attracted the attention of many scholars 
and researchers recently. In order to explore the spread rule of smoking, some 
models are developed. Castillo-Garsow et al. [15] proposed a mathematical 
model for giving up smoking in the first time. In this model, a total constant 
population was divided into three states: potential smokers, that is, people who 
do not smoke yet but might become smokers in the future (P), smokers (S), and 
quit smokers (Q). Zaman [16] extended the work of Castillo-Garsow et al. [15] 
by adding the population of occasional smokers in the model, and presented qu-
alitative behavior of the model. Zaman [17] presented the optimal campaigns in 
the smoking dynamics. They consider two possible control variables in the form 
of education and treatment campaigns oriented to decrease the attitude towards 
smoking and first showed the existence of an optimal control for the control 
problem. 

However, in real life, some potential smokers may become light smoker since 
they contact with light smokers or persistent smokers. Some quit smokers may 
be only temporary quit smokers, so they will become potential smokers again. 
Enlightening by the previously mentioned cases, we present a PLSGP giving up 
smoking model on scale-free network. The paper is organized as follows: The 
model is formulated in Section 2. The basic reproduction number and existence 
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of smoking equilibriums are calculated in Section 3. In Section 4, we analyze the 
stability of the equilibria. In Section 5, sensitivity analysis and numerical simula-
tions are illustrated. In Section 6, we give some conclusions and discussions. 

2. The Model Formulation 

In this paper, we establish the giving up smoking model as Figure 1. From Fig-
ure 1, the total population is divided into four compartments, namely, the po-
tential smokers compartment (P), light or occasion smokers compartment (L), 
persistent smokers compartment (S), and quit smokers group (G). The total re-
cruitment number into this homogeneous social mixing community is b. 
Transmission coefficient from the potential smokers compartment to the light 
smokers compartment is 1ρ , Transmission coefficient from the potential 
smokers compartment to the persistent smokers compartment is 2ρ , Transmis-
sion coefficient from the light smokers compartment to the persistent smokers 
compartment is α , The permanent quit smoking rate is β , The relapse rate of 
which temporary quit people to become potential smokers is δ . Naturally death 
rate is µ . The total population size is ( )N t . Let ( )kP t , ( )kL t , ( )kS t , 

( )kG t  be the relative densities of potential smokers, light smokers, persistent 
smokers and quit smokers nodes of degree k at time t, respectively. 

With these assume, the dynamic mean-field equations of the PLSGP  model 
can be written as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

d
d

d
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S t
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β γ µ δ


= + − Θ + Θ −
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Figure 1. Transfer diagram for somking model. 
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where, ( ) 0P k >  is the probability that a node has degree k and thus 
( )1 1n

k P k
=

=∑ , ( )1
n
kk kP k
=

= ∑  denotes the average degree. 1 1 2 2ρ ρ ρ= Θ + Θ . 
Clearly, these variables obey the normalization condition:  

( ) ( ) ( ) ( ) 1k k k kP t L t S t G t+ + + = .                (2.3) 

The initial conditions for system can be given as follows  
( ) ( ) ( ) ( )0 1 0 0 0 0k k k kS P L G= − − − ≥ , ( )0 0kR ≥ , ( )0 0kS ≥ , ( )0 0kC ≥ . In 

this model, we assumed µ  equal to p. 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d
1

d
d

d
d

d

k
k k k k k

k
k k

k
k k k

L t
k L t S t G t P t L t

t
S t

L t S t
t

G t
S t L t G t

t

ρ α µ γ

α µ β

β γ µ δ


= − − − − + +


 = − +


 = + − +


   (2.4) 

3. The Basic Reproduction Number and Equilibrium 

Theorem 1. Consider system (2.1). Define 
( )( )

( )( )

2
1 2

0 )

k
R

k

ρ β µ ρ α

β µ α µ γ

+ +
=

+ + +
. There 

always exists the smoking-free equilibrium ( )0 1,0,0,0E . When 0 1R > , the sys-

tem has an occasion smoking equilibrium ( ), , ,k k k kE P L S G∗ ∗ ∗ ∗ ∗ . 

Proof. To get the information-prevailing equilibrium solution  
( ), , ,k k k kE P L S G∗ ∗ ∗ ∗ ∗ , we need to make the right side of system equal to zero, it 

should satisfy 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

0

k k k

k k

k k

k k k

b G t k P t P t

k P t L t

L t S t

S t L t G t

δ ρ µ

ρ α µ γ

α µ β

β γ µ δ

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

 + − − =

 − + + =

 − + =

 + − + =             

 (3.1) 

where 1 1 2 2ρ ρ ρ∗ ∗ ∗= Θ + Θ , we follow from (3.1) that  

( ) ( )
( )( )( ) ( )( ) ( )( )

( ) ( )( )
( )( )( ) ( )( ) ( )( )

1

1

k

k

k
S t

k

k
L t

k

ρα µ δ
µ δ µ β µ α γ ρ µ β γ α β µ δ

ρ µ δ µ β
µ δ µ β µ α γ ρ µ β γ α β µ δ

∗

∗

+
=

 + + + + + + + + + + 

+ +
=

 + + + + + + + + + + 

 (3.2) 

Obviously, 0ρ∗ =  satisfies (3.1). Hence, 1kP =  and 0k k kL S R= = =  is an 
equilibrium of (2.1), which is called the smoking-free equilibrium. 

Substituting kL∗  and kS∗  of (3. 2) into ρ∗  
Let ( )fρ ρ∗ ∗≅  

Clearly, 0ρ∗ =  is a solution of equation. To ensure the equation has a non-
trivial solution, the following condition must should satisfied  
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( ) ( ) ( )d
1

d k k

f f f

L S
ρ

ρ ρ ρ

ρ
∗

∗ ∗ ∗

∗ ∗ ∗

∂ ∂
= + >

∂ ∂
 and ( )1 1f ≤ .         (3.3) 

We can obtain the reproductive number  

( )( )
( )( )

2
1 2

0

k
R

k

ρ β µ ρ α

β µ α µ γ

+ +
=

+ + +
. 

4. Stability Analysis of the Equilibrium 

Theorem 2. When 0 1R < , the smoking-free equilibrium of system (2.1) is glo-
bally asymptotically stable. 

Proof. The Jacobian matrix of the smoking-free equilibrium of system (2.1), 
which is a 3 3n n×  matrix, can be written as follows: 

11 1

1

n

n nn

A A
J

A A

 
 =  
 
 
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( )
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1 20
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n n
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δ µ δ ρ δ ρ
ρ µ α γ ρ

α µ β
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A direct calculation leads to the characteristic polynomial of the smoking-free 
equilibrium in the following from: 

( )( ) ( )( )1 2 0
n

p qλ µ α γ λ µ β λ λ
−

+ + + + + + + = , 

where ( ) ( ) ( )1 1
n
ip iP iµ β µ α γ ρ
=

= + + + + − ∑  and  
( )( ) ( )1 2 1

n
iq iP iµ β µ α γ ρ αρ
=

= + + + + − ∑ . 
Note that 0 1R <  is equivalent to 0q >  and that 0 1R <  also implies: 

( ) ( ) ( )1 1
n
i iP iµ β µ α γ ρ
=

+ + + + > ∑ , which means 0p > . Note that 0 1R <  is 
equivalent to 0q >  and that 0 1R <  also implies and, which means 0p > . 
Therefore, there exists a unique positive eigenvalue λ  of J  if and only if 

0 1R > , otherwise, if 0 1R < , all real-valued eigenvalues of J  are negative. By 
the Perron-Frobenius theorem, it implies that the maximal real part of all eigen-
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values of J  is positive if and only if 0 1R > . Then, a theorem of Lajmanovich 
and York [18] yields the results of this theorem. The proof is thus completed. 

Next, the globally attractivity of positive endemic equilibrium is discussed. The 
main result is given in the following theorem.  

Lemma 1. [19] if 0a > , 0b >  and ( )d
d
x t

b ax
t

≥ − , when 0t ≥  and 

( )0 0x ≥ , we have 0t ≥ ( )lim inft
bx t
a→∞ ≥ , if 0a > , 0b >  and ( )d

d
x t

b ax
t

≤ − , 

when 0t ≥  and ( )0 0x ≥ , we have ( )lim supt
bx t
a→∞ ≤ . 

Theorems 3. Suppose that ( ) ( ) ( )( ), ,k k kL t S t G t  is a solution of (2.4), with 
( )0 0kL > , ( )0 0kS > , ( )0 0kG >  and 0 1R > . If 0 1R > , then  

( ) ( ) ( )( ) ( ) ( ) ( )( )lim , , , ,t k k k k k kL t S t G t L t S t G t∗ ∗ ∗
→∞ = , where  
( ) ( ) ( )( ), ,k k kL t S t G t∗ ∗ ∗  is the unique smoking equilibrium of (2.4) for 
1,2, ,k n=  .  

Proof: In the following, k is fixed to be any integer in ( )1,2, , n . There ex-
ists a sufficiently small constant ( )0 1ξ ξ< <  and a larger enough constant 

0T >  such that ( )kL t ξ≥  and ( )kS t ξ≥  for t T> , therefore  
( ) ( )1 2 1 2tρ ρ ξ ρ ρ ρ+ < < +  for t T> . Submit this into the first equation of 
(2.4) gives 

( ) ( ) ( )( ) ( ) ( )1 2 1 ,k k kL t k L tL Tt tρ ρ α µ γ′ ≤ − − + + >+  

By Lemma 1, for any given constant 
( )( )1 2

0
k

µ α γ
ξ

ρ ρ µ α γ
+ +

< <
+ + +

, there ex-

ists a 1t T> , such that ( ) ( )1
1k kL t X ξ≤ +  for 1t t> , where  

( ) ( ) ( )
( ) ( )

1 1 2
1 1

1 2
11,k k t t

k
L t X

k
ρ ρ

ξ ξ
ρ ρ α µ γ

+
≤ + = + <

+ +
>

+ +
      (4.1) 

From the second equation of (2.4), it follows that 

( ) ( )( ) ( ) ( ) 11 ,k k kS t S t S t t tα µ β′ ≤ − − + >            (4.2) 

Hence, for any given constant ( )( ){ }12 10 min 1 2, ,ξ ξ β µ µ α β −< < + + + , 
there exists a 2 1t t> , such that ( ) ( )1

2k kS t Y ξ≤ −  for 2t t> , where  

( ) ( ) ( ) 11
2 2 21,k kS t Y t tξ α α µ β ξ−≤ + < + + + < >          (4.3) 

Then, it follows from the third equation of (2.4),  

( ) ( )( ) ( )( ) ( ) ( ) 21 1 ,k k k kG t G t G t G t t tβ γ µ δ′ ≤ − + − − + >       (4.4) 

Similarly, for any given constant  
( )( ){ }1

3 2 30 min 1 3, ,ξ ξ δ µ µ δ β γ ξ−< < + + + + + , there exists a 3 2t t> , such 
that ( ) ( )1

3k kG t Z ξ≤ +  for 3t t> , where 

( ) ( ) ( ) ( ) 11
3 3 31,k kG t Z t tξ β γ µ β γ δ ξ−≤ + < + + + + + < >       (4.5) 

Since ( ) ( )1 2 tρ ρ ξ ρ+ < , we substitute this into the first equation of (2.4)  
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1
1 2 1 ,k k k k kL t k L t Y Z L t t Tξ ρ ρ α µ γ′ ≥ + − − − − + + >   (4.6) 

So for any given enough small constant  

( ) ( ) ( ) ( )( )
( ) ( )

1 1
1 2

4 3
1 2

1
0 min 1 4, ,

k k kk L t Y Z

k

ξ ρ ρ
ξ ξ

ξ ρ ρ α µ γ

 + − − − < <  
+ + + +  

, there exists a 4 3t t> , 

such that ( ) ( )1
4k kL t x ξ≥ −  for 4t t> , where 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

1 1
1 21

4 4 4
1 2

1
,

k k k
k k

k L t Y Z
L t x t t

k

ξ ρ ρ
ξ ξ

ξ ρ ρ α µ γ

+ − − −
≥ − = − >

+ + + +
    (4.7) 

It follows that 

( ) ( ) ( ) ( )1
4,k k kS t x S t t tα µ η′ ≥ − + >                (4.8) 

So for any given enough small constant ( ) ( ){ }11
5 40 min 1 5, , kxξ ξ α µ β

−
< < +   , 

there exists a 5 4t t> , such that ( ) ( )1
5k kS t y ξ′ ≥ −  for 5t t> , where 

( ) ( ) ( ) ( ) 11 1
5 5 5,k k kS t y x t tξ α µ β ξ−′ ≥ − = + − >            (4.9) 

From the third equation of (2.1) implies that 

( ) ( ) ( ) ( ) ( )1 1
5,k k k kG t y x G t t tβ γ µ δ′ ≥ + − + >            (4.10) 

So for any given enough small constant  
( ) ( ) ( ){ }11 1

6 50 min 1 6, , k ky xξ ξ β γ µ δ − < < + +  , there exists a 6 5t t> , such that 
( ) ( )1

6k kG t z ξ≥ −  for 6t t> , where 

( ) ( ) ( ) ( )( )( ) 11 1 1
6 6,k k k kG t z y x t tξ β γ µ δ −≥ − = + + >

        
(4.11) 

Due to ξ  is a small positive constant, we can derive that ( ) ( )1 10 1k kx X< ≤ < , 
( ) ( )1 10 1k ky Y< ≤ <  and ( ) ( )1 10 1k kz Z< ≤ < . Let  

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 21

1 21

1 ,

1 , 1, 2,

nj j j
i ij

nj j j
i ij

q P i x y
k

Q P i X Y j
k

ρ ρ

ρ ρ

=

=

= +

= + =

∑

∑ 

       

 (4.12) 

We can easily get ( ) ( ) ( )
1 20 j jq t Qρ ρ ρ< ≤ ≤ < + , 6t t> . 

Again, from the first equation of (2.1), it has 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 1
61 ,k k k kL t kQ L t y z t tµ α γ′ ≤ − − − − + + >
      

(4.13) 

Hence, for any given constant { }7 60 min 1 7,ξ ξ< < , there exists a 7 6t t> , 
such that  

( ) ( )

( ) ( ) ( ) ( )( ) ( ){ }
2

11 1 1 1 1
1 7 7min , 1 ,

k k

k k k

I t X

X kQ y z kQ t tξ µ α γ ξ
−

≤

 = + − − + + + + >    
(4.14) 

Then, from the second equation of (2.1), we have 
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( ) ( ) ( ) ( )2
7,k k kS t Y S t t tµ β′ ≤ − + >              (4.15) 

So, for any given constant { }8 70 min 1 8,ξ ξ< < , there exists a 8 7t t> , such 
that 

( ) ( ) ( ) ( ) ( ){ }12 2 2
2 8 8min , ,k k k kS t Y Y X t tξ α µ β ξ−≤ = + + + >

     
(4.16) 

Consequently, from the third equation of (2.1), we have 

 ( ) ( ) ( ) ( ) ( )2 1
8,k k k kG t Y X G t t tβ γ µ δ′ ≤ + − + >           (4.17) 

Hence, for any given constant { }9 80 min 1 9,ξ ξ< < , there exists a 8 7t t> , 
such that  

( ) ( ) ( ) ( ) ( )( )( ){ }12 1 2 2
3 9 9 8min , ,k k k k kG t Z Z Y X t tξ β γ δ µ ξ−≤ = − + + + >

   
(4.18) 

Turning back, one has 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1
91 ,k k k k kL t kq L t Y Z L t t tα µ γ′ ≥ − − − − + + >

    
(4.19) 

So, for any given enough small constant { }10 90 min 1 10,ξ ξ< < , there exists a 

10 9t t> , such that ( ) ( )2
10k kG t x ξ≥ +  for 10t t> , where 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ){ }12 1 1 1 1 1
4max , 1k k k k kL t x x kq Y Z kqξ α µ γ

−
≥ = − − − + + +  (4.20) 

( ) ( ) ( ) ( )2
10,k k kS t x S t t tα µ β′ ≥ − + >             (4.21) 

So for any given enough small constant { }11 100 min 1 11,ξ ξ< < , there exists a 

11 10t t> , such that ( ) ( )2
11k kS t y ξ≥ +  for 10t t> , where 

( ) ( ) ( ) ( ) ( ){ }2 1 2
5 11 11max , ,k k k kS t y y x t tξ α γ µ ξ≥ = − + + >

      
(4.22) 

From the third equation of (2.1) implies that 

( ) ( ) ( ) ( ) ( )2 2
k k k kG t y x G tβ γ µ δ′ ≥ + − +             (4.23) 

So, for any given enough small constant { }12 110 min 1 12,ξ ξ< < , there exists 
a 12 11t t> , such that ( ) ( )2

12k kG t z ξ≥ +  for 12t t> , where 

( ) ( ) ( ) ( ) ( )( )( ) ( ){ }1 12 1 2 2
6 12max ,k k k k kG t z z y xξ β γ µ δ ξ µ δ− − ≥ = − + + + +   

 (4.24) 

Repeating the above analyses and calculation, we get six sequences 
( ) ( ) ( ) ( ) ( ) ( ), , , , ,i i i i i i
k k k k k kX Y Z x y z , 1,2,i =  . Due to the first three are monotone de-

creasing sequences and the last three are monotone increasing, there exists a suf-
ficiently large positive integer 2L ≥ , such that l L≥ : 

( )
( ) ( ) ( )( )

( )

1 1 1

6 51

1l l l
k kl

k ll

kQ y z
X

kQ
ξ

µ α γ

− − −

−−

− −
= +

+ + +
, ( )

( )

6 4

l
l k

k l
XY α

ξ
µ β −= +
+

, 

 ( )
( ) ( )

6 3

l l
l k k

k l
Y XZ β γ

ξ
δ µ −
+

= +
+

, ( )
( ) ( ) ( )( )

( )

1 1 1

6 21

1l l l
k kl

k ll

kq Y Z
x

kq
ξ

µ α γ

− − −

−−

− −
= +

+ + +
,    (4.25) 

( )
( )

6 1

l
l k

k l
xy α

ξ
µ β −= +
+

, ( )
( ) ( )

6

l l
l k k

k l
y xz β γ

ξ
δ µ
+

= +
+

. 
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We can easy get that 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

6, , ,l l l l l l
k k k k k k k k k lx L t X y S t Y z G t Z t t≤ ≤ ≤ ≤ ≤ ≤ >    (4.26) 

Since the sequential limits of (4.26) exist, let ( )lim l
l k k→∞ ∆ = ∆ , where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , ,l l l l l l l l l
k k k k k kk k kX Y Z x y z Q q∆ ∈  and  

{ }, , , , , , ,k k k k k k k k kX Y Z x y z Q q∆ ∈ , 

Noting that 10 1 lξ< < , one has 1 0ξ →  as l →∞ . In the six sequences of 
(4.26), by taking l →∞ , it follows from (4.26) that 

( )1 k k
k

kQ y z
X

kQ µ α γ
− −

=
+ + +

, k
k

XY α
µ β

=
+

, k k
k

Y XZ β γ
δ µ
+

=
+

, 

( )1 k k
k

kq Y Z
x

kq µ α γ
− −

=
+ + +

, k
k

xy α
µ β

=
+

, k k
k

y xz β γ
δ µ
+

=
+

.      (4.27)  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 1 21 1

1 1,n nj j j j j j
i i i ij jq P i x y Q P i X Y

k k
ρ ρ ρ ρ

= =
= + = +∑ ∑ , (4.28) 

Substituting (4.27) and (4.28) into q and Q, respectively, one has 

( ) ( ) ( ) ( )

( )( )

2 2
1 1 11 n

i
i

iP i
Q iq

M

iqQH

α
ρ ρ δ µ β µ µ γ α

µ β

δ µ β µ

=

  = + + + + + +  + 

− + + 

∑
 

( ) ( ) ( ) ( )

( )( )

2 2
1 1 11 n

i
i

iP i
q iQ

G

iqQH

α
ρ ρ δ µ β µ µ γ α

µ β

δ µ β µ

=

  = + + + + + +  + 

− + + 

∑
. 

where 

( ) ( ) ( )( )2 2 2 2
iM iq iQ i qQHδ µ β µ µ γ α µ γ α = + + + + + + + + −  , 

( )( ) ( )( ) ( )H α δ µ µ γ α γ β µ µ γ α αβ µ γ α= + + + + + + + + + + . 

By subtracting the above two equations, it arrives at 

( )( )( )

( ) ( )( )( )

1 1

2

1

0

n
i

i

Q q

i P i
H

G

α
δ µ β µ ρ ρ

µ β

µ γ α δ µ µ σ
=

 
= − + + + + 

× + + + + −  ∑
. 

It is obviously that q Q= , so ( ) ( ) ( )( )1 21

1 0n
i i i ii iP i X x Y y

k
ρ ρ

=
− + − =∑ , 

which sees that ,i i i iX x Y y= = , for 1, 2, ,i n=  . From (4.26) and (4.27), it fol-
lows that  

( )limt k k kL t X x→∞ = = , ( )limt k k kS t Y y→∞ = = , ( )limt k k kG t Z z→∞ = = . 

Finally, substituting q Q=  into (4.26), in view of (3.2) and (4.28), it obtains 

k kL L∗= , k kS S∗= , and k kG G∗= . The proof is completed.  
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5. Numerical Simulations 

In this section, some sensitivity analyses are presented to illustrate the result of 
the smoking model (2.1). We consider the system (2.1) on a scale-free network 
with the degree distribution ( ) , 2 3rP k k rξ −= < ≤  and ( )1 1i P i

=
=∑ . Consid-

er system (2.1) with 3r =  and 1000n = . 
Parameters used in the simulations list as follows: in Figure 2, we choose 

0.25α = , 0.2b = , 0.2µ = , 0.6γ = , 0.5β = , 1 0.15ρ = , 2 0.2ρ = , 0.15δ = , 
thus the threshold value 0 0.708 1R = < . The figure show that when 0 1R < , kL  
and kS  approach to zero, the smoking population will ultimately disappear, 
which means that smoking will disappear. In Figure 3, we choose 0.2α = ,

0.2b = , 0.2µ = , 0.2γ = , 0.5β = , 1 0.5ρ = , 2 0.2ρ = , 0.1δ = , thus the 
threshold value 0 4.18 1R = > . The figure show that when 0 1R > , kL  and kS  
maintain at a positive stationary level, which means that the smoking become 
endemic “disease”.  

Figure 4 and Figure 5 show the dynamic behavior of light problem smoking 
and heavier problem smoking with different degree when 0 1R < . Figure 6 and 
Figure 7 show the dynamic behavior of light problem smoking and heavier 
problem smoking with different degree when 0 1R > . We find that the larger de-
gree leads to larger value of the smoking level. 

6. Conclusion 

In this paper, we propose a PLSGP giving up smoking model on scale-free network. 
 

 
Figure 2. The relative density of population number when 0 1R < . 
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Figure 3. The relative density of population number when 0 1R > . 

 

 
Figure 4. Dynamic behavior of light smoker with different degree when 0 1R < . 
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Figure 5. Dynamic behavior of light smoker with different degree when 0 1R > . 

 

 
Figure 6. Dynamic behavior of light smoker with different degree when 0 1R > . 
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Figure 7. Dynamic behavior of light smoker with different degree when 0 1R > . 

 
We divide the smoker into two groups, light smoker and persistent smoker, con-
sidering individual’s birth and death rates. Through the mathematical calcula-
tion, we obtain the basic reproduction number and equilibriums. Using the 
comparison theorem and the iteration principle, we analyze the stability of the 
smoking free equilibrium, and also give the persistence and global attractivity of 
the smoking. If 0 1R < , the smoking-free equilibrium of the model is globally 
stable and smoking will disappear. If 0 1R > , the smoking-present equilibrium is 
global attractivity and maintaining a positive constant. Furthermore, the dy-
namic behavior has been analyzed in our model. The study may give us valuable 
guiding in effectively controlling the behavior of smoking. 
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