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Abstract 
Increased dimensionality of the satellite data proves to be very useful for dis-
criminating features with very close spectral matching. Present study concen-
trates on the retrieval of reflectance spectra from the level one radiometrically 
corrected data in Koraput district (Orissa) for the Bauxite ore. In the present 
study, atmospheric correction model FLAASH has been used to retrieve ref-
lectance from the radiance data. Preprocessing of the dataset has been done 
before applying atmospheric correction on the dataset. Spectral subsetting of 
noise prone bands has been successfully done. Local destriping of the affected 
bands has been done using a 3*3 local mean filter. Spectral signatures of sam-
ples were derived from the processed data. Spectral signature of each sample 
and derived features vectors were correlated with the satellite image of the 
area and distribution of each feature was demarcated. Spatial abundance of 
each feature was used in preparation of mineral abundance map. Accuracy of 
the map was assessed using training sets of representative geological units. 
The mineral abundance mapping using the spectral analysis of the reflectance 
image involves the endmember collection using the N-Dimensional visualizer 
tool in ENVI software. Laterite, Bauxite, Iron and silica rich Aluminous late-
rite soil, Alluvium and Forest were selected as the end members after under-
standing the geology and analysis of the reflectance image. Various mapping 
techniques were applied to generate the final classified mineral abundance 
Map, Linear Spectral Unmixing, Mixture Tune Matched Filtering, Spectral 
Feature Fitting, Spectral Angle Mapper were the techniques used. Results have 
revealed the ability of Hyper spectral Remote sensing data for the identifica-
tion and mapping of Hydrothermal altered products like Bauxite, Aluminous 
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Laterite. This technology can be utilized for targeting minerals in the altered 
zone. 
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1. Introduction 

One of the most promising and advanced remote sensing technique which is 
meant solely for mineral exploration is hyperspectral remote sensing also known 
as imaging spectrometry. Typically, hyperspectral spaceborne imaging spectro-
meters have been developed to measure the solar reflected upwelling radiance 
spectrum from 350 nm to 2560 nm at 5 to 10 nm resolution. Reflectance data in 
each spectral channel are pictorially represented as an image composed of dis-
crete elements—pixels. Hyperspectral imagers collect data in contiguous narrow 
bands (up to several hundred bands) in the electromagnetic spectrum. They 
produce vast quantities of data because of the number of bands simultaneously 
imaged. Hyperspectral data provide unique capabilities to discern physical and 
chemical properties of Earth surface features which are difficult using current 
broad-band multi-spectral satellites. High spectral resolution allows identifica-
tion of materials in the scene, while high spatial resolution locates those mate-
rials [1]. Hence, hyperspectral data have enormous potential in target detection, 
high quality material mapping and identification. 

The distribution of the hyperspectral data in n-space can be used to estimate 
the number of spectral endmembers and their pure spectral signatures help to 
understand the spectral characteristics of different materials. In the present 
study the typical reflectance spectra of Alumina rich laterite (Bauxite) which can 
be determined at 2200 nm was emphasized and employed to identify the new 
mineral deposits [2]. 

The present study area, a Precambrian metamorphic terrain is situated in the 
Eastern Ghats of India [3]. It is located east of Koraput town in the southern part 
of Orissa having geographic coverage 19˚02'29.11"N, 83˚04'00.24"E, 19˚01'28.28"N, 
83˚08'14.50"E, 18˚49'56.80"N, 83˚01'04.54"E, 18˚49'19.06"N, 82˚05'24.12"E as la-
titude and longitudes (Figure 1). The extent of the area is about 900 sq∙kms. The 
data used in the present study is Hyperion data. Hyperion is having Wavelength 
range −400 - 2500 nm, Spatial Resolution −30 meters, Spectral Resolution −10 
nm. 

The objectives of the present study are as follows. 
1) Laboratory spectra generation of different rock samples from the representa-

tive horizons using ASD spectroradiometer. 
2) Establish the occurrence of mineral deposits of Bauxite from known to un-

known areas. 
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Figure 1. Location of the study area. 

2. Materials and Methods 

In the present study Hyperion data and SOI topo sheet 65 N1 and 65 M4 were 
used to map the aluminous rich Laterite/Bauxite deposits in the parts of Koraput 
district of Orissa. Hyperion sensor is a hyperspectral imager on-board of EO-1 
satellite. There are 220 spectral bands ranging from 400 - 2500 nm. The spatial 
resolution is 30 meter per pixel and swath width is 7.7 km. Each scene covers ei-
ther 42 km, or 185 km. The product is distributed by USGS, and the level one 
product, which is only radiometrically corrected and the image is processed us-
ing softwares ENVI, ERDAS and ARC MAP. 

3. Methodology 
3.1. Preprocessing of Hyperspectral Data 

The Hyperion dataset has to be corrected for abnormal pixels, striping and 
smiling prior to the atmospheric correction. Pre-processing of hyperspectral 
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images is required not only for removing sensor errors during acquisition but 
also for display, band selection (to reduce the data dimensionality) and to reduce 
computational complexity. 

3.2. Spectral Subsetting 

The Hyperion sensor covers the visible and near infra-red (VNIR, or 400 nm to 
1000 nm) and shortwave infra-red (SWIR, 900 nm to 2500 nm) ranges. The in-
strument has a single telescope but two spectrometers—one for the VNIR and 
the other for the SWIR data. The VNIR spectrometer has 70 bands and the 
SWIR 172 bands providing 242 potential bands which are normally about 10 nm 
apart in each spectrometer and have spectral response functions with approx-
imately 11 nm full-width at half maximum (FWHM). If every band were oper-
ating, the spectral range covered would be from 356 nm to 2577 nm with a 
common area of overlap between the spectrometers between 852 nm and 1058 
nm. In practice a number of the bands were not illuminated and others corres-
pond to areas of low sensitivity of the spectrometer material so that the 242 a 
subset of 198 bands spectrally sub-setted from the Hyperion data set. 

VNIR Range: Bands 8 - 57 (436 - 926 nm) 
SWIR Range: Bands 77 - 224 (892 - 2406 nm) 
These results in 198 useable channels or bands with 196 unique wavebands 

Hence the redefined spectral ranges of the Hyperion image set is as follows. 
VNIR Range: Bands 8 - 57 (436 - 926nm) 
SWIR Range: Bands 79 - 224 (933 - 2406 nm) 
The basic 196 unique data channels that was further used for analysis. 

3.3. Destriping of VNIR and SWIR Region 

A vertical stripe is said to occur where the statistics indicate that the image in-
formation is likely to be valid, i.e. pixel is not bad but have significantly modified 
gain and offset. In a pushbroom sensor, a poorly calibrated detector in either 
VNIR or SWIR array leaves high frequency errors (“vertical stripes”) on the im-
age bands. 

3.4. Identification of Bad Columns 

In the present study the bad columns were identified visually to avoid enforcing 
severe change in the spectra. A total of 36 bad columns were identified in data-
set. SWIR bands were found devoid of visible stripes. 

3.5. Balancing for Bad Columns 

Bad columns were identified visually and bad column removal filter was used to 
target the bad columns in each band. The bad columns were replaced by the 3 × 
3 neighbourhood mean, without taking into account the bad column value. 

3.6. Atmospheric Correction 

ENVI’s FLAASH (Fast line of sight Atmosphere Analysis of Spectral Hyper 
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cubes) was used for the retrieval of reflectance from radiance. FLAASH starts 
from a standard equation for spectral radiance at a sensor pixel, L, that applies to 
the solar wavelength range (thermal emission is neglected) and flat, Lambertian 
materials or their equivalents. The equation is as follows: 

( ) ( )1 1e e e aL A S B S Lρ ρ ρ ρ= − + − +                   (1) 

After the water retrieval is performed, Equation (1) is solved for the pixel sur-
face reflectance in all of the sensor channels. The solution method involves 
computing a spatially averaged radiance image is estimated using the approx-
imate equation 

( ) ( )1e e e aL A B S Lρ ρ= + − +                     (2) 

Once the atmospheric correction model is run, the reflectance is retrieved 
from the radiance. 

3.7. Field Spectra Collection 

The validation of the reflectance spectra has been done with the analytical spec-
tral device Fieldspec to generate the laboratory spectra of the rock samples that 
have collected from the field. The spectral collection of the rock samples were 
conducted almost at the same time of the sensor image capturing time. This was 
done to regenerate the same illumination conditions that persisted at the time of 
the image capture IN order to make measurements of surface reflectance of geo-
logical samples. 

3.8. Spectral Data Collection, Creation of ASD and Image Spectral 
Library 

To compare the ground-measured spectra collected from ASD with that of at-
mospherically corrected image spectra, the ASD spectra were re-sampled to the 
Hyperion FWHM and bandwidth. A spectral library of re-sampled ASD spectra 
was created. The spectra from the ASD library were used as standard to compare 
image reflectance spectra extracted using FLAASH. The ground control points 
collected during the ground truth investigation were used to locate the exact 
pixel in the image which corresponds to the respective sample location. The im-
age spectra for all the major sampling locations were generated similarly and 
saved in spectral library. 

4. Methodology for Mineral Mapping Using Spectral Analysis 
4.1. Minimum Noise Fraction 

The minimum noise fraction (MNF) transformation is used to determine the 
inherent dimensionality of image data, Minimum Noise Fraction images were 
created for the 196 unique bands of Hyperion data. Around 10 MNF compo-
nents contained the maximum information. The remaining bands contain 
maximum noise. Hence the first 10 bands were used for further processing and 
for selecting pure pixels in the image [4]. 
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4.2. Pixel Purity Index 

In the present study, number of iterations with different threshold limit was car-
ried out interactively to isolate the position of most pure pixels in the image [5]. 
A threshold of two was fixed for the identification of pure pixels in the image 
which can be explained as, all the pixels having 2 DN values (maximum limit) 
greater than the extreme pixel is considered as being pure. Different sets of itera-
tions 50, 100, 500 and 1000 were carried out on this dataset with keeping the 
threshold at 2. It was observed that more the number of iterations more the 
number of extreme pixels found with more variability in the dataset. 

4.3. Process of Selection of Image End Members, Mineral Mapping 
Techniques 

In the study area, all the relevant topographic features are clustered in the 
N-Dimensional visualizer and demarcated as separate region of interests and 
saved. These ROI’s were used for the further mapping using various techniques. 
The endmembers clustered in the study area are as follows. 1) Al rich Late-
rite/Bauxite 2) Khondalite 3) Weathered soil with agriculture 4) Weathered soil 
5) Vegetation 

4.4. Linear Spectral Unmixing 

Linear Spectral Unmixing is a means of determining the relative abundances of 
materials depicted in multispectral imagery based on the materials spectral 
characteristics. The reflectance at each pixel of the image is assumed to be a lin-
ear combination of the reflectance of each material (or endmember) present 
within the pixel. 

A unit-sum constraint in the linear Mixing algorithm was applied in this study 
where the score varies between zero and one. This was implemented to allow 
user-defined weighting of a sum-to-unity constraint on the abundance fractions. 
It also permits proper unmixing of MNF-transform data, with zero-mean bands. 
The weight factor, a default value of one is used for the extra constraint equa-
tion. This weighted unit-sum constraint is then added to the system of simulta-
neous equations in the unmixing inversion process [6]. 

4.5. Mixture Tuned Matched Filtering 

Mixture tuned matched filtering (MTMF) performs a partial unmixing—finding 
the abundances of user defined endmembers. 

Mixture Tuned Matched Filtering technique combines the best part of the li-
near spectral unmixing model and the statistical matched filter model while 
avoiding the drawbacks of each model. From matched filtering it inherits the 
advantage of its ability to map a single known target without knowing the other 
background endmember signatures, unlike traditional spectral mixing models. 
From spectral mixture modeling it inherits the leverage arising from the mixed 
pixel model, the constraint on feasibility including the unit sum and positive re-
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quirements unlike the Matched Filter which does not employ these fundamental 
facts [7]. Hence this method can out perform either method in case of subtle, 
sub-pixel occurrences. 

5. Results and Discussions 

In the present work a customized tool was used to compensate for the striping 
by visually identifying bad columns and a filter was developed to balancing for 
the bad columns. Using the cumulative mean, variance, minimum and maxi-
mum of each pixel in a column the stripes are identified. 

5.1. Forward MNF Transformation 

MNF transformation was applied on the Hyperion data. Several trials of Mini-
mum Noise Fraction transformation have been run to obtain the optimum re-
sults. The first 10 eigenvectors (Figure 2) were chosen for both the datasets and 
the rest of them were more noise prone hence discarded from further spectral 
analysis. The FCC using the first 3 bands of MNF Transformation [8]. 

5.2. Pixel Purity Index Results 

The pixel purity index image was derived from the MNF image (Figure 4). The 
number of iterations was chosen as 10000 with 250 iterations per block, given a 
threshold of 2. The threshold were changed and tested on various MNF images 
of the study area. It was found that the threshold value of 2 has given the best 
 

 

Figure 2. Eigen vectors derived from the Hyper spectral data. 

Eigen vector-1    Eigen vector-2   Eigen vector-3     Eigen vector-4
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results and hence been chosen for further selection of the region of interests 
(ROIs). 

5.3. Endmembers Selection 

The endmember needs to be selected for the abundance mapping using various 
mapping methods such as Linear Spectral Unmixing (LSU), Mixed Tuned 
Matched Filtering (MTMF) and Matched Filtering etc. The various endmembers 
are chosen with respect to their relevance in the study area and the geologically 
relevant features are chosen as endmembers (Figure 3). 

6. Results of Various Mapping Techniques 
6.1. Results of Linear Spectral Unmixing 

Linear spectral unmixing has been performed using the final endmembers of the 
study area. It is obtained by giving endmember region of interest as the reference 
spectra and their abundance in the image are given in the resultant final Linear 
spectral unmixing image. 

The linear spectral unmixing result of the study area clearly demarcates the 
Bauxite ore. This is basically due to the mineral composition of the mineral. It 
has the characteristic absorption depth at 2200 nm that enables these minerals to 
be distinguished in the image, the abundance has also been successfully mapped 
using the linear spectral unmixing model. 

6.2. Results of Mixture Tuned Matched Filtering 

Image endmembers are derived from the hyperion satellite imagery using the 
interactive analysis technique of ENVI. All the final image endmembers mostly  

 

 
Figure 3. Isolated Endmembers of selected classes in n-Dimension Visualiser & Isolation of 
Pure pixels from the MNF image. Red—Al rich laterite/Bauxite; Aquamarine—Khondalite; 
Sienna—Weathered soil with agriculture; Coral—Weathered soil; Sea green—Vegetation. 
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describing the image were considered for creating a set of score and infeasibility 
image. 

The interpretation of mixture tuned matched filtering mapping method in-
volves the integration of close analysis of both the score and infeasibility images 
of the individual endmembers. The Al rich laterite/Bauxite and Vegetation end-
member’s score as well as infeasibility image are given in (Figure 4). The score 
images of Bauxite exhibits their abundance in the area with high pixel values and 
they can be considered only valid if the same area has low pixel values in the in-
feasibility image (Figure 5). 

6.3. Supervised Classification and Mineral Abundance Map 

Maximum Likelihood Classifier was applied to the MNF transformed compo-
nents, using the ROI’s of selected endmembers. In order to compare the results 
with those from the Maximum likelihood, the classification thresholds are ad-
justed to 2. The ground truth makes it easy to make absolute performance com-
parisons. Classified Image was examined for its validity by using the error matrix 
of ground truth ROI’s which were collected during the Field Visit of the Study 
area and the sample spectra that were collected. 

7. Results 

For study area, linear spectral unmixing MTMF were used to map the end-
members. The five endmembers used for the study area are Laterite/Bauxite, 
khondalite, weathered soil with agriculture, weathered soil and Vegetation. The 
linear spectral unmixing method successfully mapped the weathered soil with 
agriculture and weathered soil but showed intermixing between bauxite/laterite 
and khondalite abundance image. The MTMF method was adopted for the study 
 

 
Figure 4. Spectra generated from the selected classes. Red—Al rich laterite/Bauxite; Aq-
uamarine—Khondalite; Sienna—Weathered soil with agriculture; Coral—Weathered soil; 
Sea green—Vegetation. 
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Figure 5. Comparison of Lab spectra and field spectra collected for Bauxite. 

 

 
Figure 6. Linear spectral unmixing FCC image. 

 
area primarily to differentiate between the bauxite/laterite and khondalite, which 
were intermixed in the Linear spectral unmixing result. The MTMF successfully 
conducted the abundance mapping for bauxite/laterite and khondalite (Figure 
6). The final interpretation of the MTMF results needs to be done after integrat-
ing the score image results to that of the infeasibility image for all the end-
members. Mineral abundance Map of Al rich Laterite/Bauxite was prepared with 
identified new mineral deposits in unknown areas (Figure 7). Identified deposits 
were (Figure 8). 
• KARHINGA MALI HILL (83˚4'10''E, 19˚2'9''N) 
• CHEMA MALI (83˚3'36''E, 19˚0'26''N) 
• KAKIRIMALI (83˚2'55''E, 18˚56'52''N) 

https://doi.org/10.4236/ijg.2018.92006


M. J. R. Babu et al. 
 

 

DOI: 10.4236/ijg.2018.92006 103 International Journal of Geosciences 
 

 
Figure 7. MTMF image FCC of Al rich laterite/Bauxite, 
Khondalite and weathered soil Score Images. 

 

 
Figure 8. Land cover Map. 
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Figure 9. Map showing Alumina rich Laterite occurrence in the study area. 

8. Conclusion 

In the present study the typical reflectance spectra of Alumina rich Laterite 
(Bauxite) at 2200 nm was emphasized and employed to identify the new mineral 
deposits. Results have revealed the ability of hyperspectral remote sensing data 
for the identification and mapping of weathered altered products like Al rich 
Laterite (Bauxite). Mapping techniques that were employed in this study were 
Linear Spectral Unmixing, Mixture Tune Matched Filtering. A single mapping 
technique has not given all the endmember classified result. For the study area, 
linear spectral unmixing as well as Mixture Tune Matched Filtering has given 
good results. Hence it can be concluded that an integrated approach of several 
mapping techniques will lead to the successful mapping of the endmembers 
(Figure 9). 
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