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Abstract 
In this paper, a conjugate spectral problem and biorthogonality conditions for 
the problem of extended plates of variable thickness are constructed. A tech-
nique for solving problems and numerical results on the propagation of waves 
in infinite extended viscoelastic plates of variable thickness is described. The 
viscous properties of the material are taken into account using the Voltaire 
integral operator. The investigation is carried out within the framework of the 
spatial theory of viscoelasticity. The technique is based on the separation of 
spatial variables and the formulation of a boundary value problem for Eigen 
values which are solved by the Godunov orthogonal sweep method and the 
Muller method. Numerical values of the real and imaginary parts of the phase 
velocity are obtained depending on the wave numbers. In this case, the coin-
cidence of numerical results with known data is obtained. 
 

Subject Areas 
Applied Physics, Continuum Mechanics 
 

Keywords 
Waveguide, Spectral Problem, Plane Wave Biorthogonality, Plastic, Dual 
Problem 

 

1. Introduction 

The study of the propagation of deformation waves in elastic and viscoelastic 
media is an important direction in modern wave dynamics. The main problem is 
the study of the dissipative (damping) properties of the system as a whole, as 
well as its stress-strain state. With the free propagation of waves, the dissipation 
reduces to the attenuation of free waves. The rate of damping quantitatively es-
timates the dissipative properties of the system: the greater the decay rate, the 
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higher the dissipation [1] [2]. It is known [3] [4] that the normal waves in the 
deformed layer (Lamb waves) are not orthogonal in layer thickness, that is, the 
integral of the scalar product of displacement vectors of two different waves 
considered as a function of the coordinate perpendicular to the surfaces of the 
layer is not zero. They are also not orthogonal to the conjugate waves obtained 
from considering the adjoint problem. This circumstance introduces additional 
difficulties in solving practical problems [5] [6]. In this work, the difference from 
the known ones, the conjugate spectral problem, the biorthogonality conditions 
are constructed, an algorithm is developed, and numerical results are obtained 
for the problem of extended plates of variable thickness. 

2. The Mathematical Formulation of the Problem 

We consider the visco elastic waveguide as an infinite axial х1 variable thickness 
(Figure 1). Basic relations of the classical theory of plates of variable thickness 
can be obtained on the basis of the principles of virtual displacements. The vari-
ation equation problem visco elasticity theory in three-dimensional statement 
has the form 

( ) ( )3 2 1d d d 0 1,2,3; 1,2,3ij ij i iu u x x x i j
ν

σ δε ρ δ+ = = =∫∫∫           (1) 

where ρ-material density; ui-displacement components; σij and εij-components of 
the stress tensor and strain; h-plate thickness; V-the volume occupied by the 
body. In accordance with the hypotheses of Kirchhoff-Love  

( )12 23 33 3 30, , ,i
i

дwu x w x t w
дx

σ σ σ= = = = − = .             (2) 

Neglecting in (1) the members of which take into account the inertia of rota-
tion normal to the middle plane, will have the following variation equation: 

( )
22 2

11 11 12 12 22 22 3 32

2 2

d 2 d d d 0

h h

h hS S

ws x s w x
t

σ δε τ δε τ δε ρ δ
− −

∂
+ + + =

∂∫ ∫ ∫ ∫       (3) 

 

 
Figure 1. Design scheme: plates of variable thickness. 
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Based on the geometric relationships and relations of the generalized Hooke’s 
law, taking into account the kinematic hypotheses (2), the expressions for the 
components of the strain and stress tensor has the form [7]  

( ) ( )

2

3

11 11 22 22 22 11 12 12

1 , , 1, 2;
2

; ; ,
1 1 1

ji
ij

j i i j

uu wx i j
x x x x

E E E

ε

σ ε νε σ ε νε σ ε
ν ν ν

 ∂∂ ∂
= + − =  ∂ ∂ ∂ ∂ 

= + = + =
− − +

  

      (4) 

( ) ( ) ( ) ( )0
0

d ,
t

n n EnE t E t R t tϕ ϕ τ ϕ τ
 

= − − 
 

∫               (5) 

where ( )tϕ -arbitrary function of time; ν -Poisson’s ratio; ( )EnR t τ− -the core 
of relaxation; 01E -instantaneous modulus of elasticity; we accept the integral 
terms in (5) small, then the function ( ) ( )e Ri tt t ωϕ ψ −= , where ( )tψ -slowly va-
rying function of time, Rω -real constant. Then, we replace of (6) approximate 
species [8]  

( ) ( )0 1 С S
n j j R j RE E iϕ ω ω ϕ = −Γ − Γ   

where ( ) ( )
0

cos dC
n R Еn RRω τ ω τ τ

∞

Γ = ∫ ,  ( ) ( )
0

sin dS
n R Еn RRω τ ω τ τ

∞

Γ = ∫ ,  respec-  

tively, cosine and sine Fourier transforms relaxation kernel material. As an ex-
ample, the visco elastic material take three parametric relaxation nucleus 

( ) 1e n nt
Еn nR t A tβ α− −= . Here , ,n n nA α β -parameters relaxation nucleus. On the 

effect of the function ( )ЕnR t τ−  superimposed usual requirements inerrability, 
continuity (except t τ= ), signs-certainty and monotony: 

( )
0

d
0, 0, 0 d 1.

d
En

En En
RR R t t

t

∞

> ≤ < <∫  

Introducing the notation for points  
2 2 2 2

11 222 2 2 2
1 2 2 1

; ;w w w wМ D v M D v
x x x x

   ∂ ∂ ∂ ∂
= + = +   

∂ ∂ ∂ ∂   
 

( ) ( )
2 3

12 2
1 2

1 , .
12 1

w EhM D v D
x x ν
∂

= − =
∂ ∂ −

 

When ( ) 0ЕnR t τ− = , then 
( )

3

212 1
EhD

ν
=

−
. Here E is the modulus of elas-  

ticity. 
Integrating (3) in the strip thickness leads to the following form  

2 2 2 2

11 12 222 2 2
5 1 21 2

2 d d 0.
s

w w w wM M M s h w s
x xx x t

δ δ δ
ρ δ

 ∂ ∂ ∂ ∂
+ + − = ∂ ∂∂ ∂ ∂ 

∫ ∫      (6) 

Integrating twice by parts and alignment to zero, the coefficients of variation 
wδ  inside the body and on its boundary and we obtain the following differen-

tial equation  
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( )
2 2 2

2 211 12 22
2 2

1 2 2

2 0,M M M hw w w t
x xx x

ρ
∂ ∂ ∂

+ + + = = ∂ ∂
∂ ∂∂ ∂

              (7) 

with natural boundary conditions: 

2

2 2

0

0; 0;

w
x

w x l

∂ =∂
 = =

                           (8) 

1

1 1

0

0; 0;

w
x

w x l

∂ =∂
 = =

                           (9) 

The main alternative boundary conditions to them  

22

22 12
2 2

2 1

0

2 0; 0;

M
M M x l
x x

=

∂ ∂ + = = ∂ ∂

                    (10) 

11

11 12
1 1

1 2

0

2 0; 0;

M
M M x l
x x

=

∂ ∂ + = = ∂ ∂

                    (11) 

For, we construct a spectral problem by entering the following change of va-
riables  

2

2 2
22 12

2 2
2 11 2

; ;

; .

Ww W
x

M MW WM Q
x xx x

ϕ ∂
= =

∂

  ∂ ∂∂ ∂
= + = + 

∂ ∂∂ ∂ 

               (12) 

Substituting (12) into (7) we obtain the differential equation of the system rel-
atively sparse on the first derivatives х2 : 

 

( )

( )

2 2 2

2 2 2
2 1 1

2

2
2 1

2

2
2 1

2

1 0;

1 0;

0;

0.

Q M WD h
x x x t

M WQ D
x x

WD M D
x x

W
x

ϕν ρ

ν

ϕ

ϕ

∂ ∂ ∂ ∂′+ + − + =
∂ ∂ ∂ ∂

∂ ∂′′− − − =
∂ ∂

∂ ∂
− + =

∂ ∂

∂
− =

∂

              (13) 

And alternative boundary conditions 2 0х = ; 2 2x l= ;  

0ϕ =  or ( )
2

2
1

1 0;MM D v
x

∂
− − =

∂
 

0W =  or ( )
2

2
1

1 0.Q D v
x
ϕ∂

+ − =
∂

                (14) 

and 1 0х = , 1 1х l= ,  
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0ϕ =  or ( )
2

2
1

1 0;MM D v
x

∂
− − =

∂
 

0W =  or ( )
2

2
1

1 0Q D v
x
ϕ∂

+ − =
∂

                 (15) 

Now consider the infinite along the axis х1 band with an arbitrary thickness 
changes ( )2h h x= . We seek a solution of problem (13)-(15) in the for 

( ) ( ) ( )1
TT, , , , , , ei x tQ M W Q M W α ωϕ ϕ −=               (16) 

Describing the harmonic plane waves propagating along the axis х1. Here 

( )T
, , ,Q M Wϕ -complex amplitude-function; k-wave number; С ( R iС С iC= + )- 

complex phase velocity; ω-complex frequency. 
To clarify their physical meaning, consider two cases: 
1) Rk k= ; R iС С iC= + , ( R I Iiω ω ω= + ) then the solution of differential 

Equations (13) has the form of a sine wave at х1, whose amplitude decays over 
time; 

2) R Ik k ik= + ; RС С= , Then at each point х1 fluctuations established, but х1 
attenuated.  

In both cases, the imaginary part kI or CI characterized by the intensity of the 
dissipative processes. Substituting (16) in (17), we obtain a system of first order 
differential equations solved for the derivative  

 

( )
( )

2 2 2

2

2

1 0;

1 0;
1 0;

0

Q М D v h W

М Q D v W

M W
D

W

α α ϕ ρ ω

α

ϕ α

ϕ

′ ′− − − − =

′ ′− + − =

′ − − =

′ − =

             (17) 

with boundary conditions at the ends of the band х2 = 0, l2, one of the four types  
1) Swivel bearing: 0W M= =                                    (18) 
2) Sliding clamp: 0Q ϕ= =                                      (19) 
3) Anchorage: 0W ϕ= =                                        (20) 

4) Free edge: 
( )

( )

2

2

1 0

1 0

M D W

Q D

α ν

α ν ϕ

 + − =


− − =
                             (21) 

Thus, the spectral formulated task (17) and (21) the parameter α2, describes 
the propagation of flexural waves in planar waveguide made as a band with an 
arbitrary coordinate on the thickness change х2. It is shown that the spectral para-
meter α2 It takes complex values (in the case of ( ) 0ЕnR t τ− ≠ ) If ( ) 0ЕnR t τ− = , 
whereas the spectral parameter α2 It takes only real values. Transform this sys-
tem (17). We have  

( ) ( )2 21 1Q M D v W D vα α ϕ′ ′′ ′′ ′= + − + −  

From whence  

( ) 2 2 21 0M D v W M hw Wα α ρ′′ ′′+ − − − =  

Moreover  
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21 0.W M W
D

α− − =  

Thus, the conversion system is of the form  

( )( )2 2 2

2

1 0

1 0

M M h D v W

W W M
D

α ρ ω α

α

 ′′ ′′− − − − =



′′ − − =


            (22) 

The boundary conditions (18)-(21) in alternating ,W M  it has the form: 
1) Swivel bearing: 0;W M= =                                    (23) 
2) Sliding clamp: ( )2 1 0;W M D Wα ν′ ′ ′= − − =                       (24) 
3) Anchorage: 0W W ′= =                                       (25) 

4) Free edge: 
( )

( )( )

2

2

1 0

1 0

M D W

M DW

α ν

α ν

′ + − =

′′ − − =
                            (26) 

at 2 0х =  or 2 2 .х l= +  
Let М  and W  some own functions of the system (22)-(26) may have a 

complex meaning. Multiply the equation system (22) to function M̂


 and Ŵ


, 
complex conjugate to М  and W . Identical converting the first equation, we 
integrate the resulting equality х2 and composed of the following linear combi-
nation 

( ) ( ) ( ) ( )

( )

2 2 2

2 2 2

2 2 2

2 2
2 2 2

0 0 0

2 2 2
2 2 2

0 0 0

2
2 2 2

0 0 0

ˆ ˆ ˆd 1 d 1 d

ˆ ˆ ˆd d 1 d

ˆˆ ˆd d d 0

l l l

l l l

l l l

M W x DW W x DW W x

MW x hWW x D WW x

MMW M x WM x x
D

α ν α ν

α ω ρ α ν

α

′′ ′′′′ − − + −

′′− − − −

′′+ − − =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

  

  



 

    (27) 

Integrating (27) by parts, 

( )( )

( )

( )

( ) ( ) ( )

22

2 2

2 2 2 2

2 2

2
2

0 0

2 2
2 2

0 0

2 2
2 2 2

00 0 0

2 2 2
2 2

0 0

ˆ ˆ1 d

ˆ1 d d

ˆˆ ˆ ˆ2 1 d d d

ˆ ˆ2 1 d 1 d 1

ll

l l

l l l l

l l

M DW W M W M W x

DW W x MW MW x

MMD WW x hWW x x W M
D

D W W x D WW x v D

α ν

α ν α

α ν ω ρ

α ν α ν α

  ′ ′ ′ ′ ′ ′− − − +    

 ′ ′ ′+ − − +  

′′ ′+ − − − +

′ ′ ′ ′ ′′+ − + − + −

∫

∫ ∫

∫ ∫ ∫

∫ ∫

 





 



  

  2

2
0

ˆd 0
l

W W x =∫


 

or 

( )( ) ( )

( ) ( )
( ) ( ) ( )

2 2

2 2 2

2 2 2

2 2

00

2
2 2 2

0 0 0

2 2 2
2 2 2

0 0 0

ˆ ˆ ˆ1 1

ˆˆ ˆ ˆ ˆd d d

ˆ ˆ ˆd 2 1 d 1 d 0.

l l

l l l

l e e

M v DW W M v DW W

MMM W M W x WM WM x x
D

hWW x v D WW x v D WW x

α α

α

ω ρ α α

 ′  ′ ′− − + + −     

′ ′ ′ ′− + − + −

′
′′ ′− − − + − =

∫ ∫ ∫

∫ ∫ ∫

  



   

  

 (28) 
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It is easy to make sure that is the integral terms of (28) vanish at any combina-
tion of the boundary conditions (23)-(26). It should also be noted that all the 
functions under the integral valid at ( ) 0ЕnR t τ− = . The expressing α2 (28) We 
find that 

( )

( ) ( ) ( ) ( )

2 2 2

2 2 2

2
2 2 2

2 0 0 0

2 2 2
0 0 0

ˆ ˆd d d

ˆ ˆ ˆ ˆd 2 1 d 1 d

l l l

l l l

MMM W M W x x hWW x
D

MW MW x D WW x D WW x

ω ρ
α

ν ν

′ ′ ′ ′+ + +
=

′
′′ ′+ − − − −

∫ ∫ ∫

∫ ∫ ∫







  

   

-real 

number.  
Thus (with ( ) 0ЕnR t τ− = ), It is shown that the square of the wave number 

for own endless strip of varying thickness is valid for any combination of boun-
dary conditions. If ( ) 0ЕnR t τ− ≠ , then 2α  It is a complex value for any com-
bination of boundary conditions. 

3. Adjoin Spectral Problem, Orthogonality Condition  

The resulting spectral problem (17)-(21) is not self-adjoin. Built for her adjoin 
problem using this Lagrange formula [9] 

( ) ( ) ( )* * * *

0
0 0

d , d ,
l ll
L U V x Z U V L V U x⋅ = − ⋅∫ ∫                 (29) 

where L and L*—direct and adjoin linear differential operators; U and V*—ar- 
bitrary decisions of relevant boundary value problems. 

In our case  

( )

( )

2 2 2

2

2

2

2

2

2

1

1 0 1

10

0 0 1

д D v h
дх

д D v
дхL д
D дх

д
дх

α α ρ ω

α

α

 ′− − − − 
 
 ′− − − 

=  
 −
 
 
 −
  

             (30) 

on the left-hand side of Equation (29) will be as follows  

( )

( )

2
2 2 2

0

2 2
2

1

11 d 0

l

Q Q MQ D Q h WQ M M QM

D WM M W W W W x
D

α α ν ϕ ρ ω

α ν ϕ ϕ ϕ α ϕ ϕ

• • • • • •

• • • • • •

 ′ ′ ′− − − − + −

′ ′ ′+ − + − − + − =

∫
  (31) 

or, integrating parts 

( )
( )( )

( )( )

2
2

0
0

2 2

2 2 2
2

1 1

1 d 0

ll
QQ ММ WW Q M Q

M Q M W D Q
D

W D M h Q W x

ϕϕ

α ϕ ϕ α ν ϕ

α ϕ α ν ρ ω

• • • • • •

• • • • • •

• • • •

 ′ + + + − +  

 ′ ′ ′+ + + + + + − 
 

′ ′+ + − − + =

∫

         (32) 
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Thus the conjugate (30)-(32), the system has the form 

( )
( )

2

2

2 2 2

0
1 0

1 0

1 0

Q M

M Q
D

W D Q

W D M h Q

α ϕ

φ α ν

α ν α ϕ ρ ω

• •

• • •

• • •

• • • •

 ′ + =

 ′ + + =

 ′ ′+ + − =

 ′ ′− − + + =

             (33) 

Moreover, we get the conjugate boundary conditions of equality to zero is 

integral members ( ) 2*

0
,

l
Z U V  expression in (32): 

1) Swivel bearing: 2 20, 0,Q x lϕ • •= = =                           (34) 
2) Sliding clamp: 2 20, 0,W M x l• •= = =                          (35) 
3) Anchorage: 2 20, 0,M Q x l• •= = =                              (36) 

4) Free edge: 
( )
( )

2

2
2 2

1 0,

1 0, 0,

D Q

W D M x l

ϕ α ν

α ν

• •

• •

 + − =


− − = =
 

For conditions biorthogonality solutions once again use the Lagrange formula 
(29) in the form  

( ) ( ) ( ) 2

0
0

d , ,
l l

L U V L V U x Z U V• • • • + = ∫              (37) 

that leads to the consideration of the following integral 

( )

( )

( )

( )

2
2 2 2

0

2 2

2

2

2 2

1

11

1 1

1

l

i j i i j i i j i j i j

i j i i j i j i j i i j

i j i j j i j i j i j i j

i j i j j i j j i i j

j i j j i

Q Q M Q D Q h W Q M M

Q M D W M M W
D

W W W Q Q M Q M M M Q

M W D Q WW
D

W D W

α α ν ϕ ρ ω

α ν ϕ ϕ ϕ α ϕ

ϕ α

ϕ ϕ ϕ ϕ α ν ϕ

α ϕ α ν

• • • • •

• • • • •

• • • • • •

• • • • •

•

 ′ ′ ′− − − − +

′ ′− + − + − −

′ ′′+ − + + + +

′ ′′+ + + + − +

′+ − −

∫

2
2d 0,j j iM h Q W xρ ω• • + =

     (38) 

where ( )T
, , ,i i i iQ M Wϕ -own form, corresponding to the Eigen value αi original 

spectral problem; ( )T
, , ,j j j jQ M Wϕ• • • • -own form, corresponding to the Eigen 

value αj adjoin. 
Integrating (38) by parts 

( ) ( ) ( )

( ) ( )

2

2

2 2
2

0

0

1 1 d

1 1 0,

l

i j i j j i i j i j

l

j i i j

M Q D Q D W M W x

D Q D W M

α α ν ϕ ν ϕ

ν ϕ ν

• • • •

• •


 ′ ′− − − − + − − 


 + − − − =  

∫
   (39) 

where to i j≠  we have the condition biorthogonality forms: 

( )( ) ( )( )

( ) ]

2

2

2
0

0

1 1 d

1

l

i i j i j j

l

i j j i ij

M D Q W D M x

D W M Q

ν ϕ ϕ ν

ν ϕ δ

• • •

• •

 ′ ′+ − + − − 

+ − − =

∫
        (40) 
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The expression i j j iW M Q ϕ• •−  zero, if the border is set to any of the condi-
tions (18)-(21) in addition to the conditions of the free edge. 

4. Fixed Problem for a Semi-Infinite Strip of Variable  
Thickness  

Consider a semi-infinite axial x1 lane variable section, wherein at the end (x1 = 0) 
harmonic set time exposure of one of two types of: 

( ) ( )2 11 2e , e , 0i t i t
W W lW f x M f x xω ω= = =               (41) 

or  

( ) ( )1 2 1 2 1e , e , 0i t i t
Qf x Q f x xω ω

ϕϕ = = =                (42) 

where  

( )
3 3

1 1 3 2
1 1 1 2

, 2 1W W WQ D
x x x x

ϕ ν
 ∂ ∂ ∂

= = + − ∂ ∂ ∂ ∂ 
             (43) 

Transform the boundary conditions (41) so that they contain only selected 
our variables W, φ, M and Q 

( ) ( )
2 2

2 2 12 2
1 2

e , e , 0,i t i t
w M

W WW f x D f x x
x x

ω ων
 ∂ ∂

= + = = 
∂ ∂ 

 

( ) ( ) ( )
3 3

2 2 13 2
1 1 1 2

e , 2 1 e , 0,i t i t
Q

W W Wf x D f x x
x x x x

ω ω
ϕ ν

 ∂ ∂ ∂
= + − = = ∂ ∂ ∂ ∂ 

 

or  

( ) ( ) ( )
2 2 2

2 2 12 2 2
1 2 2

e , 1 e , 0,i t i t
w M

W W WW f x D D f x x
x x x

ω ων ν
 ∂ ∂ ∂

= + − − = = 
∂ ∂ ∂ 

 

( )

( ) ( )

2
1

2 2 2

2 12 2 2
1 11 2 2

e ,

1 e , 0,

i t

i t
Q

W f x
x

W W WD D f x x
x xx x x

ω
ϕ

ων

∂
=

∂

    ∂ ∂ ∂ ∂ ∂
+ + − = =    ∂ ∂∂ ∂ ∂     

 

Of finally 

( ) ( ) ( ) ( )2 2 2 1e , 1 e , 0i t i t
w M wW f x M f x D f x xω ων ′′ = = + − =        (44) 

 
( )

( ) ( ) ( )

2
1

2 2 1
1

e ,

1 e , 0.

i t

i t
Q

W f x
x
M f x D f x x
x

ω
ϕ

ω
ϕν

∂
=

∂
∂ ′′ = − − = ∂

             (45) 

Assume that the desired solution of the no stationary problem can be ex-
panded in a series in Eigen functions of the solution of the spectral problem. In 
the case of constant thickness it is evident, and in general, the question remains 
open. 

The solution of the stationary problem (17)-(21) (41)-(42) will seek a  
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( )
( )
( )
( )

( )1

2

2

1 2

2

e k

k

N k i x t
k

k k

k

W W x

x
a

M M x

Q Q x

α ω
ϕ ϕ

− −

=

  
  
  

=   
  
        

∑ .                 (46) 

where , , ,k k k kW Mϕ θ -biorthonormal own forms of the spectral problem (17) - 
(21). 

The representation (46) gives us the solution to the problem of non-stationary 
wave in the far field, i.e., where it has faded not propagating modes. The number 
of propagating modes used N course for each specific frequency ω, since the cu-
toff frequency is greater than the other ω. 

Consider two cases of excitation of stationary waves in the band: 
1) 0wf = -antisymmetric relative х1; 
2) 0fϕ = -symmetric. 
In the case of antisymmetric excitation, substituting (46) into (44) and ex-

pressing fM(x2), obtain 

( ) ( )2 2
1

N

M k k
k

f x M xα
=

=∑ .                      (47) 

Value biorthogonality (40) gives expression to determine the unknown coeffi-  

cients ( ) ( )
2

2 2 2
0

d
e

k M ka f x Q x x•= ∫ . 

In the case of a symmetrical excitation ( )2Qf x  We obtain rearranging (46) 
to (45) in the following form 

( ) ( )( )2 2
1

N

Q k k k
k

f x i a M xα
=

= −∑                     (48) 

Biorthogonality ratio (30) gives  

( )
2

2 2
0

d
l

k Q k
k

ia f x Q x
α

•= ∫                       (49) 

Testing Software System and Study the Properties of  
Propagation of Flexural Waves in a Band of Variable  
Thickness 

Testing program was carried out on the task of distributing the flexural waves in 
a plate of constant thickness. Consider the floor plate of constant thickness infi-
nitely satisfying Kirchhoff-Love hypotheses, with supported long edges (Figure 
1).  
At end face 1 0х =  specified: 

( ) ( )1 2 11 2 2e , eiwt iwtw f x M f x= =                   (50) 

Spread along the axis х1 flexural wave is described by the differential control 
system (13) 
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( )
2

2 2
2
1

2

2
1

0

0 ,

0,
1 0

0,

MQ hw w w t
x

M
wM

D x
w h h

ρ

θ

ϕ

ϕ

 ∂′ ′′ ′′+ + = = ∂ ∂ ∂
′ − =

 ∂ ′ − + =
 ∂
 ′ − = =

             (51) 

with boundary conditions of the form (15) 

( )
2

22
1

0, 1 0, 0,πww M D x
x

ν
∂

= − − = =
∂

              (52) 

Introducing the desired motion vector in the form of 

( )1e ki a x t

Q Q
M M

w W

ω

ϕ ϕ
− −

  
  
   =   
       

                      (53) 

Go to the spectral problem  
2 2

2

0,
0,

1 0,

0,

Q M hW
M Q

M W
D

W

α ω ρ

ϕ α

ϕ

 ′ − − =


′ − =


′ − − =


′ − =

                    (54) 

with the boundary conditions 

( ) 2
20, 1 0, 0,πW M D W xν α= + − = =  

or 

20, 0, 0,πW M x= = = .                   (55) 

Rewrite the system (54) as follows 

2

2 2

1 0,

0,

W M W
D

M M hW

α

α ω ρ

 ′′ − − =

 ′′ − − =

                   (56) 

and 0W = , 0M = , 2 0,πx = . 
We seek the solution of (56) in the form  

( )
2

2

sin ,
sin , 1, 2,

w

M

W a nx
M a nx n
=

= = 

                  (57) 

satisfying the boundary conditions (55). 
We obtain an algebraic homogeneous system  

2 2

2 2 2

1 0;

0.

W W M

M M w

n a a a
D

n a a ha

α

α ω ρ

− − − =

− − − =
                  (58) 

For the existence of a nontrivial solution, which is necessary to require the va-
nishing of its determinant 

https://doi.org/10.4236/oalib.1104262


I. I. Safarov, Z. I. Boltaev 
 

 

DOI: 10.4236/oalib.1104262 12 Open Access Library Journal 
 

2 2

2 2 2

1
det 0,

n
D

h n

α

ω ρ α

+
=

+
 

or 

2 2
1,2 ,

k

hn
D
ρ

α ω+ = ±                      (59а) 

where, when ( ) 0ЕnR t τ− =  

2 2
1,2 .hn

D
ρ

α ω= − ±                      (59b) 

Ownership of constant thickness strip bending vibrations are of the form  
1,2

2

1,2
2

1,2
2

1,2
2

sin ;

sin ;

cos ;

cos .

n

n

n

n

W nx

M hD nx

n nx

Q hD nx

ω ρ

ϕ

ω ρ

=

= ±

=

= 

                    (60) 

We construct the solution of the problem adjoin to (54)-(55) 

2 2 *

* 2

0,

0
1 0,

0

W h Q

W

M Q
D

Q M

α ϕ ρ ω

ϕ

ϕ α

• •

• •

• •

• •

 ′ + + =

 ′ + =


′ + + =

 ′ + =

                   (61) 

and  

 * *
20, 0, 0,πQ xϕ = = = .                   (62) 

Transforming (61)-(62) we obtain the following system of first order differen-
tial equations  

2 2

2

0
1 0,

h Q

Q Q
D

ϕ α ϕ ρ ω

α ϕ

• • •

• • •

 ′′ − − =


′′ − − =


 

2 0,π; 0, 0.x Qϕ • •= = =                     (63) 

The solution of (63) in the form 

2 2sin , sinQa nx Q a nxϕϕ • • • •= =                  (64) 

From whence 2
1,2α  It has the same form (59a), own forms of vibrations are of 

the form: 
1,2

2

1,2
2

1,2
2

1,2
2

sin ,

sin ,

cos

cos .

n

n

n

n

phD nx

Q nx

W n phD nx

M n nx

ϕ ω

ω

•

•

•

•

= ±

=

= ±

=

                   (65) 
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For biorthogonality conditions direct solutions and the adjoin problem is ne-
cessary to consider the following equation 

 

π
2 2

0

2 2

2 2
2

1 1

d

i j i i j i j j i j i i j i j

j i j i j j i i j i j i i j j i

j i i j i j j i j i j i ij

Q Q M Q hW Q Q Q M Q M M Q M

M M M Q M M W
D D

W W W W W W W h Q W x

α ω ρ

ϕ α ϕ ϕ ϕ α ϕ ϕ ϕ

ϕ ϕ α ϕ ρ ω δ

• • • • • • •

• • • • • • •

• • • • • •

 ′′ ′− − + + + −


′ ′′+ + + + − − +

′′+ + − + + + =


∫

    (66) 

where , , ,i i i iQ M Wϕ -own form for the direct problem, the corresponding Eigen 
values iα , and , , ,j j j jQ M Wϕ• • • • -own form of the dual problem, the correspond-
ing Eigen value αj. Integrating by parts in (66), using the boundary conditions 
(55) and (62) we obtain the desired condition: 

π

2
0

di j i j ijM Q W xϕ δ• • + = ∫ .                     (67) 

We now verify biorthogonality received their own forms (60) and (65) using 
the condition biorthogonality (67) 

 

( ) ( ) ( ) ( )

( ) ( )

π

2 2 2 2 2
0

π

2 2 2
0

sin sin sin sin d

2 sin sin d π ij

hD ix jx hD ix jx x

hD ix jx x hD

ρ ρ

ρ ρ δ

 ⋅ + 

= =

∫

∫
 

The normalized adjoin eigenvector on π hDρ , we have a system of eigen-
vectors satisfying the condition (67). 

We now obtain the solution of the problem of the distribution of the statio-
nary wave in the semi-infinite strip of constant thickness. Suppose that at the 
border 1 0х =  set the following stationary disturbance: 

( )
( )

2

2 1

e sin e ,

e sin e , 0

i t i t
W

i t i t
M

w W b nx

M M b nx x

ω ω

ω ω

= =

= = =
                (68) 

We seek a solution of a problem 

( ) ( )1 2 1 2
1 1

, , , , ,k k k k
k k

w x x t a W M x x t a M
∞ ∞

= =

= =∑ ∑             (69) 

where 

( ) ( ) ( ) ( )
21 2e , e ,k l k li a x t i a x t

k kW W x M M xω ω− − − −= =  

а k kW и M -own form (60), corresponding to αk  
It is evident from the band at the end face at 1 0x =  decision (69) must satisfy 

the boundary conditions (68) 

( ) ( )2 2
1

sin e e ,i t i t
W k k

k
b nx a W xω ω

∞

=

= ∑  

( ) ( )2 2
1

sin e e ,i t i t
M k k

k
b nx a M xω ω

∞

=

= ∑  
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or go to the amplitude values  

( )2
1

sin e ,i t
w k k

k
b nx a Wω

∞

=

= ∑  

( )2
1

sin е ,i t
M k k

k
b nx a Mω

∞

=

= ∑                    (70) 

Consider the following integral 
π π

2 2
1 10 0
π

2
1 0

d d

d .

j j k k j k k j
k k

k k j k j j
k

MQ W x a M Q a W x

a M Q W x a

ϕ ϕ

ϕ

∞ ∞
• • • •

= =

∞
• •

=

  + = +    

 = + = 

∑ ∑∫ ∫

∑ ∫
         (71) 

On the other hand on the edge 1 0х =  the same integral as follows  

( ) ( )
π

2 2 2
0

sin sin dM j W jb nx Q b nx xϕ• • + ∫                 (72) 

Substituting in (72) from the normalized own form (65) we obtain  

( ) ( ) ( ) ( )

( ) ( )

π

2 2 2 2 2
0

π

2 2 2
0

1sin sin sin sin d
ππ

sin sin d
ππ

M w

wM

b nx jx b nx jx x
hD

bb nx jx x
hD

ω

ρ

ω

ρ

 
± 

  
 

= ± ⋅ ⋅ 
  

∫

∫

     (73) 

From a comparison of the formulas (71) and (73) it is clear that under such 
boundary conditions is excited only “n”-Single private form: 

22
wM

j nj
bba

hD

ω
δ

ρ
±

 
= ± 

  
                     (74) 

Thus, the solution of the no stationary problem for a half-strip of constant 
thickness has the form  

( ) ( )

( ) ( )

e

e

l

l

i x t
n n n n

i x t
n n n n

W a W a W

M a M a M

α ω

α ω

− −+ + − −

− −− + − −

= +

= +
                   (75) 

where 

2sinnW nx± = ± , 2sinnM hD nxω ρ± = ±  а na± -determined from the ratio (74). 
Now suppose that the steady influence on the border of semi-infinite strip 

1 0х =  it has the form 

( ) ( )2 2e , ei t i t
w Mw f x M f xω ω= =                  (76) 

Let us expand the function wf  and Mf  Fourier series of sinus in the inter-
val [ ]0,π  

( ) ( ) ( ) ( )2 2 2 2
1 1

sin , sink k
w w M M

k k
f x B kx f x b kx

∞ ∞

= =

= =∑ ∑          (77) 

Using the results of the previous problem, we find that the solution can be 
represented as a Fourier series: 
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( ) ( ) ( ) ( )

1 1
e , el li x t i x t

k k k k k k k k
k k

W a W a W M a M a Mα ω α ω
∞ ∞

− − − −+ + − − + + − −

= =

= + = +∑ ∑    (78) 

where 
22

kk
wM

k
bba

hD

ω

ρ
± = ±  a kW ± , kM ±  determined from the ratio (60).  

5. Numerical Results and Analysis 

The numerical solution of spectral problems carried out by computer software 
system based on the method of orthogonal shooting S. K. Godunov [10] com-
bined with the method of Muller. The results obtained in testing with the same 
software package analytically up to 4 - 5 mark frequency range from 0.01 to 100. 
Hereinafter, the entire analysis is conducted in dimensionless variables, in which 
the density of the material ρ, half the width of the waveguide l2 and E modulus 
taken to be unity, and the parameters of relaxation kernel 

0,048; 0,05; 0,1A β α= = = . 
The calculation results are obtained when A = 0. Figure 2 shows the spectral 

curves of the lower modes of oscillation of constant thickness plate, the corres-
ponding n = 0, 1, 2, 3, 4, 5 for Poisson’s ratio υ = 0.25. Analysis of the data shows 
that the range of applicability of the theory of Kirchhoff-Love to a plate of con-
stant thickness is limited by the low frequency range. For example, for the first 
mode (h = 0), the range of application of the theory 0 3ω≤ ≤  because of the 
unlimited growth of the phase propagation velocity with increasing frequency, 
for high frequencies ~f sC C ω .  

At high frequencies, where the wavelength is comparable or less than the fa-
shion of strip thickness, there is, as is well known, localized in the faces of the 
Rayleigh wave band at a speed slower speed Сs, however, as is obvious, this for-
mulation of the problem, in principle, does not allow to obtain this result. How-
ever, it should be noted that in the application of the theory of Kirchhoff-Love 
platinum constant thickness is obtained the correct conclusion about the growth  
 

 
Figure 2. The dependence of the phase velocity on frequency. 
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of the number of propagating modes with increasing frequency that is well seen 
from the spectral curves of Figure 2 and Figure 3, which shows the dependence 
of the wave number α the frequency for the same modes of waves. 

Figure 4 shows the obtained numerical form for the above modes of oscilla-
tions coincided with the same accuracy (4 - 5 decimal places) in the division of 
bandwidth by 90 equal segments. 

Figure 5 illustrates the solution of the stationary problem: the amplitude of 
the excited oscillation modes linearly depends on the frequency ω. 
 

 
Figure 3. The dependence of the frequency of the wave. 
 

 
Figure 4. Form for the higher oscillation modes. 
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We proceed to the propagation of flexural waves in a symmetric band Kir-
chhoff-Love of variable thickness. Let us first consider a waveguide with a linear 
thickness change, presented in Figure 6 and Figure 7 which are free edges. Fig-
ure 8 shows the dispersion curves for the first mode, depending on the verge of 
tilt angle φ/2. Curve I corresponds to a strip of constant thickness 0 1h h= . Curve 
2 corresponds to a waveguide with an angle of inclination of faces 2 π 4ϕ =  or 
tg 2 1ϕ =  and curve 3 corresponds to a waveguide tg 2 0.2ϕ = . The figure 
shows that, unlike the bands in the case of constant cross-section of the wave-
guide with a small tapered angle at the base of the wedge α (Curve 3) there exists 
a finite limit of the phase velocity of the fashion spread, and 
 

 
Figure 5. The amplitude of the excited mode depending on the frequency. 

 

 
Figure 6. The settlement scheme. 
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Figure 7. The settlement scheme. 

 

 
Figure 8. The dependence of the real and imaginary parts of the phase ve-
locity on frequency. 

 

lim 2 tg
2f sC C

ω

ϕ
→∞

=  

where Сs-The speed of shear waves, which coincides with the results of other 
studies [11] [12]. Thus, it is shown that-Lava Kirchhoff theory provides a wave 
propagating in the waveguide is tapered with a sufficiently small angle at the 
base of the wedge-speed, lower shear wave velocity and different from the Ray-
leigh wave velocity. Moreover, these waves from a frequency distributed without 
dispersion. This wave is called “wave Troyanovskiy-Safarov” [13] [14].  

Figure 9 shows the waveform of the same frequency for ω = 10, from which it 
follows that the strip of constant thickness behaves like a rod while at the 
wedge-shaped strip there is a significant localization of waves in the area of acute 
viburnum, and the more, the smaller the angle φ. The above fact explains the  
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Figure 9. The forms of the coordinate fluctuations x2. 

 
Kirchhoff theory-Lava applicability for studying wave propagation in wave-
guides is tapered, as the frequency increases with decreasing length of one side of 
the wave modes, with different wave localizes with the sharp edge of the wedge 
so that the ratio of the wavelength and the effective thickness of the material is in 
the field of applicability of the theory [15]. This statement is true, the smaller the 
angle at the base of the wedge. 

It should also be noted that the numerical analysis of the dispersion Equation 
(33) does not allow to show the presence of strictly limit the speed of wave 
propagation modes, since the computer cannot handle infinitely large quantities. 
We can only speak about the numerical stability result in a large frequency 
range, which is confirmed by research. For example, when tg 2 0.2ϕ =  value 
of the phase velocity of a measured without shear wave velocity at ω = 3 and ω = 
40 It differs fifth sign that corresponds to the accuracy of calculations, resulting 
in test problem. 

In the example h0 = 0.0001, it certainly gives an increase of the phase velocity 
when the frequency increases further, since such a strong localization of the 
wave to the thin edge of the wedge, starts to affect the characteristic dimen-
sion-the thickness of the truncated wedge, and Kirchhoff hypothesis-Lava stops 
working. To solve the problem of acute wedge numerically is not possible, since 
the dispersion equation contains a term D−1, and the thickness tends to zero 
flexural rigidity D behaves as a cube and the thickness goes to zero. This signifi-
cantly increases the “rigidity” (i.e. the ratio between the small and large coeffi-
cient) system, increases dramatically the computing time and decreases the ac-
curacy of the results. However, it is clear that you can trust the results obtained 
where the agreed parameters h0 and α. We note also that the numerical experi-
ment showed no significant dependence of the phase velocity of the first mode of 
the Poisson’s ratio ν , and the fact that a family of dispersion curves with dif-
ferent apex angles of the wedge have a similarity property: the ratio of the phase 
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velocity to the limit does not depend on the angle of the wedge φ. On the modes, 
starting from the second, the speed limit dependence on Poisson’s ratio be-
comes noticeable about 8.5% for the second mode when changing 0 0.5ν≤ ≤ . 
Generally, the limit speed increases with the stronger and the more the mode 
number. 

Figure 10 shows the dispersion curves for the first modal wedge 
tg 2 0.2ϕ = . The figure shows that the speed of the first mode (curve I) is 
equal to zero for ω = 0 and since the frequency ω = 1, virtually unchanged. The 
speed of the second mode (curve 2) is nonzero and finite for ω = 0 and stabilized 
at ω = 3. The rest of the modes (curve number matches the number of fashion) 
have a cut-off frequency, which can be easily determined from Figure 11 (the 
dependence of the wave number α of the frequency), and decreasing, stabilized 
(seen 3 and 4 modes) at top speed. 

 

 
Figure 10. Dependence of the real and imaginary parts of the phase velocity on 
frequency. 

 

 
Figure 11. Dependence of the frequency of the wave. 
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Figure 12 shows the evolution of the first waveform with the frequency ω for 
frequencies ω = 0.5; 1; 5 и 20. Pronounced localized form with increasing fre-
quency. Figures 13-16 show the own forms respectively for 2 - 4 modes of vi-
bration for different frequencies: ω = 1, 2, 3 and 4 (the number of grid points 
corresponds to the number form). And here there are localized forms in the area 
of thin wedge edge. Figure 16 gives an idea of the degree of localization of the 
forms at the frequency ω = 1, obviously, the lower the number of forms, the 
stronger it is localized at the edge of the wedge. 

Figures 17-19 show the spectral curves of the first three events in the case of 
the nonlinear dependence of the thickness of the strip from the coordinates х2. 

( )2 0 2 2, 0 1,ph x h hx x= + < ≤  

where the parameter ρ It was assumed to be 1.5; 2; 2.5; 3 (curves 1, 2, 3, 4, re-
spectively, curve “0” corresponds to p = 1-linear relationship). 
 

 
Figure 12. Changing the shape of the coordinate fluctuations x1. 

 

 
Figure 13. Changing the shape of the coordinate fluctuations x2. 
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Figure 14. Changing the shape of the coordinate fluctuations. 

 

 
Figure 15. Changing the shape of the coordinate fluctuations. 

 

 
Figure 16. Changing the shape of the coordinate fluctuations. 
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Figure 17. Changing the phase velocity as a function of frequency. 

 

 
Figure 18. Changing the phase velocity as a function of frequency. 

 

 
Figure 19. Changing the phase velocity as a function of frequency. 
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Figure 20. Change in the shape of the plate oscillations along the coordinate. 

 

 
Figure 21. Change in the shape of the plate oscillations along the coordinate. 

 

 
Figure 22. Change in the shape of the oscillations along the coordinate. 
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From the equation of “0” with the remaining curve shows that they are located 
on the horizontal high-frequency asymptote, monotonically to zero. The mi-
drange is observed a characteristic peak which is shifted to lower frequencies 
with an increase in “p”. In accordance with the charts of waveforms at Figures 
20-22 quicker and localization of motion near the edge of the waveguide. 

Thus, it can be concluded that the phase velocity of the wave in the localized 
waveguide edge is defined as the frequency increases the rate of change of thick-
ness in the vicinity of the sharp edge. 

Figures 23-28 illustrate the solution of the stationary problem for a 
wedge-shaped waveguide with a linear change in the thickness of the coordinates 
х2 depending on the location of the excitation zone, from which it is clear that  
 

 
Figure 23. The change factor а depending on the frequency. 

 

 
Figure 24. The change factor а depending on the frequency. 
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Figure 25. The change factor а depending on the frequency. 

 

 
Figure 26. The change factor а depending on the frequency. 

 
the main contribution to the resulting solution brings a sharp edge excited wa-
veguides. Analysis of Figures 23-25 shows that, if aroused sharp edge of the 
wedge is raised mostly first oscillation mode, and ratio α1 increases with in-
creasing frequency. 

The amplitude of the remaining modes is not more than 5% from the first 
(ω = 10). Upon excitation of the central waveguide portion (Figure 26 and Fig-
ure 27) the amplitude of oscillation is 20 - 50 times lower than when excited 
sharp edge and decreases with increasing frequency. Figure 28 shows the factors 
driving modes when the excitation zone does not capture any region, the center 
of the waveguide. The oscillation amplitude is also here oscillations 20 - 50 times 
less than in the first case. 26 - 28 of the drawings can be made and another 
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Figure 27. The change factor а depending on the frequency. 

 

 
Figure 28. The change factor а depending on the frequency. 

 
conclusion that in this case the entire frequency range can be divided into zones, 
in which one of the modes propagates mainly. For example, in the case of Figure 
25: 

0 ≤ ω ≤ 2 I fashion; 2 ≤ ω ≤ 5 II fashion; 5 ≤ ω ≤ 10 III fashion, t. i. 

6. Conclusions 

On the basis of these results, the followings may be concluded: 
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- On the basis of the variation equations of the theory of elasticity, the mathe-
matical formulation of the problem of the propagation of longitudinal waves 
in plates of variable thickness is reduced to a system of differential equations 
with the corresponding boundary conditions. 

- Showing that the square of the wave number for own endless bands of varia-
ble thickness in any combination of the action of the boundary conditions. 

- The obtained spectral problem is not self-adjoint, so the associated problem 
is constructed for it. Coupling system consists of ordinary differential equa-
tions with the appropriate boundary conditions. With the help of the La-
grange formula obtained conditions biorthogonality forms. The problem is 
solved numerically by the method of orthogonal shooting S. K. Godunov in 
conjunction with the method of Muller. 

- Analysis of the data shows that the region with the imaginary theory of Kir-
chhoff-Love to the plate of constant thickness is limited by the low frequency 
range. At high frequencies, when wavelength comparable to fashion or less 
than the thickness of the plate, theory Kirchhoff-Love does not yield reliable 
results. 

- For the phase velocity of propagation modes in the band of variable thick-
ness, there is final repartition unlike the constant cross-section strip. 
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